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Abstract
Objective Living creatures can learn or improve their
behaviour by temporally correlating sensor cues where near-
senses (e.g., touch, taste) follow after far-senses (vision,
smell). Such type of learning is related to classical and/or
operant conditioning. Algorithmically all these approaches
are very simple and consist of single learning unit. The cur-
rent study is trying to solve this problem focusing on chained
learning architectures in a simple closed-loop behavioural
context.
Methods We applied temporal sequence learning (Porr B and
Wörgötter F 2006) in a closed-loop behavioural system where
a driving robot learns to follow a line. Here for the first time
we introduced two types of chained learning architectures
named linear chain and honeycomb chain. We analyzed such
architectures in an open and closed-loop context and com-
pared them to the simple learning unit.
Conclusions By implementing two types of simple chained
learning architectures we have demonstrated that stable behav-
iour can also be obtained in such architectures. Results also
suggest that chained architectures can be employed and better
behavioural performance can be obtained compared to sim-
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ple architectures in cases where we have sparse inputs in time
and learning normally fails because of weak correlations.
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1 Introduction

Normally many sensor events, which follow each other in
time, are associated to a real-life situation. However, react-
ing to only a few will improve the behaviour. This situation
can be addressed by mechanisms of temporal sequence learn-
ing. These mechanisms rest on the assumption that it is, in
most cases, advantageous to react to the earliest of such sen-
sor events, not having to wait for following ones. For exam-
ple, it is useful to react to a heat radiation signal and not to
the later pain on having finally touched a hot surface. Many
similar sequences of sensor events are encountered during the
lifetime of a creature as the consequence of the existing far
senses (e.g. vision, hearing, smell) and near-senses (touch,
taste, etc.). Generically one observes that the trigger of a
near-sense is preceded by that of a far sense (smell precedes
taste, vision precedes touch, etc.). Far-senses act predictively
with respect to the corresponding near-senses (Verschure and
Coolen 1991). Conceptually this type of learning is related to
classical and/or operant conditioning (Sutton and Barto 1981;
Sutton and Barto 1990; Wörgötter and Porr 2005). Algorith-
mically all these approaches (Sutton and Barto 1981; Kosco
1986; Klopf 1988; Porr and Wörgötter 2003a) share the prop-
erty that they are built in a very simple way, in general only
consisting of a single learning unit.

Here we will apply temporal sequence learning to a
driving robot that is supposed to learn to better follow a line
painted on the ground. We will try to answer two questions:
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(1) whether it is possible to design simple chains of learning
units while at the same time still guaranteeing behavioural
stability, and (2) can chained architectures be employed in
order to obtain better behavioural performance compared to
the simple architecture in cases where we have sparse inputs
in time and weak correlations.

We believe that the embedding of learning architectures
into behaving systems, which close the loop between percep-
tion and action, is an important field of investigation leading
away from the pure stimulus–response paradigm to a more-
ecological system perspective. The current study is meant to
provide a specific contribution to the solution of this prob-
lem focusing on chained learning architectures in a simple
closed-loop behavioural context.

The paper is organised as following. After presenting
our input–input correlation (ICO) learning rule (Porr and
Wörgötter 2006) and its embedding into a closed-loop
scenario we will first show results with a simple architecture.
In this way we want to demonstrate the efficiency and stabil-
ity of the ICO rule and fast learning in the line-following task
using relatively high learning rates. Next we will introduce
two simple chained architectures and present the behaviour
of these architectures in an open-loop case. Finally, we will
show results for chained architectures in a closed-loop con-
text and compare these architectures with the simple setup.

2 Methods

2.1 Robot setup

We used a small (diameter 18 cm) two-wheeled Rug
Warrior Pro driving robot for the investigation (Fig. 1a).
Figure 1b shows the physical setup used for learning. A
camera mounted at the front of the robot produces images of
the track like the one shown. Since the robot drives forward,
obviously sensor fields towards the top of the image (x L ,R

1 )

represent far-sensors, while those at the bottom (x L ,R
0 ) can

be regarded as near-sensors. Initially we implemented only
a crude, abrupt, and aversive steering reflex as soon as the
image of the track moved over one of these near-sensor fields.
As a consequence the robot was forced back to a situation
where the track remained mostly in the centre of the image.
The learning goal was to learn predictive and smoother steer-
ing reactions. This was achieved by changing the synaptic
weights of the far-sensor fields in an appropriate way such
that earlier and smoother steering reactions are elicited, lead-
ing to the situation that the near-sensor fields will never be
triggered (hence avoiding the initial reflex).

2.2 Learning algorithm

The learner (Fig. 2b) has inputs x j that feed into a summation
unit v. The output is calculated as

A

B
C

Fig. 1 Physical and neuronal setup of the learning. a Image of the Rug
Warrior Pro driving robot. b Camera image with sensor fields marked by
x L ,R

1 and x L ,R
0 . c The simple neuronal setup of the robot. The symbols

α and β denote neurons, u denotes the filtered input signals x , ρ the
connection weight, and v output of the neuron used for steering. v is
calculated by the method shown in Fig. 2b and its corresponding Eq. 1.
SL ,R is given in Eq. 3 and transforms v to the motor output

v =
∑

j

ρ j u j , (1)

where u = h × x is a temporal convolution of the input
x with a resonator h. We define h(t) = 1

b eat sin(bt), a =
−π f/Q, and b = √

(2π f )2 − a2, where f is the frequency
and Q > 0.5 the damping. This convolution correlates tem-
porally nonoverlapping signals (Fig. 2a).

The time delay T (Fig. 2a) between x0 and x1 depends on
the speed of the robot. To accommodate for some variability,
x1 is fanned out and fed into a filterbank of different filters h
as indicated by the dashed lines in Fig. 2b. As shown in our
older studies, the number of filters is not critical and we use 10
(Porr and Wörgötter 2003a, 2006). The robot’s base speed of
0.125 m/s together with the camera frame rate of 25 Hz used
in all experiments leads to f1,k = 2.5/kHz, k = 1, . . . , 10
for the filterbank in the x1 pathway. The frequency of the x0

pathway was f0 = 1.25 Hz. The damping parameter of all
the filters was Q = 0.6.

Weights change according to an input–input correlation
(ICO) rule (Porr and Wörgötter 2006):

ρ̇ j = µu j u̇0, j > 0 , (2)

which is a modification of the ISO learning rule (Porr and
Wörgötter 2003a). The behaviour of this rule and its conver-
gence properties were discussed in a recent article (Porr and
Wörgötter 2006).

The weight ρ0 is set to a fixed value; all other weights are
initially zero. As discussed above, this learning rule is specif-
ically designed for a closed-loop system where the output of
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A B

Fig. 2 a Resonator filters h0 (solid line) for the input signal x0 and
h1,k (dashed lines) for the x1 given by parameters f1,k = 2.5/kHz,
k = 1, . . . , 10 for the filterbank in the x1 pathway. The frequency of
the x0 pathway was f0 = 1.25 Hz. The damping parameter of all filters
was Q = 0.6. b Schematic diagram of the learning system: inputs x ,

resonator filters h, connection weights ρ, output v. The symbol ⊗
denotes a multiplication, d/dt represents a temporal derivative. The
amplifier symbol stands for a variable connection weight. Dashed lines
indicate that the input x1 is fed into a filterbank

Fig. 3 Schematic diagram of
the control (a), learning (b), and
post-learning case (c).
Components of the learning
system are: sensor inputs x0 and
x1, motor output v; P0 denotes a
reflexive pathway and P1 a
predictive pathway. D is a
disturbance and T is a time
delay

A B C

the learner v feeds back to its inputs x j after being modified
by the environment (see Fig. 3).

The goal of the learning is to learn predictive steering reac-
tions in such a way that the initial reflex is avoided. This is
achieved by changing the connection weights ρ1 such that the
learner can use the earlier signal at x1 to generate an anticipa-
tory reaction. The weights stabilise and learning stops at the
condition x0 = 0 when the reflex is no longer triggered. The
convergence properties of this kind of closed-loop learning
are discussed in Porr and Wörgötter (2006) and Porr et al.
(2003b).

2.3 Embedding learning in a closed-loop scenario

Figure 3 shows how such a learning unit can be embedded
in a closed-loop system. Initially (Fig. 3a) the system is set
up only to react to the near-sense x0 by way of a reflex.
This reflex will, after some behavioural delay, reset the signal
form the near-sensor to its starting value (often zero), closing
the loop. In more-technical terms, this represents a negative-
feedback loop controller. The learning system, however, con-
tains a second predictive loop (Fig. 3b) from a sensor x1 that
receives an earlier signal (the far-sensor). At the beginning of
the learning, the synapses ρ1 that convey information from
the far-sensor are zero and in Fig. 3b only the inner loop x0

is functioning. During learning, the synapses ρ1 will become
strengthened and the system will react better to the far-sense.
As a consequence reactions occur earlier and the reflex based
on x0 will no longer be triggered. Effectively, the inner loop
has functionally been eliminated after learning (Fig. 3c). A
forward model of the reflex has been built (Porr et al. 2003a).
The learning of a forward model makes this approach appear
similar to feedback-error learning as introduced by Gomi and
Kawato (1993), but there are distinctive differences as will
be discussed later (see Sect. 5).

Intuitively the mechanism introduced in Fig. 3 will work
with any aversive reflex. One should, however, note that the
same mechanisms can also be used to learn earlier attraction
reactions. Braitenberg (1984) has nicely demonstrated that
it is the sign combination of the motor signals that deter-
mines the resulting reaction (aversion versus attraction) in
his vehicles. Here, similarly, we can define the behavioural
outcome by ways of the motor signals leaving the learning
mechanism unaffected (see Porr and Wörgötter (2003b,2006)
for examples of attraction reflexes). Regardless of the motor
signs, the learning goal is always to avoid the earlier, near-
sense-triggered reflex, leading to a situation where x0 = 0.
We were able to prove mathematically that synaptic weights
will no longer change as soon as this condition (x0 = 0) is
fulfilled (Porr et al. 2003b; Porr and Wörgötter 2006). Hence
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A

B

Fig. 4 a The input signals x0,1 of the learning system. Dashed lines
represent signals from the right (x R) and solid lines those from the left
sensor fields (x L ). The track layout is shown in Fig. 5c. Signals before
camera frame 150 come from the left turn, those after frame 150 from
the right turn of the robot. b Sequence of camera frames taken from the
left curve

learning terminates as soon as the newly learnt behaviour is
successful, which creates a nice self-stabilising property of
such systems.

2.4 Input signals

As described in Sect. 1, a far-sensor (predictive) pathway
and a near-sensor (reflexive) loop can be defined from sen-
sor fields in the image of a forward-pointing camera on the
robot. Figure 4b shows a sequence of camera frames obtained
during a left curve and the corresponding raw input signals
(Fig. 4a) obtained from the sensor fields x L ,R

0,1 (the sum over
all pixels within the sensor field). The vertical solid lines in
panel a show that the signals at x1 are indeed earlier than those
at x0. The sequence of camera frames in Fig. 4b demonstrates
that the ego-motion of the robot creates a degree of variability
in the field of vision of the robot (see video camera.mpg1),
for example the moving out and in of the bent line is clearly
visible in the second row in Fig. 4b. This creates a tempo-
rally inverted sequence of input events. Learning needs to be
robust against such effects as well as against other problems
that arise from this behaviourally self-generated variability.

2.5 Simple architecture

A simple neuronal setup for the robot is presented in Fig. 1c. It
has three neurons: two are essentially only summation nodes,
which we for consistency also call neurons α. They have fixed
weights (+1 for right-side inputs and −1 for left-side inputs).
In addition there is one neuron β with changing synapses on
which all signals converge. The synaptic weights ρ

β
0 are also

1 Videos can be downloaded at
http://www.nld.ds.mpg.de/~tomas/DrivingRobot/

set to a fixed value of 1 and only the weights ρ
β
1 of the 10

filters (Fig. 2a) change. The output vβ is used to modify
the motor signals of the robot. Note that in this experiment
the setup for the weight development is symmetric but with
inverted signs for the left versus the right curve. Hence only
one set of weights ρ

β
1 develops. This is motivated by the

fact that, in a natural setup, the left and right curves do not
have any a priori bias. Situations where, for example, left
curves are always on average sharper than right curves are
not realistic. Hence, weights learnt for a left curve might as
well be applied, with inverted sign, to a right curve (and vice
versa), where learning will commence if the learnt weights
are not sufficient. Given that the learning algorithm is linear, it
would not make any difference if inputs were all converging
directly onto β. Note that, since the robot is continuously
driving, we perform online and not batch learning.

2.6 Motor outputs

The robot has a left and a right motor, which receive a certain
forward drive leading to a constant speed of S = 0.125 m/s
in all experiments. This signal is modified by braking (|vβ |)
and steering (±vβ ) according to:

SL ,R = 1.1905×10−4(3097−g(|vβ |±vβ))−0.2437 m/s,

(3)

where for the left motor we use the minus and for the right
the positive sign. Numerical constants as well as g are deter-
mined by the 12-bit resolution of the digital-to-analog (DA)
converter used, where 0 is the maximal reverse speed and
4095 is the maximal forward speed. For the chained archi-
tectures, introduced later (Fig. 10b, c), we use vγ instead of
vβ in Eq. (3).

3 Results

3.1 Basic behaviour of the simple system

The simple architecture (Fig. 1b, c) was applied in the line-
following task and three different tracks were used in this
experiment (see Fig. 5). Trajectories are shown for a left
and a right curve (Fig. 5d, g, j). The weights and motor
signals corresponding to the tracks are shown to their left.
The sensor fields for the predictor x1 and the reflex x0 are
depicted in Fig. 1b. The late and weak reflex response by itself
is not enough to assure line-following behaviour; therefore
the robot misses the line whenever it drives without learn-
ing (not shown, but see video control.mpg). In Fig. 5a, b
two learning trials (separated by a dashed line) are shown,
between which connection weights were frozen and the robot
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Fig. 5 Results of the driving robot experiment using the simple archi-
tecture (see Fig. 1c). a–d Results for the intermediately steep track (d);
the learning rate was µ = 3×10−6. a Connection weights ρ

β
1 : b motor

output vβ , c reflex signal x L
0 , and d driving trajectories; trajectory T1

during, and T2 after, learning. e–g Results for the shallow track (g); the
learning rate was µ = 2.5 × 10−6: e connection weights ρ

β
1 , f motor

output vβ , and g driving trajectories. h–j Results for the sharp track (j);
the learning rate was µ = 6.5×10−6: h connection weights ρ

β
1 , i motor

output vβ , and j driving trajectories

was manually returned to its starting position. A rather high
learning rate µ = 3 × 10−6 was chosen to demonstrate fast
learning. The cumulative action of the reflex and predictive
response already allows the robot to stay on the line during
the first learning trial (see Fig. 5d, trajectory T1). In the first
learning trial the motor signal (Fig. 5b) shows three leftward
cumulative reflexive+predictive reactions (large troughs) and
seven (two leftward and five rightward) nonreflexive (predic-
tive) reactions. Note that cumulative responses consist of two
components: the first component, smaller in amplitude, is the

predictive response, whereas the second, larger in amplitude,
is the reflexive response (see the inset in Fig. 5b). In the sec-
ond trial only nonreflexive leftward and rightward steering
signals occurred and the reflex was no longer triggered. An
appropriate steering reaction was learnt after three reflexes
(reflected by the three peaks in the weight curve in Fig. 5a)
during the first learning trial corresponding to about 50 cm of
the track (the whole track is about 2 m). The left reflex signal
x L

0 is shown in Fig. 5c, where we observe that the reflex was
triggered three times (three troughs below the threshold),
which correspond to three learning experiences. To ensure
weight stabilisation (at the condition x0 = 0) we employ
a threshold where values of x0 above the threshold were
set to zero (similarly to the mechanical arm experiment in
Porr and Wörgötter 2006). Due to the symmetry of this setup
(Fig. 1c), results from the learnt left curve could be equally
applied to the right curve and no more reflexes are triggered
after these first three learning experiences. Also we observe
that after learning the robot steers more smoothly (see video
simple.mpg).

In addition two more-extreme tracks were chosen to
demonstrate the robustness of these findings. The results
for a shallower track (Fig. 5e–g) are similar to those from
the previous experiment but for this track learning stopped
after just two reflexes, even with a lower learning rate of
µ = 2.5×10−6 compared to the previous experiment where
µ = 3×10−6. As expected a much weaker steering reaction
(Fig. 1f) was learnt and the weights were smaller (for a movie
of the learning behaviour see shallow.mpg).

The third experiment was performed using a track with
very sharp corners (Fig. 5j) and a higher learning rate of
µ = 6.5 × 10−6. This was done to demonstrate that fast
stable learning is possible even for such a sharp track. The
results of three learning trials (separated by dashed lines)
are presented in Fig. 5h–j. The robot missed the track twice
and finally succeeded in the third trial (see also sharp.mpg).
As before, it can now also use the learnt weights for the
right curve. Note, however, as a consequence of the general
arrangement, the robot now cuts corners. This is a result of
the fact that the predictive sensor field is some distance from
the bottom of the camera image. Because steering necessarily
always consists of a sequence of short, straight trajectories,
the robot will always take shortcuts if the curves are too sharp
and/or if the predictive sensor field is high up in the camera
image.

In general we observed that the robot can learn the task fast
even with a low learning rate as long as the track is shallow
but needs higher rates to be able to follow the sharp track
after about the same number of reflexes. If the same learning
rate is chosen for all tracks then more reflexes are needed for
the sharp track than for the shallow one.

Figure 6 shows the results for two control experiments
with a shallow left and an increasingly sharp right curve
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Fig. 6 Results of the driving robot experiment using the simple archi-
tecture (see Fig. 1c) on a spiral track. a, b Results for a learning rate
of µ = 0.4 × 10−6: a connection weights ρ

β
1 , b motor output vβ . c, d

Results for a learning rate of µ = 1.5×10−6: c connection weights ρ
β
1 ,

d motor output vβ . e–f Spiral track and robot trajectories belonging to
the different learning rates used in Fig. 6. e Ongoing learning with rate
µ = 0.4 × 10−6, where we show trajectories T1, T2, and T3 during
learning. Note, learning has not yet finished after T3, but improves grad-
ually towards a smooth trajectory. f Final stage T3 reached after two
learning trajectories (not shown) when using the higher learning rate
of µ = 1.5 × 10−6. In this case we find weight stabilisation after two
trials (Fig. 6c), but the learnt weights will lead to too strong reactions
for shallow curves which are compensated by corrective movements
(see near the start of the trajectory)

(see Fig. 6e). The connection weights ρ
β
1 (Fig. 6a) and motor

output vβ (Fig. 6b) of four learning trials (separated by
dashed lines) are shown for a relatively low learning rate
µ = 0.4 × 10−6. At the beginning, the low learning rate
prevents the robot from even following the very shallow left
curve (see trajectory T1 in Fig. 6e). In the second trial, the
robot succeeded for the left curve and the beginning of the
right curve but the learnt steering reaction was still not suf-
ficient to allow it to follow the sharper parts of the right
curve at the end of the spiral (see trajectory T2 in Fig. 6e).
In the third learning trial the robot succeeded to follow the
whole trajectory completely (see trajectory T3 in Fig. 6e)
but still most of the time a mix of predictive and reflexive
(large peaks) steering reactions occurred. The robot con-
tinued to improve its steering reactions in the fourth trial
(trajectory not shown, but see video of whole experiment
spiral-low.mpg) where one can see more nonreflexive reac-
tions (smaller peaks) and less predictive + reflexive reactions
than in the third trial. As expected from the linearity of our
learning rule, in the right curve the system can use the weights
learnt during the left curve up to the point where the right
curvature remains below the left curvature (three leftward
reactions and then two rightward reactions in the fourth trial)
after which weights will continue to grow (large peaks). How-
ever, learning is not finished at this stage and would need
more trials until the weights finally stabilise.

To speed up the learning process a higher learning rate
of µ = 1.5 × 10−6 was used; three learning trials are pre-
sented in Fig. 6c, d. In this case, the robot was already able
to stay on the line during the first learning trial (trajecto-
ries not shown but see video: spiral-high.mpg) but still more
predictive + reflexive (large peaks) than nonreflexive steer-
ing reactions occurred (see Fig. 6d). In the second trial only
two predictive + reflexive reactions occurred, whereas in the
last trial only nonreflexive steering reactions occurred and
the weights did not change anymore. When we use the final
weights learnt with the sharp curve to drive along the shal-
low left curve in a third trial the robot oversteers slightly to
the left curve and then makes a right–left–right corrective
movement, however, without triggering reflexes, in order to
remain on the line (see trajectory T3 in Fig. 6f).

We also carried out an experiment to see how the robot
behaves on a difficult track with different kinds of curva-
tures (Fig. 7c). The total length of track was approximately
14.5 m. The connection weights and motor output are shown
in Fig. 7a, b. The robot had three reflexes at the beginning
(Fig. 7a, see the arrows in c) while turning to the right and
then the reflex input was not triggered until it approached the
crossing point, where the robot turned to the right (see trajec-
tory in Fig. 7c) and the reflex was triggered twice more. The
reflex was then not triggered again and the weights stopped
changing. When the robot approached the crossing point for
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C

Fig. 7 Results of the driving robot experiment using the simple archi-
tecture (see Fig. 1c) on a maze track: a connection weights ρ

β
1 , b motor

output vβ . The learning rate was µ = 3 × 10−6. The weights stabilised
after five reflexes. c The maze track and the robot’s driving trajectory
for the first loop

the second time it went straight and for the third time (trajec-
tory not shown) it turned to the left (see video maze.mpg).
In general we obtained the same results as on the spiral track
where the robot used the final weights learnt for the sharpest
curve and oversteers slightly when driving on the shallower
curves. Note, as the robot does not use any assumptions about
track smoothness (similar to a known Gestalt law), for the
machine both solutions, driving straight or turning, are equiv-
alent at the crossing point in the centre of the track and the
selection of a certain behaviour only depends on the status
of its sensor inputs.

3.2 Statistical evaluation

From these experiments it became clear that the system per-
forms online (and not batch) learning. Hence the most crit-
ical parameter affecting the convergence of learning is the
way in which the instantaneous behaviour will influence, or
rather generate, the next learning experience. Ultimately this

is given by the sequence of viewing angles that the robot
creates due to its own driving. Therefore, investigation of
the influence of the viewing angle on the learning should
provide the most relevant information about the robustness
of this system. Other relevant parameters are the learning rate
and the relative placement of the sensor fields.

Thus, to investigate the robustness against these parame-
ters we used a simulation and performed a set of more than
1000 experiments in which we let the simulated robot learn
to follow left-right tracks with angles of 20°, 45° and 90°
(see Fig. 8a). The total length of the tracks was 360 points
while its thickness was one point. The radius of the robot
was r = 20 points and the positions of the sensor inputs
x L ,R

0,1 (1x1 point) were defined as shown in Fig. 8b. We used
the neuronal setup as presented in Fig. 1c. The output of the
neuron vβ modified by the transformation function Sx,y was
used to change the position of the robot in the environment.
It was calculated according to the following equations:

Sx
t = Spx

t + r cos(αt ), (4)

Sy
t = Spy

t + r sin(αt ), where (5)

Spx
t = Spx

t−1 + (1 − 0.001 |vβ |) cos(αt ), (6)

Spy
t = Spy

t−1 + (1 − 0.001 |vβ |) sin(αt ), and (7)

αt = αt−1 − 0.01 vβ, t = 0, . . . , N , (8)

where α0 is the angle in radians of the robot’s starting position
(Fig. 8c). We used a filter bank of 10 filters for the inputs x L ,R

0,1 ,
given by the parameters f0 = 0.25 for x0 and f0 = 0.5/k,
k = 1, . . . , 10, for x1. The damping parameters of all the
filters were Q = 0.6.

To evaluate the robot’s performance we defined three
(AND-connected) conditions to measure success:

1. The correlation coefficient between the robot’s trajectory
and the whole track is >0.90.

2. The reflex is not triggered in three consecutive trials after
the connection weights have stopped changing.

3. The robot completed the task within 20 trials (20 full
tracks).

If these three conditions are not fulfilled at the same time
then we count the experiment as a failure. Results demon-
strating the influence of the robot’s angle at the starting posi-
tion are presented in Fig. 8d. We plot the success rate in
1000 experiments and the average number of reflexes (NR)
needed to accomplish the task (in successful experiments)
against the variance of the distribution of the starting angle
σ 2

α . Success slightly decreases as we increase the variance of
the starting angle distribution σ 2

α , but we still get high levels
of performance (success rate 0.92 < succ ≤ 0.99 for all
tracks). More reflexes are needed to accomplish the task if
σ 2

α is increased. Also, as expected, more reflexes are required
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Fig. 8 a–c) Setup of the
simulation experiment. a Tracks
with 90°, 45°, and 20°.
b Positions of the input signals
x L ,R

0,1,2. c Angle α of the robot at
its starting position, given by the
deviation from the direction of
the track. A Gaussian
distribution of α was used with
mean α of zero and different
variances σ 2

α . d–f Results of the
simulation experiments using
simple neuronal setup.
d Success in 1000 experiments
and average number of reflexes
(NR) needed to accomplish the
task within successful
experiments are plotted against
the variance σ 2

α ; the learning rate
was µ = 5 × 10−6 and distance
between x1 and x0 was d = 3.
e Success in 100 experiments
and average NR plotted against
the distance between x1 and x0;
the learning rate was
µ = 5 × 10−6 and the variance
was σ 2

α = 4.
f Success in 100 experiments
and average NR plotted against
the learning rate; the variance
was σ 2

α = 4 and the distance
between x1 and x0 was d = 3

A D

B

C

F

E

for the sharp track than for the shallower ones. The results
of 100 experiments for different positions of the predictor
sensor x1 are shown in Fig. 8e. The success rate decreases
if the distance between the inputs becomes larger for the
sharp track whereas for the shallow and intermediate track
the decrease is less significant when the distance is very
large (d = 9/10). The number of necessary reflexes (NR)
increases as the distance between x1 and x0 becomes larger.
This is due to the weight change curve of the ICO learn-
ing rule (Porr and Wörgötter 2006). If the inputs are spaced
further apart in time then the correlations are weaker, the con-
nection weights do not change so fast, and more repetitions
are needed to complete learning. Due to this the robot never
succeeded in steering along the sharp track within 20 trials
when the distance between x1 and x0 was >8. We also inves-
tigated the influence of the learning rate; the results of 100
experiments are presented in Fig. 8f. The learning rate does
not affect performance except for the sharp track. When the
learning rate is relatively low the robot does not succeed in
steering along the curve within 20 trials. As expected we find
that, with a higher learning rate, fewer reflexes are needed to

complete the task, because the weights grow faster and the
task is learnt sooner.

3.3 Chained architectures

3.3.1 Open-loop case

Two types of chained architectures were developed by the
modification of the simple neuronal setup and were sim-
ulated in the open-loop case before applying them in the
line-following task (closed-loop case). The neuronal setup
of the first type of chained architecture, called the linear
chain, is presented in Fig. 9a. There is one reflex input x0

and two predictive inputs x1 and x2. The output vβ is used as
the reflex input of the neuron γ . The weights ρ

β,γ
0 are set to a

fixed value 1; all other weights are initially zero. The second
type of chained architecture (Fig. 9d) is called a honeycomb
chain due to its shape. The output vβ,1 is used as the reflex
input of the neuron γ and the output vβ,2 as its predictive
input. Note, that the output vβ,2, similarly to inputs x1 and
x2, is fed into a filterbank h of different filters as indicated
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by the dashed lines in Fig. 2b. The output vγ is calculated by

vγ = ρ
γ
0 vβ,1 + ρ

γ
1 uβ,2, (9)

where uβ,2 = h × vβ,2 is a temporal convolution of the
output vβ,2 with a resonator h. The resonator filters hk for
vβ,2 are determined by the parameters f1,k = 2.5/kHz, k =
1, . . . , 10 for the filterbank h, and the damping parameter was
set at Q = 0.6. The weights ρ

β,1
0 and ρ

γ
0 are set to a fixed

value 1; all other weights were initially zero. The connection
weight ρ

β,2
0 is given by ρ

β,2
0 = ∑10

k=1 ρ
β,1
1,k , where k denotes

the number of the filter in the filter bank. We note that the two
architectures are identical if we set ρ

β,2
0 = 0 and ρ

β,2
1 = 1.

Inputs for the open-loop case were generated as follows.
Input x2 occurs 20 time steps earlier than input x0 with a
variability of up to ±5 time steps and x1 occurs 10 time
steps earlier than x0 with the same variability. This impulse
sequence was repeated every 50 time steps.

Simulation results for the linear chain (Fig. 9a) are pre-
sented in Fig. 9b, c. The variability in the pulse sequences
leads to uneven growth. In the open-loop case we have to
enforce weight stabilisation by setting the inputs x0 to zero
at some points. This was done whenever the growing input
weights ρ1 at this neuron, summed over the whole filter bank,
exceeded a threshold of 0.5 (see the legend of Fig. 9 for the
equations).

Using this criterion, first the connection weights ρ
β
1 sta-

bilise and after some time the ρ
γ
1 stop changing. The results

for the honeycomb chain (Fig. 9d) are presented in Fig. 9e–g.
In this situation first the connection weights ρ

β,1
1 stop chang-

ing and later both the weights ρ
β,2
1 and ρ

γ
1 stabilise.

3.3.2 Closed-loop case

The physical and neuronal setups of the learning system
for the chained architectures are presented in Fig. 10. The
neuronal setup for the linear chain is presented in Fig. 10b
and for the honeycomb chain in Fig. 10c. These are similar
to those above (see Fig. 9a, d), only that we add left and right
inputs with inverted signs before this signal finally arrives at
neurons β.

These chained architectures were applied in the line-
following task and results similar to those in the simulated
open-loop case were obtained for both architectures. The
results for the learning task using the linear chain (Fig. 10b)
are presented in Fig. 11a–d and for the honeycomb chain
(Fig. 10c) in Fig. 11e–h. In the first learning trial the motor
signal (Fig. 11c) shows three leftward cumulative reflex +
predictive reactions and two nonreflexive reactions, as
well as two cumulative rightward reactions and three non
reflexive reactions. Note, by chance in this trial the three
leftward reflexes were elicited by triggering x L

0 , whereas the
two rightward reflexes came from x R

1 . Hence the leftward

A

B E

F

G

C

D

Fig. 9 Chained neuronal architectures (a, d) and simulation results for
the open-loop case (b, c, e–g): a Linear chain and d honeycomb chain.
The learning rate for both architectures was µ = 10−7. b, c Results for
the linear chain (a) with connection weights ρ

β
1 and ρ

γ
1 ; the weights

ρ
β
1 stop growing at the condition x0 = 0 while the ρ

γ
1 stop growing

when x1 = 0. We set x0 = 0 when the sum of weights over all 10 filters
was

∑10
k=1 ρ

β
1,k ≥ 0.5 and x1 = 0 when

∑10
k=1 ρ

γ

1,k ≥ 0.5. e–g Results

for the honeycomb chain (d) with connection weights ρ
β,1
1 , ρ

β,2
1 , and

ρ
γ
1 . The weights ρ

β,1
1 stop growing at the condition x0 = 0, ρ

β,2
1 while

the ρ
γ
1 stop growing when x1 = 0. We set x0 = 0 when the sum of

weights over all 10 filters was
∑10

k=1 ρ
β,1
1,k ≥ 0.5 and x1 = 0 when

∑10
k=1 ρ

β,2
1,k ≥ 0.5

reflexes were contributing to changes of ρ
β
1 and ρ

γ
1 (Fig. 11a,

b) but not the rightward reflexes, which only contributed to
the change of ρ

γ
1 .

In the second trial only nonreflexive leftward and
rightward steering signals occurred and the reflex was not
triggered anymore. The driving trajectories are shown
in Fig. 11d and in the video linear-chain.mpg. The weights
at a certain neuron stabilise as soon as their corresponding
reflex input remains silent. For the linear chain (Fig. 11a–d)
this happens earlier forρβ

1 , where x0 becomes zero after about
150 camera frames, and later for ρ

γ
1 , because its reflex input
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Fig. 10 The physical (a) and
neuronal (b, c) setups of the
chained learning system for the
closed-loop case. a Camera
image with sensor fields marked
by x L ,R

1,2 and x L ,R
0 . b Linear

chain and c honeycomb chain

A

C

B

vβ remains active for longer. Essentially the same is true for
the honeycomb chain (Fig. 11e–h). Here ρ

β,1
1 stops growing

first, which becomes the same reflex input u0 as ρ
β
1 in the lin-

ear chain. The convergence of the weights ρ
β,2
1 is controlled

by the reflex input u1, which also contributes to the signal
vβ,1, the reflex input to neuron γ . Hence the weights ρ

β,2
1

and ρ
γ
1 behave in the same way and stabilise later (similar to

ρ
γ
1 in the linear chain).

3.4 Statistical evaluation

We also carried out simulations using chained architectures in
order to make a comparison with the simple setup. The simu-
lation setup for the chained architectures is shown in Fig. 8b.
The positions of the sensor fields x L ,R

1 and x L ,R
0 were fixed

(3 pts) and we only varied the position of the sensor fields
x L ,R

2 . The influence of the robot’s starting angle are presented
in Fig. 12a, b. We plot the success rate in 1000 experiments
and the average number of reflexes (NR) needed to accom-
plish the task (in successful experiments) against the variance
of the distribution of the starting angle σ 2

α . We obtained simi-
lar results using the linear chain (Fig. 12a) as with the simple
architecture; success is slightly decreasing and more reflexes
are needed to accomplish the task if we increase the
variance σ 2

α . We get a slightly reduced performance com-
pared to the simple setup (success rate 0.86 < succ < 0.96
for all tracks). Also, as for the simple setup, more reflexes are
required for the sharp track compared to the shallower ones.
For the honeycomb chain (Fig. 12b) the performance was

again lower, with a success rate of 0.71 < succ ≤ 0.94 for
the shallow and intermediate track where for the sharp track
we got very low performance (success rate succ < 0.1).
This is due to the fact that the honeycomb chain architecture
is sensitive to the position of the sensor fields. We plot the
results of 100 experiments for different positions of the pre-
dictor sensor x2 (keeping the positions of x1 and x0 fixed) in
Fig. 12d. Here we can see that we get the best performance
for the shallow and sharp track when the distance between x2

and x1 is d2 = 5 pts (success rate 0.70 ≤ succ ≤ 0.96 for all
tracks), where for the intermediate track the importance of
the position of the sensor fields is not significant (except for
the smallest distance between x2 and x1 of d2 = 2 pts). For
the linear chain setup (Fig. 12c) we obtained the same results
as for the simple one. The success rate decreases as the dis-
tance between the inputs becomes larger only for the sharp
track, whereas for the shallow and intermediate track the
decrease is not significant. We also observed that the number
of necessary reflexes (see Fig. 12c–d) increased if the dis-
tance between x1 and x0 became larger except for very small
distances between x2 and x1 when using honeycomb chain
setup (Fig. 12d).

We can summarise that better performance is obtained
with the simple setup compared to the chained architectures.
The performance does not depend crucially on the starting
angle. It decreases only slightly if the variance of starting
angle position increases. In general we observed that only for
the honeycomb chain architecture does performance depend
on the position of the sensor fields (the distance between
the sensor fields). The learning rate does also not affect the
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A B

C D

E F

G H

Fig. 11 Results of the driving robot experiment using chained archi-
tectures. The learning rate for both experiments was µ = 2.5 × 10−6.
a–d Results for the linear chain (see Fig. 10b): a, b the connection
weights ρ

β
1 and ρ

γ
1 , c motor output vγ , and d the driving trajectories.

Trajectory T1 during, and T2 after, learning. e–h Results for the honey-
comb chain (see Fig. 10c): e–g connection weights ρ

β,1
1 , ρ

β,2
1 , and ρ

γ
1 ;

h motor output vγ . The trajectories are similar to the previous experi-
ment (d) and are not shown

performance itself. The robot only needs more reflexes to
learn the task if we use lower learning rates.

4 Simple versus chained architectures

Previously we summarised that with the simple setup we got
better performance compared to the chained architectures.
This is true only for cases where we have good input cor-
relations (small distances between the inputs) in the simple
setup. The performance decreased if the distance between
the inputs was very large (see Fig. 8e) for the shallow and
intermediate track and the robot never managed to steer along
the sharp curve when the distance between inputs was > 8.
However, the robot managed to steer along the sharp curve

when the chained architectures were used (see Fig. 12c, d)
where the distance between the inputs x2 and x1 was >5
and between x1 and x0 was 3 (the total distance between
x2 and x0 was > 8). To test the hypothesis that chained
architectures are advantageous for bad correlations because
of sparse inputs we carried out an experiment in which we
compared the performance of all three architectures on the
intermediate track (45°). The setup of the input configuration
for the simple architecture is shown in Fig. 13a and for the
chained architectures in Fig. 13b. The distance between the
inputs x1 and x0 in the simple setup was 15 pts and in the
chained architectures it was 8 between the inputs x2 and x1

and 7 between x1 and x0 (the total distance between x2 and
x0 was 15 pts). A comparison between all three architectures
is presented in Fig. 13c, d where we plot the success rate in
500 experiments (Fig. 13c) and the average number of trials
(NT) within successful experiments together with confidence
intervals (95%) needed to accomplish the task (see Fig. 13d).
From these results we can conclude that chained architectures
indeed perform better (with a success rate for the linear chain
of 0.87 and for the honeycomb chain of 0.92) whereas for
the simple architecture we obtained a success rate of only
0.57 (see Fig. 13c). We also needed fewer trials to complete
learning when using the chained architectures compared to
the simple setup (see Fig. 13d).

5 Discussion

In this study we have introduced a specific closed-loop robot-
ics system that can adaptively improve its line-following
behaviour, performing reflex-avoidance learning by ways of
replacing late responses to sensor fields at the base of a cam-
era image with earlier ones triggered by sensors higher up in
the field of vision. A new learning rule (ICO) was employed,
which is able to correlate sequences of temporal events and
the system has been tested in a restricted set of scenarios far
less complex than those in a real-world navigation task. Thus,
the system has been specifically designed for this task and
cannot easily be compared with more-general navigation sys-
tems (see Sect. 5.3 below). These restrictions, however, are
justified by the focus of our study, which is twofold: (1) we
wanted to investigate the properties of chained ICO learning,
and (2) we were interested in finding out whether chained
learning could be beneficial in cases of sparse and noisy
inputs. Note, more-general applications of single-module (no
chaining) ICO learning can be found in (Porr and Wörgötter
2006, 2003a, b; Manoonpong et al. 2007). These studies
should support the general versatility of this type of learn-
ing. In the following we would like to discuss how the open-
and closed-loop situation compares to biological and other
artificial systems, compare our approach to other approaches
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Fig. 12 a–d Results of the
simulation experiments using
chained architectures.
a, b Success in 1000
experiments and average
number of reflexes (NR) at the
motor output neuron γ needed
to accomplish the task within
successful trials plotted against
the variance σ 2

α : a linear chain,
b honeycomb chain. The
learning rate was µ = 5 × 10−6

and the distance between x1 and
x0 and between x2 and x1 was
d = d2 = 3. c, d Success in 100
experiments and average NR
plotted against the distance
between x2 and x1: c linear
chain, d honeycomb chain. The
distance between x1 and x0 was
fixed and was d = 3. The
learning rate was µ = 5 × 10−6

and the variance was σ 2
α = 4

A B

C D

Fig. 13 a, b Setup of the
simulation experiment. a Simple
setup. Positions of the input
signals x L ,R

0,1 . b Chained
architectures. Positions of the
input signals x L ,R

0,1,2. c, d Results
of the simulation experiments
using different neuronal setups
on the middle track (45°).
c Success in 500 experiments.
d Average number and
confidence intervals (95%) of
trials (NT) needed to
accomplish the task within the
successful experiments. The
learning rate for all the
experiments was µ = 5 × 10−6.
The distance between x1 and x0
in the simple setup was 15 pts
whereas the distances between
x1 and x0 and between x2 and x1
in chained architectures were 7
and 8 pts, respectively

A B

C D

for steering control, and discuss where there are relations to
some aspects of reinforcement learning.

5.1 Relation of ICO learning to synaptic plasticity
in real neurons

The ICO learning rule has been chosen because of its robust
convergence properties (Porr and Wörgötter 2006) even with
high learning rates. ICO learning changes its weights by

correlating inputs only. This can be interpreted as heterosy-
naptic plasticity or as modulatory plasticity. In biological
systems, pure heterosynaptic learning is only found at a
few specialised synapses (mossy fibre, amygdala, Humeau
et al. 2003; Tsukamoto et al. 2003), where the mossy fiber
synapse between dentate gyrus and CA3 in the hippocampus
can indeed create fast and strong changes similar to those
induced by ICO learning with a high learning rate. More
often, however, heterosynaptic influences are thought to be
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mainly modulatory (Kelley 1999; Ikeda et al. 2003; Bailey
et al. 2000; Jay 2003). Here we are not really concerned
with the possible biological implications of such a learn-
ing rule (see Wörgötter and Porr 2005; Porr and Wörgötter
2006 for a more-detailed discussion). Instead we have used
it as a tool to employ fast learning in a closed-loop scenario.
This property is visible when learning succeeds after the first
trial in keeping the robot on track for an intermediately steep
track (Fig. 5a–d), while it does not follow the line if only
the reflex alone is employed (see video control.mpg). Hence,
during the first learning trial synaptic weights already adjust
quickly and, in turn, immediately influence the output lead-
ing to successful behaviour. This behaviour is generically
observed for the ICO rule, which thereby approaches the limit
of one-shot learning in stable behavioural domain (Porr and
Wörgötter 2006), provided the input correlations are robust
enough.

5.2 Closed-loop context: combining control and learning

Biological systems generally operate in close conjunction
with their environment. This so-called ecological embedding
has was discussed by theoreticians very early as also essen-
tial for autonomous artificial agents Ashby 1956; McFarland
1971; Wiener 1961. On the more-practical side W. G. Walter
was probably the first to create an operational, autonomous,
cybernetic control system when he built his two robots Elmer
and Elsie. These machines could already perform homing as
well as different forms of photokinesis (Walter 1950). In the
following the ecological perspective had been widened most
notably by the work of Braitenberg (1984) on his vehicles
and for invertebrates by Webb (2002).

In most of the older work typical feedback loop control
systems that do not adapt but instead react to a stimulus by
ways of reflex-like behaviour were built. Stable feedback
loop control is in itself a difficult problem, in particular
when there are multiple inputs and outputs. It is however
known that even very simple animals can learn and adapt
to new situations. Hence we are now faced with the aug-
mented problem of how to combine control with learning in
a stable way. Specifically we are confronted with the ques-
tion of how animals arrive at useful, reproducible and, hence,
stable behavioural patterns, while they are at the same time
able to learn something new. Recently Verschure suggested
that such systems should contain several layers for control
and learning: at the bottom a reactive layer performs pure
reflex-based control, an adaptive layer above performs pre-
dictive learning much in the sense of classical or operant
conditioning, and finally a top contextual layer carries out
higher-level adaptation (the DAC architecture, Verschure and
Althaus 2003). In our study we are concerned with the first
two layers only.

There is another class of learning setups based on feed
back-error learning (FEL, Gomi and Kawato 1993; Nakanishi
and Schaal 2004), which appear to be related to closed-loop
ICO. However, in contrast to ICO learning FEL does not use
additional predictive inputs x1, x2, . . . to compensate for a
disturbance. It rather improves the feedback loop itself by
using the signals that are available to the (late) feedback sys-
tem. A simple example is a feedback loop that is set up as
an overdamped system (PI controller) so that the reaction of
the loop to a disturbance or a change in the setpoint leads
to a low-pass-filtered impulse response of the system. With
the help of FEL the reaction can be made faster by adding
an adaptive controller that receives a copy of the disturbance
itself or the output of the feedback controller. Because the
system is overdamped, FEL learns to become the derivative
of the disturbance. In other words, FEL adaptively learns
to add the D stage to a PI controller. ICO or ISO learning,
however, is fundamentally different because it uses the deriv-
ative as a predictor to learn another predictive input, which
is then used to eliminate the disturbance and eventually elim-
inates the feedback loop itself. FEL on the other hand does
not replace the feedback loop by a forward controller but
rather improves the performance of the feedback controller
itself.

In all such architectures, however, one must ask how, in
the process of learning, synaptic weights are stabilised in
conjunction with behavioural success. Stability in our
approach rests on the assumption that the reflex eliciting
signal (x0) really represents an error signal. Hence, ICO
learning stabilises as soon as this error signal is eliminated,
as has been rigorously shown in Porr and Wörgötter (2006).
On the behavioural side, however, this means that the reflex
has been functionally eliminated and has now been success-
fully replaced by an earlier anticipatory action. This property
enables control of the homeostasis of learning and behaviour
at the same time, which is more difficult to achieve with most
other architectures.

5.3 Comparison to other approaches on navigation learning

Wyss et al. (2004) used a neural model to control a robot
that learned to follow accurately lines drawn on the floor
using visual information provided by a camera. For this task
they used a form of reinforcement learning where the sen-
sory input was mapped to the output. The reinforcement sig-
nal was derived by computing the temporal derivative of the
summed activity from a small receptive field in the lower
centre part of the camera image. Compared to our approach
this learning algorithm takes a relatively long time and many
learning experiences (a general drawback of reinforcement
learning approaches). In the work of Pomerleau (1996) an
autonomous land vehicle in a neural network (ALVINN)
system learnt to steer a vehicle in response to visual input
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from a forward-facing camera. ALVINN uses a single hidden-
layer feedforward neural network that applied the back-
propagation learning algorithm to learn an appropriate
behaviour according to human reactions. This differs from
our approach because it is supervised learning and the learn-
ing also does not take place in a complete closed-loop setting
since the output of the learner is not used to drive the car.
This differs from a recent study by McKinstry et al. (2006),
who were able to close the loop and derive path-following
behaviour in a robot driven by a complex multilayer neuronal
system supposed to mimic parts of the cerebellar system.
The system learns, as in our case, reflex avoidance. This is
done by the simulated neural system containing 27,688 neu-
ronal units and ≈1.6 million synaptic connections that adapt
following a delayed eligibility trace learning rule. Synap-
tic weights develop at several stages in the network, but it
appears that this type of learning will not lead to their final
stabilisation. Land (2001) analysed which part of the road
scene is needed for steering control. He observed that, when
only the top part of the simulated road image was presented
as visual input, the driving trajectory matched the curvature
well, but lane-keeping performance was poor (correspond-
ing to predictive control), and when only the bottom part of
the scene was visible, lane keeping was better but steering
became unstable and jerky (corresponding to reflexive con-
trol). In our approach sensory inputs are below the horizontal
centre line of the image as, if the sensors are located at the top
part of image, the robot takes shortcuts, since we do not have
delays in the motor actions with respect to sensory input (as
can also be observed on sharp curvatures, see Fig. 5j). Thus,
in our system we have reactive (reflexive) and proactive (in
our system predictive) control compared to the reactive and
real predictive control in the study of Land (2001).

In this study we were concerned with designing simple
chained architectures of our learning modules. This was
inspired by second-order conditioning in animals (Rescorla
1980; Gewirtz and Davis 2000) and humans (Jara et al. 2006).
Secondary conditioning requires a similar situation where
the primary correlation between conditioned (early, CS) and
unconditioned (late, US) stimulus is first learned and then in
a second learning stage replaced by a newly learned corre-
lation between secondary conditioned stimulus (earlier yet)
and CS (resp. US). This situation is conceptually similar to
our chained learning units and the same problems, for exam-
ple, less-reliable correlation patterns, arise in both situations.

5.4 Some relations to reinforcement learning

Our approach is to some degree related to reinforcement
learning, not so much to machine learning methods like
Q-learning (Watkins 1989; Watkins and Dayan 1992), but
rather to actor–critic loop architectures (Witten 1977; Barto

et al. 1983; Barto 1995), which have been employed in sim-
ulated neural systems. Indeed, if one uses the x0 signal as a
reward one can create a structural similarity between some of
these algorithms and our ICO rule (for a detailed comparison
see Kolodziejski et al. 2007). Also, we note that the strict
state and action space tiling used in traditional Q-learning
approaches has in some approaches been replaced by more-
adaptive self-defining processes, which span the state and
action space through exploration (Jodogne et al. 2005;
Agostini and Celaya 2004), making these algorithms more
compatible with neuronal architectures.

Indeed, some actor–critic algorithms have also been used
to guide the learning of biologically inspired agents
(Montague et al. 1995; Suri and Schultz 1998; Schultz and
Suri 2001; Niv et al. 2002) but—to our knowledge—it has
not been attempted to chain actor–critic loops so far. Apart
from the fact that no generic recipe exists, the problem may
be even more fundamental. Actor–critic architectures usu-
ally rely (in their Critic) on the TD algorithm (Sutton 1988;
Sutton and Barto 1998) to assess the value of an action of the
actor. The prediction error δ in TD learning equals zero as
soon as the output v accurately estimates the future expected
reward r(t + 1) using: δ(t) = r(t + 1) + v(t + 1) − v(t).
To fulfil this convergence condition, the output v needs to
take on a certain value (the output control). In any single-
loop architecture, outputs will be fairly directly transferred
to inputs by ways of the environment (e.g. Fig. 3). In a nested
or chained loop, however, a problem may arise. To guaran-
tee the convergence of each individual stage of the chain its
output needs to be directly conveyed backward to compare it
to the reward, which, necessarily is an input to the regarded
stage. Effectively this amounts to some kind of error back-
propagation, a commonly used principle in artificial neural
networks (McClelland et al. 1987), but hard to justify in bio-
logical networks, where the role of internal feedback does not
seem to be related to any error back-propagation mechanism.
Architectures based on our correlation-based learning rule(s)
perform strict input control, because they converge as soon
as the error signal of the reflex, x0, equals zero, regardless
of the value of the output. This condition, hence, does not
require error back-propagation and may prove to be easier
to handle for the design of more-complex nested of chained
loops as compared to actor–critic architectures.

Hence, one starting point for this study was the assumption
that input control should allow the design of more-complex
structures with predictable stability properties. Therefore,
here we have for the first time implemented a simple-layered
structure and obtained stable behaviour in a closed-loop sce-
nario. While the two chained architectures are still rather
simple, we believe that this is nevertheless an important
step towards more-advanced networks of correlation-based
learning units. Furthermore, we conclude that chained
architectures can be employed to obtain better behavioural
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performance compared to the simple architecture where
learning fails because of weak correlations.
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