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Norbert Krüger1 and Florentin Wörgötter2

1 Media Lab, Aalborg University Copenhagen, nk@cs.aue.auc.dk
2 Computational Neuroscience, University of Stirling, worgott@cn.stir.ac.uk

Published in the proceedings of the workshop Brain, Vision and Artificial Intel-
ligence. First International Symposium 2005, BVAI 2005, Naples, Italy. LNCS3704,
Springer. p. 167–176.

Abstract. In this paper, we describe a biological motivated image representa-
tion in terms of local multi–modal primitives. These primitives are functional
abstractions of hypercolumns in V1 [13]. The efficient and generic coding of vi-
sual information in terms of local symbolic descriptiones allows for a wide range
of applications. For example, they have been used to investigate the multi–modal
character of Gestalt laws in natural scenes [14], to code a multi–modal stereo
matching and to investigate the role of different visual modalities for stereo [11],
and to use a combination of stereo and grouping as well as Rigid Body Motion to
acquire reliable 3D information as demonstrated in this publication.

1 Introduction

The aim of this work is to compute reliable feature maps from natural scenes. To es-
tablish artificial systems that perform reliable actions weneed reliable features. These
can only be computed throughintegration across the spatial and temporal context and
across visual modalitiessince local feature extraction is necessarily ambigious [1, 15].
In this paper, we describe a new kind of image representationin terms of local multi–
modal Primitives (see fig. 1) which can be understood as functional abstractions of
hypercolumns in V1. These Primitives can be characterized by three properties:

Multi-modality: Different visual domains describing different structuralproperties of
visual data are well established in human vision and computer vision. For example, a
local edge can be analyzed by local feature attributes such as orientation or energy in
certain frequency bands. In addition, we can distinguish between line and step–edge
like structures (contrast transition). Furthermore, color can be associated to the edge.
This image patch also changes in time due to ego-motion or object motion. Therefore
time specific features such as a 2D velocity vector (optic flow) can be associated to this
image patch. In addition the image patch has a certain sourcein 3D space and therefore
also depth information can be associated. In this work we define local multi–modal
Primitives that realize these multi-modal relations. These modalities are also processsed
in so called hyper-columns in the first area of visual processing (V1) [7].
Adaptability: Since the interpretation of local image patches in terms of the above
mentioned attributes as well as classifications such as ‘edgeness’ or ‘junctionness’ are
necessarilly ambigious when based on local processing stable interpretations can only
be achievedthrough integrationby making use of contextual information [1]. Therefore,



Fig. 1. Multi-modal Primitivesa) One primitive covers different aspects of visual information in
a condensed way.b) Stereo Image Pair.c) Frame taken from c).d) Representation of an image by
multi-modal primitives (local motion and stereo information not shown for sake of understand-
ability). e) 3D view of extracted stereo representation.

all attributes of our Primitives are equipped with confidences that are essentiallyadapt-
able according to contextual informationexpressing the reliability of this attribute.
Adaptation occurs by means of recurrent processes (see, e.g., [21]) in which predictions
based on statistical and deterministic regularities disambiguate the locally extracted and
therefore neceassarily ambigious data.

Condensation:Integration of information requirescommunication between Primitives
expressing spatial [14, 11] and temporal dependencies [9].This communication has
necessarily to be paid for with a certain cost. This cost can be reduced by limiting
the amount of information transferred from one place to the other, i.e., by reducing the
bandwidth. Therefore we are after acompressionof data. Essentially we only need less
than 5% of the amount of the pixel data of a local image patch tocode a Primitive that
represents such a patch. However, condensation not only means a compression of data
since communication and memorization not only require a reduction of information.
Moreover, we want to reduce the amount of information withinan image patchwhile
preserving perceptually relevant information. This leads tomeaningfuldescriptors such
as our attributes position, orientation, contrast transition, color and optic flow. In [14],
we have also shown that these descriptors (in particular when jointly applied) allow for
strong mutual prediction that can be related to classical Gestalt laws.

In section 2, we describe the Primitive attributes and theirextraction and in section
3 we describe the biological background. In section 4, we refer to applications of our
Primitives for the modelling of disambiguation processes in mid-level vision.



2 Multi–modal Primitives

We compute the following semantic attributes and associatethem to our Primitives (see
also fig. 1).
Intrinsic Dimension: Local patches in natural images can be associated to specific
local sub-structures, such as homogeneous patches, edges,corners, or textures. Over
the last decades, sub-domains of Computer Vision have extracted and analysed such
sub-structures.

The intrinsic dimension (see, e.g., [23]) has proven to be a suitable descriptor that
distinguishes such sub-structures. Homogeneous image patches have an intrinsic di-
mension of zero (i0D); edge-like structures are intrinsically 1-dimensional (i1D) while
junctions and most textures have an intrinsic dimension of two (i2D). In [10, 4] it has
been shown that the topological structure of intrinsic dimension essentially has the form
of a triangle with the corners of the triangle representing ’ideal cases’ of homogeneous
structures, edges or corners (see figure 2b). This triangular structure can be used to asso-
ciate 3 confidences(ci0D, ci1D, ci2D) to homogenous-ness,edge–ness, or junction–ness
according to the positioning of an image patch in the iD–triangle.

This association of confidences to visual attributes is a general design principle
in our system. These confidences as well as the attributes themselves are subject to
contextual integration via recurrent processes. Aspects with associated low confidences
have a minor influence in the recurrent processes or can be disregarded.
Orientation: The local orientation associated to the image patch is described by θ.
The computation of the orientationθ is based on a rotation invariant quadrature filter,
which is derived from the concept of themonogenic signal[5]. Considered in polar
coordinates, the monogenic signal performs asplit of identity[5]: it decomposes an
intrinsically one-dimensional signal into intensity information (amplitude), orientation
information, and phase information (contrast transition). These features are pointwise
mutually orthogonal. The intensity information can be interpreted as an indicator for the
likelihood of the presence of a certain structure with a certain orientation and a certain
contrast transition (see below).
Contrast transition: The contrast transition is coded in the phaseφ of the applied filter
[5]. The phase codes the local symmetry, for example a brightline on a dark background
has phase 0 while a bright/dark edge has phase−π/2 (see fig. 2a). There exists a whole
continuum of i1D structures that can be coded in the phase by one parameter (see also
[6, 8]).
Color: Color(cl, cm, cr) is processed by integrating over image patches in coincidence
with their edge structure (i.e., integrating separately over the left and right side of the
edge as well as a middle strip in case of a line structure). In case of a boundary edge of
a moving object at least the color at one side of the edge is expected to be stable since
(in contrast to the phase) it represents a description of theobject.
Optic Flow: There exist a large variety of algorithms that compute the local displace-
ment in image sequences. [2] have them devided into 4 classes: differential techniques,
region-based matching, energy based methods and phase-based techniques. After some
comparison we decided to use the well-known optic flow technique [16]. This allgo-
rithm is a differential technique in which however (in addition to the standard gradient



Fig. 2. a)The continuum of phases (indicated byφ) taking values between−π andπ correspond
to a continuum of oriented grey-level structures as expressed in the changing circular manifold
(sub–figure a) is based on a figure in [3]).b) The likelihood of a local image patch to be a
homogenous image patch, an edge or a junction can be visualised as a triangle with corners
representing ideal patterns. Points inside the triangle represent structures that are only with a
certain likelihood categorizable as ideal homogenuous image patches, edges, or junctions. For
example, there is a slight texture on the patch close to the lower left corner which produces
a filter response with low but measureable magnitude and orientation variance or the structure
close to the upper corner has some resemblance to a junction.In this triangular representation
distances from the corners represent the likelihood of the structures being of the ideal type. This
is used for the formulation of confidences indicating such likelihoods in [10]. Note that figure 2b
is thought to be a schematic description. The exact positioning of patches in the triangle depends
on two parameters (for details see [10]).

constraint equation) an anisotropic smoothing term leads to better flow estimation at
edges (for details see [16]). The optic flow is coded in a vector o.
Stereo: By performing a matching between primitives in the left andright image and
finding correspondences we can compute a 3D-primitive (see figure 1e). We code the
correspondence by a linkl to a primitive in the right image.

To determine the positionx of the primitives we look for locations in the image
where the magnitude of the response of a set of edge-detection filters [5] has local
maxima. To avoid the occurrence of very close line–segmentsproduced by the same
image structure we also model a competition process betweenthe primitives. Basically,
for each primitive position it is checked whether another primitive exists with a posi-
tion closer than a given threshold distance. If that is the case, the position with lower
magnitude is dropped (for details see [12, 13]). Finding of suitable positions is a sophis-
ticated task and is also part of a cruicial transformation process from a signal–based to
a symbol–based representation. Once the positions of the primitives are determined, the
other attributes computed from the filter response at the found position is associated to
the primitive.

Usually an image patch that is represented by our Primitiveshas a dimension of
3×12×12 = 432 values (3 color values for each pixel in a12×12 patch). However, the



Fig. 3. a)Primary visual pathway and schematic location of a hyper-column (black box), which
corresponds in reality to about1 mm2 of cortical surface.b) Schematic diagram of a hyper-
column (thick lines) embedded in the visual cortex. Each hyper-column represents a small loca-
tion in visual space. Vertically to the surface neurons share similar response properties, whereas
their responses differ when moving horizontally on the surface. Information from both eyes is
represented in adjacent slabs of the cortex. Each slab contains neurons that encode different ori-
entations (depicted by tiny lines on the surface) but also all other important visual features such
as local motion and stereo. In the cylinder-shaped part mainly color is processed. Note, the actual
cortical structure is less crystalline than suggested by this diagram.

output of our Primitives has less than 20 parameters. Therefore, the Primitives condense
the image information by more than 95%. This condensation isa crucial property of our
Primitives that allows to represent meaningful information in a directly accessible and
compressed way.

We end up with a parametric description of a Primitive as

π = (x, θ, φ, (cl, cm, cr),o, (ci0D, ci1D, ci2D), l).

In addition, there exist confidencesci, i ∈ {φ, cl, cm, cr,o} that code the reliabilty of
the specific sub–aspects that is also subject to contextual adaptation.

3 Multi-modal Primitives as functional abstractions of
hyper-colunns

The above–mentioned visual modalities are processed at early stages of visual process-
ing. Hubel and Wiesel [7] investigated the structure of the first stage of cortical pro-
cessing that is located in an area called ‘striate cortex’ orV1 (see figure 3a). The striate
cortex is organized like a continuous, but distorted map of the visual field (retinotopic



map). This map contains a specific repetitively occurring pattern of substructures called
hyper-columns. Thus, a hyper-column represents a small location of visual space and
the neurons in such a hyper-column represent all important aspects of this spatial loca-
tion; ideally all orientations, all colors, the complete distance-information (disparity),
etc. To be able to achieve this in an orderly manner, hyper-columns themselves are
subdivided into “columns” and “blobs”. The blobs contain color sensitive cells, while
the columns represent the continuum of orientations (see figure 3b). Here one observes
that the orientation columns are organized in an ordered waysuch that neurons repre-
senting similar orientations tend to be adjacent to each other. However, it is not only
orientation that is processed in an orientation column but the cells are sensitive to ad-
ditional attributes such as disparity, contrast transition and the direction of local motion
(see [22]). Even specific responses to junction–like structures have been measured [19].
Therefore, it is believed that in the striate cortex basic local feature descriptions are
processed similar to the feature attributes coded in our primitives.

However, it is not only local image processing that is going on in early visual pro-
cessing. As mentioned above, there occurs an extensive communication within visual
brain areas as well as across these areas. The communicationprocess leads to the bind-
ing of groups of local entities (see, e.g., [20]). In [14] we described a self–emergence
process in which groups organize themselves based on statistical regularities. Here we
use grouping inthe context of improving stereo information.

4 Disambiguation in recurrent process making use of the
spatial–temporal context

The processing of primitives is still based on local processes. Therefore, ambiguity can
not be resolved at this level. However, using the richness ofthe image descriptors we
can already decrease the amount of ambiguity by interactionof modalities on a local
level (section 4.1). Global interdependencies realized incross–modal recurrent pro-
cesses based on perceptual organisation and rigid body motion can then further reduce
the ambiguity and are described in section 4.2 and 4.3.

4.1 Multi-modal Stereo

To be able to reconstruct 3D primitives we require correspondences between image
primitivesπl, πr in the left and right image of a stereo system. For this we makeuse of
a multi-modal similarity

sim(πl, πr) =
∑

i∈{o,p,c,f}

αidi(π
l, πr) (1)

in which distance measures in the different modalitiesdi() are combined by a weighted
average (see [11, 17] for details). In table 1, we show the performance of the system on
a sequence of images with known ground truth (see figure 4). The results for a stereo
with only one modality (orientation), two modalities (orientation and phase) and three
modalities (orientation, phase and colour) respectively are displayed in the first column
of the left , middle and right block in table 1.



Fig. 4.Left and right image of one frame of the stereo image sequence(left) with 3D-ground truth
(right).

Uni-modal (ori) Two-modal (ori, pha) Tri-modal (ori, pha, col)
Trues Stereo Group. AccumStereo Group. AccumStereo Group. Accum
100 1479 1064 8 77 60 6 4 5 2
500 2126 1600 32 346 262 11 19 24 16
1000 2878 n.a. 102 832 586 25 85 78 19
2000 n.a n.a. 1372 n.a. n.a. 153 328 278 42

Table 1. The number of false positives depending on four fixed numbersof trues is shown for
stereo, grouping and accumulation. The results for uni-modal, two-modal and multi-modal rep-
resentations are kept separately in the three blocks. n.a. stands for ’not applicable’ which means
that the number of trues as indicated in the left most column was not achieved.

4.2 Stereo and Grouping

We formalized the spatial constraint indicated in figure 4.2a. Basically the constraint
states that stereo correspondences must be consistent under collinear line structures.
In [18], we have defined a multi-modal grouping process in which the likelihood of
two primitives to be originated from a collinear image structure is coded in two link
confidencesg(πl

1
, πl

2
) for the left andg(πr

1
, πr

2
) for the right image. In combination

with (1) we have defined an external similarity that is not based on a direct comparison
of image patches but on the consistenny of the stereo with thegrouping process only
based on the two link confidencesg(πl

1
, πl

2
), g(πr

1
, πr

2
) and the stereo matching similar-

ity c(πl
2
, πr

2
). We can use this external similarity to enhance stereo processing. Table 1

(second columns for each block) shows quantitative results. Performance usually incre-
saes by approximately 20–30 percent.

4.3 Accumulation using a Spatial-Temporal Context based onRigid Body
Motion

A spatial–temporal constrained is based on rigid motion. Assuming the egomotion or
the motion of objects between frames is known we can predict the occurence of spatial
primitivesπ(t + 1) in the next frame. This is possible since knowing the 3D structure



Fig. 5.Top: Stereo–Grouping Constraint.

underling the primitive (as coded in the linkl) the spatial-temporal transformation of
this primitive can be computed explicitely. The validationof such a correspondences
is an indicator for a higher likelihood for the spatial primitive to be a correct one and
the associated confidence becomes increased (see also [9]).Table 1 (third column in
each block) gives quantitative results. As can be seen from the results even for quite
unreliable stereo based on one modality only after only few iterations the number of
false positives can be decreased significantly. Note that the scheme also allows for the
integration of new hypothese generated in in new frames. In figure 6 the effect for an
example sequence is shown.

5 Summary and Conclusion

We have introduced a functional model of hyper-columns in terms of multi-modal prim-
itives representing local image information in a condensedway. This condensation
leads to symbol-like descriptors of image information which allows the formalization
of cross–modal processes and spatial-temporal integration.
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