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Abstract. In this paper, we describe a biological motivated image esgnta-
tion in terms of local multi-modal primitives. These priinés are functional
abstractions of hypercolumns in V1 [13]. The efficient andeg& coding of vi-

sual information in terms of local symbolic descriptiondews for a wide range
of applications. For example, they have been used to imgatstthe multi-modal
character of Gestalt laws in natural scenes [14], to code l&-modal stereo
matching and to investigate the role of different visual midiks for stereo [11],
and to use a combination of stereo and grouping as well asl Bigily Motion to

acquire reliable 3D information as demonstrated in thidipation.

1 Introduction

The aim of this work is to compute reliable feature maps fratural scenes. To es-
tablish artificial systems that perform reliable actionsneed reliable features. These
can only be computed througiitegration across the spatial and temporal context and
across visual modalitiesince local feature extraction is necessarily ambigioys%1

In this paper, we describe a new kind of image representatiterms of local multi—
modal Primitives (see fig. 1) which can be understood as fmak abstractions of
hypercolumnsin V1. These Primitives can be characterigatitee properties:

Multi-modality: Different visual domains describing different structysabperties of
visual data are well established in human vision and commig®n. For example, a
local edge can be analyzed by local feature attributes ssicii@ntation or energy in
certain frequency bands. In addition, we can distinguidiveen line and step—edge
like structures (contrast transition). Furthermore, calan be associated to the edge.
This image patch also changes in time due to ego-motion @cobjotion. Therefore
time specific features such as a 2D velocity vector (optic)loan be associated to this
image patch. In addition the image patch has a certain saquBie space and therefore
also depth information can be associated. In this work wenddfical multi-modal
Primitives that realize these multi-modal relations. hemdalities are also processsed
in so called hyper-columns in the first area of visual prooes@/1) [7].

Adaptability: Since the interpretation of local image patches in termshefabove
mentioned attributes as well as classifications such astegks’ or ‘junctionness’ are
necessarilly ambigious when based on local processintgstabrpretations can only
be achievethrough integratiorby making use of contextual information [1]. Therefore,
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Fig. 1. Multi-modal Primitivesa) One primitive covers different aspects of visual inforroatin

a condensed wa) Stereo Image Paic) Frame taken from cjl) Representation of an image by
multi-modal primitives (local motion and stereo infornmatinot shown for sake of understand-
ability). e) 3D view of extracted stereo representation.

all attributes of our Primitives are equipped with confidesthat are essentialdapt-
able according to contextual informaticexpressing the reliability of this attribute.
Adaptation occurs by means of recurrent processes (seg24.]j in which predictions
based on statistical and deterministic regularities disigmate the locally extracted and
therefore neceassarily ambigious data.

Condensation:Integration of information requiresommunication between Primitives
expressing spatial [14,11] and temporal dependenciesTis communication has
necessarily to be paid for with a certain cost. This cost camdnluced by limiting
the amount of information transferred from one place to tirei.e., by reducing the
bandwidth. Therefore we are aftecampressiomf data. Essentially we only need less
than 5% of the amount of the pixel data of a local image pataot®e a Primitive that
represents such a patch. However, condensation not onlgs@eeompression of data
since communication and memorization not only require aicgdn of information.
Moreover, we want to reduce the amount of information withinimage patchhile
preserving perceptually relevant informatiorhis leads taneaningfublescriptors such
as our attributes position, orientation, contrast tramsjtcolor and optic flow. In [14],
we have also shown that these descriptors (in particulanjdietly applied) allow for
strong mutual prediction that can be related to classicatdiidaws.

In section 2, we describe the Primitive attributes and teefraction and in section
3 we describe the biological background. In section 4, werrf applications of our
Primitives for the modelling of disambiguation processesid-level vision.



2 Multi-modal Primitives

We compute the following semantic attributes and assothiat@ to our Primitives (see
also fig. 1).

Intrinsic Dimension: Local patches in natural images can be associated to specific
local sub-structures, such as homogeneous patches, edgests, or textures. Over
the last decades, sub-domains of Computer Vision haveatettaand analysed such
sub-structures.

The intrinsic dimension (see, e.g., [23]) has proven to beitalsie descriptor that
distinguishes such sub-structures. Homogeneous imagegsahave an intrinsic di-
mension of zero (i0D); edge-like structures are intringyck-dimensional (i1D) while
junctions and most textures have an intrinsic dimensiomwof {i2D). In [10, 4] it has
been shown that the topological structure of intrinsic disien essentially has the form
of a triangle with the corners of the triangle representidgal cases’ of homogeneous
structures, edges or corners (see figure 2b). This triangtulecture can be used to asso-
ciate 3 confidenceg;op, ci1p, ci2p) to homogenous-ness, edge—ness, or junction—-ness
according to the positioning of an image patch in the iD+igia.

This association of confidences to visual attributes is segdrdesign principle
in our system. These confidences as well as the attributesstiiees are subject to
contextual integration via recurrent processes. Aspeittsagsociated low confidences
have a minor influence in the recurrent processes or can tegdisled.

Orientation: The local orientation associated to the image patch is destiby 6.
The computation of the orientatighis based on a rotation invariant quadrature filter,
which is derived from the concept of tmonogenic signal5]. Considered in polar
coordinates, the monogenic signal performspéit of identity[5]: it decomposes an
intrinsically one-dimensional signal into intensity imfieation (amplitude), orientation
information, and phase information (contrast transitidifjese features are pointwise
mutually orthogonal. The intensity information can beipteted as an indicator for the
likelihood of the presence of a certain structure with aaierorientation and a certain
contrast transition (see below).

Contrast transition: The contrast transition is coded in the phas# the applied filter
[5]. The phase codes the local symmetry, for example a bliilghon a dark background
has phase 0 while a bright/dark edge has phasf2 (see fig. 2a). There exists a whole
continuum of i1D structures that can be coded in the phasabyarameter (see also
(6, 8]).

Color: Color(c!,c™, c") is processed by integrating over image patches in coinclen
with their edge structure (i.e., integrating separatelgrdiae left and right side of the
edge as well as a middle strip in case of a line structure)ase of a boundary edge of
a moving object at least the color at one side of the edge isa®gd to be stable since
(in contrast to the phase) it represents a description abbfect.

Optic Flow: There exist a large variety of algorithms that compute twall displace-
ment in image sequences. [2] have them devided into 4 cladiffesential techniques,
region-based matching, energy based methods and phasgtbakniques. After some
comparison we decided to use the well-known optic flow teghai[16]. This allgo-
rithm is a differential technique in which however (in adllit to the standard gradient
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Fig. 2. a)The continuum of phases (indicated bytaking values betweerw andx correspond
to a continuum of oriented grey-level structures as expiees the changing circular manifold
(sub—figure a) is based on a figure in [3}). The likelihood of a local image patch to be a
homogenous image patch, an edge or a junction can be visdass a triangle with corners
representing ideal patterns. Points inside the triangbeesent structures that are only with a
certain likelihood categorizable as ideal homogenuougyénzatches, edges, or junctions. For
example, there is a slight texture on the patch close to tiverldeft corner which produces
a filter response with low but measureable magnitude andhtatien variance or the structure
close to the upper corner has some resemblance to a junbtitins triangular representation
distances from the corners represent the likelihood of theires being of the ideal type. This
is used for the formulation of confidences indicating sukélihoods in [10]. Note that figure 2b
is thought to be a schematic description. The exact positipof patches in the triangle depends
on two parameters (for details see [10]).

Orientation Variance

constraint equation) an anisotropic smoothing term leadsetter flow estimation at
edges (for details see [16]). The optic flow is coded in a westo

Sterea By performing a matching between primitives in the left aight image and
finding correspondences we can compute a 3D-primitive (gerefile). We code the
correspondence by a lirlko a primitive in the rightimage.

To determine the positior of the primitives we look for locations in the image
where the magnitude of the response of a set of edge-detddters [5] has local
maxima. To avoid the occurrence of very close line—segmamiduced by the same
image structure we also model a competition process betthegrimitives. Basically,
for each primitive position it is checked whether anothemftive exists with a posi-
tion closer than a given threshold distance. If that is tteecthe position with lower
magnitude is dropped (for details see [12, 13]). Findinguitbble positions is a sophis-
ticated task and is also part of a cruicial transformatiatpss from a signal-based to
a symbol-based representation. Once the positions of itmétipes are determined, the
other attributes computed from the filter response at thadqosition is associated to
the primitive.

Usually an image patch that is represented by our Primithassa dimension of
3x12x12 = 432 values (3 color values for each pixel in2ax 12 patch). However, the
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Fig. 3. a) Primary visual pathway and schematic location of a hypéuna (black box), which
corresponds in reality to aboutmm? of cortical surfaceb) Schematic diagram of a hyper-
column (thick lines) embedded in the visual cortex. Eachemgmlumn represents a small loca-
tion in visual space. Vertically to the surface neurons sisémilar response properties, whereas
their responses differ when moving horizontally on the atef Information from both eyes is
represented in adjacent slabs of the cortex. Each slabinemtaurons that encode different ori-
entations (depicted by tiny lines on the surface) but alsother important visual features such
as local motion and stereo. In the cylinder-shaped partlgegtor is processed. Note, the actual
cortical structure is less crystalline than suggested isydiagram.

output of our Primitives has less than 20 parameters. Toerghe Primitives condense
the image information by more than 95%. This condensatiarcisicial property of our
Primitives that allows to represent meaningful informatio a directly accessible and
compressed way.

We end up with a parametric description of a Primitive as

™= (X7 97 ¢7 (Clv Cm7 Cr)v o, (CiODa CilD, Ci2D)7 l)

In addition, there exist confidencesi € {¢,c',c™,c", o0} that code the reliabilty of
the specific sub—aspects that is also subject to contexdagtation.

3 Multi-modal Primitives as functional abstractions of
hyper-colunns

The above—mentioned visual modalities are processedlgtstages of visual process-
ing. Hubel and Wiesel [7] investigated the structure of tihet Btage of cortical pro-
cessing that is located in an area called ‘striate corte¥'Io(see figure 3a). The striate
cortex is organized like a continuous, but distorted maghefiisual field (retinotopic



map). This map contains a specific repetitively occurrintgpa of substructures called
hyper-columns. Thus, a hyper-column represents a smaititocof visual space and
the neurons in such a hyper-column represent all importpeds of this spatial loca-
tion; ideally all orientations, all colors, the completstdince-information (disparity),
etc. To be able to achieve this in an orderly manner, hypkmwas themselves are
subdivided into “columns” and “blobs”. The blobs contaidarcsensitive cells, while
the columns represent the continuum of orientations (see<figb). Here one observes
that the orientation columns are organized in an orderedsuai that neurons repre-
senting similar orientations tend to be adjacent to eachrottowever, it is not only
orientation that is processed in an orientation column hetcells are sensitive to ad-
ditional attributes such as disparity, contrast transitiad the direction of local motion
(see [22]). Even specific responses to junction—like stinesthave been measured [19].
Therefore, it is believed that in the striate cortex baswaldeature descriptions are
processed similar to the feature attributes coded in ouripives.

However, it is not only local image processing that is goingroearly visual pro-
cessing. As mentioned above, there occurs an extensive goioation within visual
brain areas as well as across these areas. The communijgataass leads to the bind-
ing of groups of local entities (see, e.g., [20]). In [14] wesdribed a self—emergence
process in which groups organize themselves based ortistdtiegularities. Here we
use grouping inthe context of improving stereo information

4 Disambiguation in recurrent process making use of the
spatial-temporal context

The processing of primitives is still based on local proess$herefore, ambiguity can
not be resolved at this level. However, using the richnedh@image descriptors we
can already decrease the amount of ambiguity by interadfionodalities on a local
level (section 4.1). Global interdependencies realizedrass—modal recurrent pro-
cesses based on perceptual organisation and rigid bodgmuzin then further reduce
the ambiguity and are described in section 4.2 and 4.3.

4.1 Multi-modal Stereo

To be able to reconstruct 3D primitives we require corresipoiges between image
primitives7!, 7" in the left and right image of a stereo system. For this we nuskeof
a multi-modal similarity

sim(r!,7") = Y aidi(a',7") 1)

ic{o,p,c,f}

in which distance measures in the different modalitig$ are combined by a weighted
average (see [11, 17] for details). In table 1, we show thiopmance of the system on

a sequence of images with known ground truth (see figure 4).rébults for a stereo

with only one modality (orientation), two modalities (amtation and phase) and three
modalities (orientation, phase and colour) respectivedydisplayed in the first column

of the left , middle and right block in table 1.



Fig. 4. Left and right image of one frame of the stereo image sequieitewith 3D-ground truth
(right).

Uni-modal (ori) || Two-modal (ori, pha) Tri-modal (ori, pha, col
Trueg|Stereo Group. AcculyBStereo Group. AccufBtereo Group. Accun
100 || 1479 1064 8 77 60 6 4 5 2
500 (| 2126 1600 32 || 346 262 11 || 19 24 16
1000} 2878 n.a. 102|| 832 586 25| 85 78 19
2000|| n.a n.a. 1372 n.a. n.a. 153|| 328 278 42
Table 1. The number of false positives depending on four fixed numbgtsues is shown for
stereo, grouping and accumulation. The results for uniahddo-modal and multi-modal rep-
resentations are kept separately in the three blocks. taradsfor 'not applicable’ which means

that the number of trues as indicated in the left most colurags mot achieved.

4.2 Stereo and Grouping

We formalized the spatial constraint indicated in figuread Basically the constraint
states that stereo correspondences must be consistemtagiiifesar line structures.
In [18], we have defined a multi-modal grouping process inclttthe likelihood of
two primitives to be originated from a collinear image sture is coded in two link
confidencegy(n}, 7}) for the left andg(x7, n%) for the right image. In combination
with (1) we have defined an external similarity that is notdehsn a direct comparison
of image patches but on the consistenny of the stereo witlgitheping process only
based on the two link confidencegr! , 7l ), g(#7, 75 ) and the stereo matching similar-
ity c(7h, 7). We can use this external similarity to enhance stereo psig. Table 1
(second columns for each block) shows quantitative rededtformance usually incre-
saes by approximately 20—30 percent.

4.3 Accumulation using a Spatial-Temporal Context based oRigid Body
Motion

A spatial-temporal constrained is based on rigid motiorsusing the egomotion or
the motion of objects between frames is known we can preuécbtcurence of spatial
primitives (¢ + 1) in the next frame. This is possible since knowing the 3D $tmgc



Fig. 5. Top: Stereo—Grouping Constraint.

underling the primitive (as coded in the lidkthe spatial-temporal transformation of
this primitive can be computed explicitely. The validatiohsuch a correspondences
is an indicator for a higher likelihood for the spatial priimé to be a correct one and
the associated confidence becomes increased (see als®g¥p. 1 (third column in
each block) gives quantitative results. As can be seen flenrdsults even for quite
unreliable stereo based on one modality only after only fenations the number of
false positives can be decreased significantly. Note tleastheme also allows for the
integration of new hypothese generated in in new framesglrdi 6 the effect for an
example sequence is shown.

5 Summary and Conclusion

We have introduced a functional model of hyper-columnsiimg=of multi-modal prim-

itives representing local image information in a condenseg. This condensation
leads to symbol-like descriptors of image information whatlows the formalization
of cross—modal processes and spatial-temporal integratio
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