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1 Introduction

Vision—based devices have been entering the industrial and private world more and more
successfully: Face recognition systems control the access to buildings (see, e.g., [134]);
the quality of goods is controlled by visual inspection (see, e.g., [23]); airports and train
stations are controlled by Video Surveillance devices (see, e.g., [110]); and cars become
equipped with vision—based driver assistance systems (see, e.g., [22]). There exists even
attempts to build human like-robots [52]. However, the gap between human performance
and the top performance of today’s artificial visual systems is considerable (which is prob-
ably an understatement). Especially, scene analysis in unfamiliar environments leading
to highly reliable actions is an outstanding quality of biological systems. The easiness
with which we are able to navigate in an unfamiliar building or to grasp an unknown
object may lead us to the conclusion that the underlying algorithmic problems are ‘eas-
ily’ solvable as well, especially compared to some ‘hard’ tasks such as, e.g., playing chess.
However, today’s computers can compete with and will probably soon be better than
today’s chess masters [126]. However, up to now there exists no robot that could grasp a
cup from a table, fill it with coffee and hand it over to Ann or Paul. These ‘easy’ problems
are apparently much harder to model than the ‘hard’ chess task.

The underlying problems (recognising the cup, getting some idea of its position and
orientation, recognising the pot of coffee, recognising Ann or Paul, ...) are far away from
being solved. In this paper, we will discuss one of the main reasons for this ‘failure’ of
technological ambition: It is the the ambiguity of local visual information. In a nutshell,
most visual systems (see, e.g., [98, 103, 109, 94, 82, 139, 21, 81, 73]), and in particular the
human visual system (see ,e.g., [55]), analyse in its first stages local image areas. However,
when analysing local image areas our categorisation of structure is necessarily erroneous.
For example, when we look at some local image patches in figure 1 (left) it is quite hard
to say to what kind of lines or junctions they correspond. Moreover, there is no way to
get an idea about the underlying 3D structure. However, taking the global context into
account (see figure 1 (right)) we have a clear idea about the local line/junction as well as
the 3D structure. In section 2, we will show that this local ambiguity is a property of the
local signal structure that is reflected in different sub—visual structures (in the following
also called visual modalities) such as, colour, local motion, binocular vision etc.

Each visual system faces the problem of ambiguity. However, the existence of biological
systems that are able to act with high reliability in complex environments gives us the
hope and trust that this problem is solvable. On the other hand, since one third of your
brain deals with vision there is some evidence that the algorithmic problems involved are
not ‘easy’ at all but of considerable complexity as will become obvious in this paper.
The development of computer vision during the last decades was dominated by Marr’s idea
of preprocessing of localised image structure descriptors [86]. Descriptors representing
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Figure 1: Ambiguity Edge and Junction Detection. Left: Local edge and junction struc-
tures in an image. A detection and classification is difficult. For example, the image
patch i) consists basically of noise only. Image patch ii) may be interpreted as a junc-
tion, but whether this junction consists of 2 or 3 intersecting lines (i.e., whether it is a
L—junction or Y—junction) remains unclear. Image patch iii) is interpretable reliably as
a local line. However, that this line actually separates one surface from the other (i.e.,
represents a depth discontinuity) remains unclear. Image patch iv) we could interpret as
a Y—junction. However, a more global perspective would lead to the interpretation as a
L—junction. Right: Taking the global context into account a semantic description (even
in terms of the underlying 3D structure) is easy.

structure in different modalities (such as, edge detection, colour, binocular vision, local
motion (optic flow)) have therefore been one main focus of vision research. This has
led to a better understanding of visual modalities and to the development of efficient
feature extraction algorithms in the different domains that are now successfully used
in applications in controlled environments. However, progress in this field has still not
led to systems that work with the same efficiency and reliability as the human visual
system. There seems to exist a ‘90% performance ceiling’ which can not be transcended
(at least under uncontrolled conditions, especially variation of illumination in outdoor
scenes). From this impairement, some scientists have concluded that Marr’s approach is
fundamentally wrong (see, e.g., [16]).

However, here we claim that Marr’s ideas can be reformulated in a way, that allows for
transcending the ‘90% ceiling’. We claim that, although locally ambiguous, visual data
is dominated by regularities that allow for disambiguating locally erroneous statements.
These regularities allow for an understanding of vision as a process of recurrent predictions
that initiate a process that disambiguates the locally erroneous interpretations. In this
paper two main kinds of regularities in visual data are discussed that have been widely
(but mostly independently) used in artificial systems for disambiguation of visual infor-
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Figure 2: Six examples of classical Gestalt Laws: a) Similarity: Entities with similiar
attributes are grouped together. b) Proximity: Entities with close distance are grouped
together. ¢) Good continuation: We tend to see two intersecting lines. d) However, an
interpretation as two wedges pointing at each other is possible as well but is less likely. e)
Closure: Gaps are filled to perceive rather a whole than isolated units. f) Common Fate:
Coherently moving objects are perceived as a whole. g) Prignanz: The most simple
interpration of two squares (one partly covering the other) is preferred although more
complex but less likely constellations are possible (see, e).

mation: (1) The utilisation of the deterministic regularity ‘Rigid Body Motion’. (2) The
utilisation of statistical regularities on which most of the classical ‘Gestalt laws’ [138, 69]
and ‘Grouping processes’ are based upon (see figure 2). The central idea of this review
is to establish a ground for the joint use of both regularities. The great potential of such
an approach has been stressed by Sudeep Sarkar and Kim L. Boyer [120, 14] and is also
one focus of our current research.

This has been the main motivation for establishing an artificial vision system in which
different modalities are represented, co—operate and stabilize (see [74, 76, 77, 80, 78, 75,
107]) that has been started in 1998 [87]. Figure 3 gives you an idea about some aspects
of the multi-modal processing while in figure 4 you see an example of the resulting image
representations.

The attempt of building artificial visual systems necessarily touches different scientific dis-
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Figure 3: Different stages of image processing: First basic features in different domains
(orientation, color, contrast transition, optic flow, stereo) are being processed which are
then grouped. Feature processing in the different domains as well as grouping is closely
intertwined. (Image from the OSU/SAMPL Database)

ciplines. Therefore, vision is essentially an interdisciplinary field. Since an efficient visual
system needs to have sub—modules (or their correlate of sub—areas in the human brain)
that interact with each other, we have to take an engineering perspective. Mathematics
and Signal Theory gives us the framework to process visual modalities and regularities in
visual scenes. Computer Science gives us important tools in form of today’s computers
and software with which we can realize artificial systems. Biology and Psychology allow
us the study a successful system and may help us in important design decisions. Since, we
think that vision can most successfully been addressed by an interdisciplinary approach,
this review has a broad perspective and we hope that scientists across disciplines become
interested in it. Mathematics are to a certain extent part of it but is organized such it
can be skipped without loosing over all understanding.

This paper is structured as follows:



Figure 4: a) An example of our multi-modal image representations. Here optic flow and
stereo are not represented.



In section 2 we give examples of the ambiguities of local visual data in different
visual domains such as line extraction, colour, stereo, local motion etc.

We claim that this ambiguity can be resolved by the integration of information based
on regularities in visual data (section 3.1). This integration takes place across the
temporal and spatial domain, but also across different visual modalities.

In section 3.2, we characterise two different kinds of regularities (statistical and
deterministic ones) that yet have mostly been used separately in artificial visual
systems.

Regarding results of neurophysiology and developmental psychology we show in
section 3.3 that abilities based on deterministic regularities are to a wide degree
genetically determined while abilities based on statistical regularities are to a con-
siderable degree learned.

We will discuss computational differences of these two kind of regularities in section
3.4. We claim that these differences lead to different requirements for their formal-
ization. Both regularities have been applied with different success within artificial
visual systems: While the power of deterministic regularities has been formalised
with great success within the last two decades (see, e.g., [31, 44]), the full potential
of statistical regularities has not yet been employed at all [14].

From the different amount of genetical pre-coding, we draw conclusions for the
design of artificial systems in section 3.5: We argue that a basic concept of a 3D
space has to be part of the pre-wired structure of a successful system with similar
complexity than the human visual system. However, the formalisation of classical
Gestalt laws based on statistical regularities has to be based on learning.

We discuss the formalisation and the underlying problems of the deterministic reg-
ularity ‘Rigid Body motion’ (RBM) in section 4. We will especially focus on the
estimation of the motion between two frames. We will specify and discuss problems
of motion estimation by describing a specific algorithm [116, 115, 117, 38, 114] to
some detail. This algorithm is also used in our system. Once the RBM is known, we
have a strong spatial-temporal relation across frames that allows for a large amount
of predictions of feature events across time frames.

The correspondence problem is essential for motion estimation: To estimate the
RBM we need to know correspondences of features in different time frames. This
leads to a tough combinatorical problem since the number of possible correspon-
dences grows exponentially with the number of features extracted. We will argue
that statistical regularities can help to overcome this problem, especially in complex



Figure 5: Ambiguity in the Colour domain: Three images of the same object under
different illuminations and pose. The local pixel value depends on the object colour,
the viewing angle and of the spectral distribution of the illumination. This distribution
depends strongly on the light sources in the room, daytime, the amount of clouds, etc.

environments. However, to use the joint power of statistical and deterministic regu-
larities we have identified four necessary properties of motion estimation algorithms
in section 4.6. We will show that the algorithm [116, 115, 117, 38, 114] is especially
useful in this context.

e Concerning the utilisation of statistical regularities, we refer in section 5 to an
approach that has been first formulated by Brunswick [17] around 1950 but has only
recently been justified by empirical data [72, 28, 35, 127]. Brunswick formulated
the idea to relate the statistics of natural scenes to Gestalt laws. This leads to an
understanding of the formalisation of Gestalt laws as essentially a learning problem.
We suggest that by this approach the power of Gestalt laws becomes applicable in
a more efficient way.

e We conclude this work by discussing the great potential for combining statistical
and deterministic regularities in section 6 and we give directions for future research.



Figure 6: Ambiguity of Optic Flow: Left: a) + b) Two images showing a small downwards
motion. c¢) Computated optic flow using the Nagel algorithm showing a considerable
amount of noise and missing optic flow vectors. Furthermore, at edges only the normal
flow (i.e., the flow orthogonal to the orientation of the edge) is computable because of
the aperture problem. d) The three motions in i) are not distinguishable when looking
only at a local patch, (or through an aperture): all three motions cause the same local
pattern (ii). Therefore, only the motion in the direction of the intensity gradient is locally
computable.

2 The Problem of Vagueness and Uncertainty in Vision

There is a large amount of evidence that the human visual system processes a number
of aspects of visual data in its first cortical stages (see, e.g., [55, 95]). These aspects, in
the following called visual modalities, cover, e.g., the local orientation [55, 56], junction
structure [124] or colour [56] at a certain retinal position. Other aspects cover the relation
across two or more frames. For example, the local motion describes the change of a
certain visual event (e.g., the occurrence of a line) over consecutive frames [56]. In stereo
processing the relation between visual events in the left and right image are processed and
used to estimate depth information [8]. Accordingly, in many artificial computer vision
systems, in the first stages one or more of the above-mentioned aspects are processed
(see, e.g., [86, 121, 82]).

However, an important problem the human visual system as well as any artificial visual
system has to cope with is an extremely high degree of ambiguity in these low level
processes [2]. This has a number of reasons:

Noise and limited resolution: Some reasons are associated with image acqui-
sition: owing to noise in the acquisition process along with the limited resolution
of cameras (in the enlarged frames in figure 1 these effects are clearly visible), only
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rough estimates of semantic information (e.g., orientation) are possible.

Influence of illumination on colour: Illumination variation heavily influences
the locally measured colour values and is hard to model analytically (see, e.g., [57]).
For example, in figure 5, the same part of the same object is shown under different
illuminations and pose. As can be seen, the change of the colour pixel values is
considerable. Thus, when we want to use colour for, e.g., object recognition we
need to overcome these changes.

Local feature processing: The processing of edges and junctions has been in-
tensively investigated in computer vision during the last decades. However, the
developed algorithms (see, e.g., [113, 58]) mostly work locally on image patches. In
figure 1 (left) you see local image patches that correspond to edge— and junction—
structures. Even for humans, a correct classification for many image areas is diffi-
cult if not impossible when looking locally at images. However, taking the global
context into account (see figure 1 (right)), classification becomes feasible and even
3D attributes can be associated to the local areas.

Correspondence problem in optic flow: In optic flow estimation we want to
estimate the local motion across consecutive frames. Computer Vision has developed
a large number of optic flow algorithms (for an overview see, e.g., [9]). Figure 6 shows
an image sequence and the optic flow derived by the well known Nagel algorithm
[90]. It demonstrates some fundamental problems of optic flow estimation that come
on top of the above mentioned problems:

— At homogenous patches either no motion or instead noise is computed. The
underlying problem is that there is no way to find correspondences across such
image patches.

— At edges only the normal flow (i.e., the motion component orthogonal to the
local orientation) is computed. The underlying problem is the so called ‘aper-
ture problem’: the fact that looking at a moving edge locally (i.e., through an
aperture) all the different motions shown in (figure 6d) look the same.

— Only at junction like structures the correct motion can be computed. However,
these occur only at very few image locations.

Loosing depth information: Probably the most serious problem is the fact that
in vision the world is perceived by a projection onto a 2D surface: the retina in
case of the human and a chip in case of a camera (see figure 7a). In this way,
we loose the third dimension, i.e., depth information. However, there exist many
cues to regain depth (so called depth cues). One important depth cue is stereo.
In stereo processing (elaborately discussed in section 4.1) we can recontruct depth

11
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Figure 7: Ambiguity of Stereo: a) Image projection onto the retina or onto a camera chip
leads to the loss of the depth dimension: All objects on the right produce the same projec-
tion. b) By means of corresponding points in two images taken from different perspectives
we can reconstruct the depth information. ¢) However, finding correspondences can be
extremely awkward when comparing image patches locally (top) but becomes feasible
when context is taken into account.

information when we have correspondences in the left and right image recorded with
a two camera system (see figure 7b). Accordingly, we need to find correspondences
between pixels in the left and right image (see, e.g., [66]). Again, as can be seen
in figure 7c (top), looking locally at an image pair this problem can be especially
awkward. However, by looking at the context 7c (bottom) it becomes feasible.

3 Regularities in Visual Data

In section 2, we have described the ambiguity of local visual information as a fundamental
problem of vision and have exemplified this problem in different visual domains. In the
following, we will show that despite this problem, the human visual system can acquire
visual representations which allow for actions with high precision and certainty even un-
der rather uncontrolled conditions. The human visual sysem does this by disambiguating
locally erroneous information through integration across these visual modalities (see, e.g.,
[47]) and across spatial and temporal context (see, e.g., [99, 21]). Integration and disam-
biguation is possible since there exist reqularities in visual data. We now will take a closer
look at such regularities in visual data. Then we will discuss aspects of their formalisation
in human and artificial visual systems in section 4 and 5.
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Figure 8: Image showing different amount of structure. a) White noise. b) 1/f noise. c)
Natural image.

3.1 Why does Vision need Regularities

Natural images represent only a tiny subset of the set of possible images. Indeed, if
an image would be produced by a random operator the chances that it would look like
something which resembles a natural image are as good as zero. The image would look
like white noise most of the time (see figure 8a). In natural images, there is a lot of
structure that can not be found in white noise images. For example, David Field found a
law (the so called % law) about the distribution of energy in different frequency domains

[32]. Images for which this % law holds are still noisy but differ significantly from white
noise (see figure 8b). There exists a good amount of work addressing specific structural
properties of natural scenes (see, e.g., [128, 123, 54]). For example, local orientation plays
an important role in natural images (see, e.g., [28]) and the local orientation of pairs of
oriented pixels has a specific statistical distribution that corresponds to the Gestalt law of
good continuation (see, e.g., [72, 27, 35, 127]). One can, for example, show that the visual
event ‘occurrence of a line segment with a certain orientation’ increases the likelihood of
the visual event ‘occurrence of a collinear line segment nearby’ (see figure 9a). Taking
the temporal context into account, i.e., looking at image sequences, we find additional
regularities. For example, it would be extremely unlikely that an object suddenly appears
and then simply disappears. Usually, we approach an object or the object approaches us
with a certain speed such that it becomes observable in consecutive frames. Therefore,
events in one frame can be used to predict events in a second frame provided we have
some information about the motion.

That leads us to a definition of regularities in visual data. We define a regularity in
visual data as a structural property of natural scenes that allows for the prediction of
visual events. Since regularities allow for predictions we can use them to define recurrent
processes that trigger a disambiguation process that lead to stable percepts computed

13
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Figure 9: a) The cross—correlation of pairs of filter responses of same oriemtation. The
x— and y—axes represent the distance of the kernels in x— and y— direction and the z-axis
represents the correlation. Parallelism and collinearity are clearly visible: Collinearity is
detectable as a ridge in the first diagram and parallelism appears as a global property
expressed as offset of the surface in the first diagram that is missing for the surfaces
corresponding to non—parallel orientations. In contrast to the high correlation of sim-
ilar oriented line-segments, the correlation to non-similar orientations is low (detailed
results can be found in [72]). b) Grouping becomes enforced through joint use of multi-
ple modalities. c) Statistical Interdependencies for the collinearity ridge when multiple
modalities are taken into account. The main axis represents the pixel distance for collinear
line segments. Each sub—column represents the statistical interdependencies for different
combinations of visual modalities. As can be seen, the principal form of the ridge is pre-
served also when using multiple visual modalities. However, the strength of the statistical
interdependencies increases sigificantly (for details see [80]).
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from the ambiguous inputs.

3.2 Statistical and Deterministic Regularities in Visual Data

As discussed in section 3.1, the power of modality fusion arises from intrinsic regularities
in visual data. In this paper, we suggest a distinction between two kind of regularities:

1) Deterministic regularities (most importantly rigid body motion, RBM) applied
in, e.g., stereo and motion processing (see figure 10a,b) and,

2) Statistical regularities between features as applied in, e.g, Gestalt laws such as
good continuation or collinearity (see figure 10c) and in pictorial depth cues (see
figure 10d,e).

Deterministic regularities allow for deterministic predictions that are in general based
on analytically describable geometrical relations grounded on different perspectives of a
scene or an object (see figure 10b). For example, knowing the RBM between two frames
and knowing the 3D structure of the scene, we can explicitely compute the occurrence
of features in consecutive frames (see, e.g., [31, 122, 74]). In this case, the occurrence of
an event in the first frame makes the occurrence of a certain event in the second frame
mandatory and therefore allows for deterministic predictions.! While the regularity RBM
leads to deterministic predictions, statistical interdependencies occur as statistical corre-
lations between events which only lead to probabilistic predictions about the occurrence
of other events.

In this section,

1) we will give a precise definition of deterministic and statistical regularities in sub-
section 3.2.1 and 3.2.2.

2) we will summarize psychological and neurophysiological evidence supporting the
assumption that abilities based on deterministic and statistical regularities develop
with a different amount of genetical pre-structuring in the human visual system
(section 3.3).

3) we will discuss computational differences between these two kinds of regularities
that lead to the requirement of a different kind of mathematical framework in their
formalization (section 3.4).

4) will discuss the consequences for the design of artificial systems that make use of
these two regularities in section 3.5.

'Note that, since feature extraction necessarily is ambigiuous (see section 2) algorithms that make use
of RBM also have to deal with uncertainty. However, the underlying regularity is deterministic.
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Figure 10: Examples of deterministic predictions based on geometrical regularities (a,b)
and probabilistic predictions based on statistical regularities (c,d,e): a) In stereo process-
ing two image correspondences lead to a deterministic 3D-prediction. b) Knowing the
RBM between two frames for each feature in the first frame deterministic feature predic-
tions for the consecutive frame can be made. c) The two collinear line segments (drawn
bold) lead to an increase of likelihood for the existence of a third line segment inbetween.
However, only a probabilistic prediction (PP) is possible. d) We tend to see a convex
sphere illuminated from the top. However, this shading pattern could also be caused by a
planar surface with appropriate texture or a concave surface illuminated from the bottom.
The convex surface hypothesis is only the most likely in our visually experienced world.
e) Using linear perspective, we tend to see in the left image two parallel lines in 3D and a
ball on top. However, this pattern could also be caused by a different geometric structure
(see right).

3.2.1 Statistical Regularities

To be more explicit, we give a definition and discuss one specific example of a statistical
regularity in visual data.

Definition: There exists a statistical regularity between two visual events e and ¢’ if the
occurrence of the event e influences the likelihood of occurrence of the event e’ but does
not make the occurrence or non-occurrence of ¢ mandatory.

The most straightforward example of a statistical interdependency is Collinearity or Good
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Continuation (see figure 2c and 10c): It has been shown by [72, 27, 35] that the occurrence
of a line segment e influences the likelihood of the occurrence of other line segments €
in natural images in a very specific way: The likelihood of the occurrence of a collinear
line segment ¢’ increases up to a factor 6 while the occurrence of a parallel line segment
increases approximately by a factor of 2 (detailed statistical investigations can be found in
[72]). For line-segments with different orientation there is no significant statistical inter-
dependency detectable (see [72, 27, 35]). Figure 9a shows the measured interdependencies
on a large set of natural images.

There are many other examples in which statistical regularities are involved. For exam-
ple, in Shape from Shading we want to compute 3D structures from 2D images making
use of the grey level variation. The image shown in figure 10d appears to most people
to be a convex sphere illuminated from the top. However, this is only the most likely
interpretation in natural scenes since the very same grey level distribution is generated
by a concave sphere illuminated from the bottom or simply a specifically textured planar
surface. All pictorial depth cues, such as, e.g., linear perspective, are based or involve
statistical regularities in visual data. The image in figure 10e (left) makes us perceive a
sphere on a road-like surface. However, the same projective pattern can be also produced
by a completely different 3D structure (see figure 10e (right)).

3.2.2 Deterministic Regularities

Definition: There exists a deterministic regularity between two events e, ¢’ if the occur-
rence of the event e makes the occurrence or non—occurrence of ¢/ mandatory.

The most important deterministic regularity in visual scenes is Rigid Body Motion (RBM):
Assume the following is known:

e the 3D Position of a point e at time ¢y belonging to an object O in a first frame,
and

e (O is a rigid object, i.e. an object that does not change its form over a short interval
of time, and

e the motion RBM of the object O from the first to the second frame, and
e that no external forces damage the object or influence its trajectory,
— than the event occurrence of a 3D point ¢’ = RBM (e) is mandatory?.

Indeed, the RBM leads to predictions for each object feature (see figure 10b). Therefore,
RBM is a strong regularity in visual scenes and its estimation is important. We will

2RBM (e) is the point e to which the Rigid Body Motion RBM is applied.
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discuss analytical properties of RBM as well as problems involved in the estimation of
RBM in detail in section 4.

3.3 Utilisation of Statistical and Deterministic Regularities in Biologi-
cal Systems

In section 2, we have discussed the problem of ambiguity of visual data. In section 3.1
and 3.2 we have argued that, since visual data is dominated by regularities, ambiguity
can be reduced by utilizing these regularities in a system of recurrent predictions. An
open question remains whether the existence, structure and utilization of such regularities
is learned during the development of a human being or whether this is essentially hard—
wired (i.e., learned by evolution). Similarly, as a designer of an artificial visual system we
have to decide about what structural knowledge we want to build into our system and
what structural knowledge we have to learn by experience.

The human visual system neither is a completely hard—wired structure nor a ‘blanc table’
or ‘tabula rasa’. However, it is a system with the ability to adapt to and to learn essential
aspects from the environment. This leads to the so called bias variance dilemma (see, e.g.,
[36]) that is faced by all systems with the ability to learn: If the starting configuration of
the system has many degrees of freedom, it can learn from and specialise to a wide variety
of domains, but it will in general have to pay for this advantage by weak generalization
—the “variance” problem. This results in bad convergence and instability of the trained
system. On the other hand, if the initial system has few degrees of freedom it may be
able to learn efficiently but there is great danger that the structural domain spanned by
those degrees of freedom does not cover the given application domain at all —the “bias”
problem. This results in a system that may be well applicable in very special domains
(such as, e.g., traffic sign recognition) but lack the quality of generalisation to other
domains (such, e.g., tracking of vehicles). As a conclusion, Geman and Bienenstock [36]
argue that a certain amount of “bias needs to be designed to each particular problem”.
However, each concrete choice of a priori knowledge is a crucial point: A wrong choice
may lead to the exclusion of good solutions in the search space. A choice of predetermined
structural knowledge that is too restricted may result in an increase of the search space,
leading to unrealistic learning time and bad generalisation.

Within a biological system, bias can be established by genetic coding. The question
of predetermined components is also most essential for the design of any artificial visual
system that is able to learn, since this predetermined knowledge helps the system to focus
on essential aspects in the huge amount of data it has to cope with. However, to actually
find out what the genetically determined component is can be a difficult undertaking since
learning and a priori knowledge may be deeply intertwined and difficult to separate by
any kind of observation (for a detailed discussion see [73]).

How can we escape the bias/variance dilemma? The existence of the human visual system
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with its ability to deal with its surroundings efficiently and with sufficient adaptivity raises
hope that this problem can be solved. The predefined structural constraints applied in
the human visual system have been evolved during evolution and appear to be well suited
to organise visual experience: They seem to cover essential structures of the physical
world. Thus, it is a valuable opportunity to look at the results from biology to become
inspired for suitable definitions of constraints. In this sense, nowadays the Kantian idea
[62] to establish a table of a priori constraints which organise perception can be supported,
guided and justified by a good amount of neuropysiological and psychophysical data® We
discuss such data in the next two subsections.

3.3.1 Evidence for a large Degree of Genetic Determination of Deterministic
Regularities

At the end of the 19" century, William James [59] characterised the world of the newborn
as a “blooming, buzzing confusion”. Imagine that there would not be any innate concept
of depth, the idea that objects come into or leave existence when they appear or dissappear
from the visual field would be inescapable. However, there exists a good amount of
evidence that the newborn’s world is not as confusing as assumed by James. Indeed,
psychophysical research indicates that certain geometric relations of the Kuclidian space
are very likely not learned but are to a considerable degree genetically determined.
Depth information can be acquired by different cues. Cues based on deterministic depen-
dencies are for example stereo (see figure 10a), and convergence of two eyes during fixation
(see figure 11a). Statistical regularities are used by pictorial cues such as occlusion (see
figure 11b), shading (see figure 10d), familiar size (see figure 11b) and linear perspective
(see figure 10e) are applied for static depth extraction. Concerning the question of genetic
prestructuring, it is interesting in which order these different cues develop and whether
there is a percept of 3D established in newborns.

Kellman and Arterberry [64] state that 3D information is acquired even by the newborn:

Achieving accurate size perception ... implies that at least one source of egocentric
distance information ... is functional at birth’.[64]

In [64], it is also claimed that convergence must be the cue first applied. The stereo cue
is used by babies after approximately 12 weeks and the whole stereo machinery starts
rather instantly instead of showing steady increase of performance [45] probably caused
by 'maturational change in cortical disparity-sensitive units’ [64].

The start of utilising motion information (also based on deterministic regularities) for
extracting 3D information is not fully clear. Some work indicates that one month old

3See also [73] where a priori constraints for object recognition have been motivated by neurophysiolog-
ical and psychophysical investigations.
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babies already can use motion information to extract depth [91]. In general, it is assumed
that 'motion carried information about space appears to operate at the beginning ...” [64].
Neurophysiological research indicates that our concept of space (used, e.g., for navigation
tasks) is realized in cortical maps as well as in maps in the hippocampus (probably relating
to different competences on different evolutionary stages). There seems to be different
brain areas genetically provided in which our geometrical representation of the world
is realized and this representation is multi—sensorial (see, e.g., [4]), i.e., in these maps
information of multiple sensors (e.g., vision, sound, touch, ...) is coded.

Note that the Gestalt law Common Fate (see figure 2f) which is based on motion (although
not necessarily motion in 3D space) plays a special role in the development of the human
visual system. It has been demonstrated by [129] that Common Fate is the Gestalt law
that is used first by the human visual system. Spelke suggests that Common Fate is then
used to establish other Gestalt laws. This has also been demonstrated in computational
models in the group of Christoph von der Malsburg [104, 105].

The most likely conclusion we can draw from these findings is that a basic concept of
depth (realized in genetically determined maps) is existing from birth on but that this
idea is first (coarsely) realized by the depth cue convergence, then in addition by stereo
and motion cues. All these cues are based on deterministic regularities in visual data.
The use of pictorial cues (that are based on statistical regularities) evolve later (see the
next sub—section).

3.3.2 Evidence for an Adaptive Component in the Ontogenesis of Abilities
connected to Statistical Regularities

In contrast to the early use of deterministic interdependencies in depth perception, the
use of pictorial depth cues more likely involves visual experience since these cues are used
by 7 months old babies but not by 5 months old ones [64]. This has been independently
shown for several pictorial depth cues: linear perspective [96] (see figure 10e), familiar
size [142] (see figure 11b), occlusion [39] (see figure 11c) and shading [40] (see figure 10d).
Besides the relative late occurrence of the ability to use pictorial cues there is conceptional
evidence [72, 27, 35] and evidence from computational neuro—science [106] for an adaptive
component in the ontogenesis of the ability to use statistical regularities which will be
discussed in section 5.3.

3.4 Computational Differences between Statistical and Deterministic
Regularities

Deterministic and statistical regularities are already widely used in artificial systems to
stabilise uncertain and vague image information (for applications of deterministic interde-
pendencies see, e.g., [130, 31, 44]; for applications of statistical interdependencies see, e.g.,
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a)

Figure 11: Variety of Depth Cues: a) Convergence: When a 3D point is fixated we can
compute its 3D position from the angles of rotation of the two eyes by a simple geometric
law. b) Familiar Size: Since we assume that the 3 objects having identical size we impose
a relative distance of the objects. c) Occlusion: By assuming that the two patches with
different grey level structure correspond to two objects that have the form of a square we
impose a relative distance on the objects by assuming that they are superimposed.

[120, 43, 14]). As it will be shown below, these two regularities have different properties.
As a consequence they have mostly been treated independently [120, 14]. Our central
goal, however, is to design our system such that both regularities will support each other
and we will discuss how this could be achieved in section 6.

There is a distinct difference in the success of usage of deterministic and statistical reg-
ularities in artificial visual systems. While the potential of geometrical constraints has
been very successfully utilized within the last two decades (see, e.g., [44, 68, 66]) , the
potential of statistical regularities has only been exploited to a much smaller degree. This
holds even more for their combined exploitation [120, 14].

We argue that one reason for the different success in exploitation of deterministic and
statistical interdependencies lies in their structural differences: Deterministic regularities
can be modeled with a framework of reasonable complexity since they are analytically
describable. In contrast, statistical interdependencies are based on specific statistical
patterns in natural scenes that can not be modelled analytically but have to be learned.
RBM reflects a geometric dependency in the time-space continuum: The transformation
of a non-deformable (rigid) object from one position to another. It is describable by
six parameters, three for translation and three for rotation (see, e.g., [31, 89, 44]). The
motion of a camera, the motion of a car within a static scene and also the motion of
a rigid object on an assembly line can be fully captured by their RBMs. RBM is also
the underlying regularity in stereo processing since it is the RBM between left and right
camera that makes reconstruction possible.

A considerable amount of literature is concerned with RBM estimation from different
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kinds of feature correspondences (see, e.g., [50, 100, 118]) which will be discussed in
detail in section 4. Once the parameters of motion are known, RBM can be used for
feature integration and robust feature extraction (see e.g., [6, 74]) since RBM allows for
the deterministic prediction of a large number of feature events in the following camera
frame based on simple mathematical transformations (see also figure 10b).

In contrast, collinearity and parallelism are two examples of statistical regularities in visual
data, which are also associated with the so called ‘Gestalt laws’ (see figure 2) formulated by
Gestalt psychologists (see, e.g., [138, 69]). These occur as statistical correlations between
events which only allow for probabilistic predictions about the occurrence of other events.
Take for example the Gestalt law ’collinearity’ (or ’good continuation’): The occurrence
of collinear line segments makes the existence of other collinear line segments more likely
(see figure 10c and figure 9). In contrast to RBM, statistical relations between features
cannot normally be described analytically but require a statistical framework for their
formalization.

A lot of work has focused on the usage of statistical regularities to achieve robust feature
extraction in different domains, e.g., edge detection (see, e.g., [43]) or stereo estimation
([19]). Another important application domain is the grouping of local entities into higher
entities to achieve stable and fast matching ([88]). However, in most of these contributions
the relation between features, i.e., the applied Gestalt principle, has so far only been
heuristically defined based on semantic characteristics such as orientation or curvature
(e.g., two line segments are defined to be collinear when they lie on a contour with
slowly changing curvature ([140])). However, in section 5.3 we argue that by relating
statistical regularities to statistics in visual data we can overcome such heuristic settings.
To achieve this, the visual system has to be equipped with the ability to adapt according
to the statistical structure of visual data.

Both kind of regularities, deterministic as well as statistical, can be used to extract depth
information. However, they work in a complementary way. For example, stereo cues only
work at close distances since the basis width of the camera system (often called baseline)
has to be sufficiently large in relation to the depth range to be measured. Through ego
motion we can increase the basic width and we can extend the depth range for which
reconstruction is possible. However, for this we always need different perspective views
of the sceme. Statistical regularities are applied in ’pictorial cues’ (see figure 10d,e for
two examples). Pictorial cues allow extracting 3D information from 2D images without
direct geometric experience of the 3D space. In section 3.3.2 we have seen that the ability
to use pictorial cues evolves later in the ontogenetical development of the visual system.
We argue, that since pictorial depth cues are based on statistical regularities there is a
need to acquire knowledge of such statistical patterns and how they are related to depth
information. As a consequence, there is a need for a certain amount of adaptivity of the
system and therefore pictorial depth cues are applied rather late in the development of
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the human visual system.

3.5 Consequences for the Design of Artificial Visual Systems

As discussed above, the human visual system faces two problems: Firstly, it has to deal
with a considerable amount of uncertainty in its low—level modalities while at the same
time it has to support actions with high reliabilty. It is widely agreed that this pre-
cision is achieved by integration based on the regularities in the visual data (see, e.g.,
[2]). Secondly, it faces the bias—variance dilemma. Thus, in order to be able to learn it
already has to know something about structures of the environment in form of predefined
structural constraints. This directly addresses the formalization of regularities since as
a designer of an artificial system we have the awkward task to decide about the specific
structural knowledge we want to be built into the system to realize abilities based on such
regularities.

Taking the results described in section 3.3.1 into account, we think it is justified to equip
an artificial (human like) visual system with basic mechanisms for depth extraction from
stereo based on geometrical regularities (see, e.g., [66, 74]). Furthermore, we find it
justified to equip the system with a basic mechanism to estimate the RBM between
frames [116] as well as a mechanism that uses the estimated RBM to disambiguate locally
erroneous visual estimates [68, 74].

However, although using deterministic relations based on RBM as largely hardwired com-
ponents we want to make use of the statistical interdependencies by a mechanism which
relies on visual experience with real world data. This kind of approach, although already
formulated by Brunswick in the fifties [17], has only been recently become an intensively
discussed issue [72, 27, 35, 127, 80, 28]. We will come back to this approach in section
5.3.

4 Formalisation, Estimation and Application of Rigid Body
Motion

As discussed in section 3.1, the knowledge of ego motion and motion of other objects
is an important regularity that allows for predictions across frames which can be used
to disambiguate visual information. The formalisation and computation of motion has
received the attention of a significant number of scientists (see, e.g., [68, 33, 31, 30, 122]).
As we will see, it is the correspondence problem that is crucial in this context and that
the combined utilisation of the deterministic regularity RBM and statistical regularities
in grouping processes can help significantly to deal with it.
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4.1 The deterministic Regularity Rigid Body Motion applied in Stereo
Processing

In stereo processing we use the different appearance of features in two images taken
from different positions in a scene to extract 3D information (see figure 7b). The RBM
between the two cameras is essential in stereo processing since it produces the different
appearances of image structures. Then simple geometric laws can be used to extract
depth information.

4.1.1 The projective Map

By watching a scene with a camera the 3D world is projected onto a 2D chip (see figure
7a). This can be described (in a simplified camera model*) by the equation

(v)-(%) 2

where (z,y) are the image coordinates and (X,Y, Z) are the 3D—coordinates. The Z-
dimension is lost, leading to a coniderable degree of ambiguity (see figure 7a) in scene
analysis. However, having two cameras that look at the scene from different viewpoints
(see figure 7b) we can reconstruct the third dimension. Note that different kind of corre-
spondences lead to different types of reconstruction. For example, two point correspon-
dences lead to a 3D point. Two line correspondences lead to a 3D line (see, e.g., [31]),
and the correspondence of two points with associated orientation lead to a 3D point with
associated 3D orientation (see, e.g., [76]).

N[ESNFS

4.1.2 The Correspondence Problem in Stereo

Reconstruction presupposes a correspondence of visual entities in the left and right image.
Although for humans this seems easily solvable, it is a serious problem in computer vision
systems. What makes it so difficult?

e Different perspectives in the left and right image lead to differences in the projection.
For example, the orientation of the projected edge is in general different in the left
and the right image (see figure 7c). Indeed, it is this difference which on the one

4Note that for a real camera we have to find a set of parameters that describe the mapping between
world coordinates and pixel coordinates. The RBM between the camera and the world coordinate system
is one sub-set of parameters (external parameters) to be found. Internal parameters (i.e., the co—ordinates
describing the position and angle of the chip in the camera, the size of the chip, the number of pixels as
well as the focal length) have to be computed as well. This estimation process is called calibration and is
known to be sometimes quite awkward (see, e.g., [31, 66])
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Figure 12: a) Epipolar Line Constraint. b) Predictions in the stereo domain based on
grouping: Assuming the correspondence indicated by the solid line the correpondences
indicated by the broken lines can be predicted.

hand makes the correspondence problem difficult and, on the other hand, makes the
reconstruction possible. Furthermore, the colours of surfaces in the left and right
image are different, since they depend on the viewing angle. Moreover, it may be
that, because of occlusion, we see a different physical surface in the left and right
image (see figure 7c).

e There may occur repeating structures in a scene. These structures can not be
distinguished by pure local matching.

e Many image areas are homogeneous or weakly structured. Thus, there is no chance
to find correspondences by local comparisons since these would all give high simi-
larities. In this case we need to apply indirect and more global methods.

However, there exist a number of constraints that reduce the correspondence problem.

e Uniqueness: An image entity in the left image can have at most one correspondence
in the right image. Note, that it is possible to have zero correspondences in case of
occlusion.

e Epipolar Line Constraint: The corresponding point in the left image must fall onto
the so called epipolar line. The epipolar line is the intersection of the right image
with the epipolar plane (see figure 12 and [31]). The epilolar plane is generated by
the line spanned by the optical centre of the left camera, the image point and the
optical centre of the right camera® (see figure 12). In this way, we can reduce the
correspondence problem to a one-dimensional search problem.

5The same holds also from right to left.
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e It has been shown that the use of multiple modalities enhances stereo performance
(see, e.g., [71, 76]). In our system, we have utilized the modalities orientation, phase,
colour and optic flow to improve stereo matching [76, 107].

e There exist further spatial constraints [31, 66]. Assuming certain assumptions about
the 3D scene are made, constraints on the relative displacement of features in the
left and right image can be made.

— Ordering: The order of points on the epipolar line is the same in the left and
right image. This contraint is valid if the objects in the scene have similar
distance to the camera. This constraint is, for example, used in dynamic
programming approaches (see, e.g., [20, 37]).

— Limit of Disparity: Difference in the position of corresponding points in the
left and right image does not exceed a certain disparity value. This contraint
is fullfilled when objects have a minimal distance from the camera.

e Grouping can significantly enhance stereo matching (see, e.g., [19]). In figure 12b,
a possible application of grouping in stereo processing is described: Assume a local
line segment ' in the left image is part of a group G'. Furthermore, assume that
this line segment has a correspondence [" in the right image which in a similar way
is part of the group G, then all local entities of G! must have a correspondence in
one of the local entities of G".

4.2 The RBM Estimation Problem

Different kind of motion patterns exist in visual scenes. For example, the motion of a
bird is a complex combination of its limb movements and the movement of its elastic
skin and feather structure that depends on the ego—motion and on other factors such
as wind and temperature. A motion with similar complexity is the motion of humans.
Human motion is also a commercially interesting problem, since it leads to applications
in, e.g., video surveillance. It has been addressed by many scientists (see, e.g., [15]).
However, there are other motion patterns that are much simpler than that of a bird or a
human. One important class of motion is pure ego—motion, that occurs, e.g., in a video
taken from a car on an empty highway or in a movie of a still life taken from a moving
camera. The mathematical structure of this kind of motion has been studied for a long
while (see, e.g., [7, 65]) and will be described in detail below. This structure, often called
‘Rigid Body Motion’ (RBM)®, can be described as a six-dimensional manifold consisting
of a translation (parametrised by the three coefficients t = (¢1,%2,%3)) and a rotation

5We define Rigid Body Motion of an object as a continuous movement of the object, such that the
distance between any two particles of the object remains fixed at all times.
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Figure 13: Two Representations of a Rigid Body Motion. a) Combination of rotation and
translation. b) Twist representation: A rotation around a line I in the 3D Space with
direction w and moment m and a translation along w with magnitude X is performed.

(parametrised by r = (r1,79,73)). In figure 13a such a parametrisation is displayed. First
we perform a rotation Rot(p) around the axis r. The norm of this axis codes the angle
of rotation o = ||r||. Then we move a point according to the translation vector t.” Note
that in many scenes, not only one (ego—)motion exists but in addition other rigid objects
(other cars and lorries) move. Their motion is also describable by an independent rigid
body motion.

An RBM describes the transformation of a 3D entity® e in the first frame to a 3D entity
e’ in the second frame?

"There exist other ways to formalize an RBM, e.g., by Euler angles or dual quaternions (see section
4.7.2). However, it is always a six-dimensional manifold that describes the RBM

®In the following 3D entities are printed in boldface while 2D entities are printed normal.

®For the sake of simplicity we also use the notation RBM (e) = €’ if the context is clear.
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RBM®*)(e) = €. (2)

To apply equation (2) we need to define correspondences between visual entities e and
€'.1% Each of these correspondences defines one or more constraint equations. If the RBM
is applied to the entity e it must match €’. Therefore, it must hold

||[RBM®)(e) —€'|| = 0. (3)

Note that the norm || || can vary. This especially holds for different choices of entities e.
We discuss this issue in section 4.7.4. If we have a set of constraints (based on a set of
correspondences) we get a system of equations that allows for computing the RBM, i.e.,
the underlying parameters t,r.

Up to this point the motion estimation problem may appear to be quite simple. However,
there are significant problems involved that will be discussed now:

e Dimensionality of Entities: There occur different situations of different complex-
ities in which RBM estimation can be performed (see section 4.3.2). For example,
since in vision, a camera records a scene on a 2D chip, we only record a motion in
2D and we have to deal with 2D features extracted from images.!! Therefore, we
may not want to directly apply equation (3) but instead may want to embed this
equation in some kind of 2D context. On the other hand, in a stereo scenario, we
have the possibility to extract 3D features (see section 4.1). However, as discussed
in section 2 and 4.1.2, there is a high degree of ambiguity in these features which
we would probably like to eliminate before addressing the rigid body problem.

e Semantic of visual entites: Apart from the dimensionality of the entities used for
RBM estimation (see section 4.4.1), we can apply entities of different semantic (see
section 4.4.2): In equation (2) we can bring points to a correspondence. However,
one could also think of correspondences of line segments or entities of even higher
complexity such as curves or circles. Therefore, we want to formulate the RBM
estimation problem for different kind of visual entities.

e Mixing of visual entities: Through grouping, complex, extened entities can be
formed by combining local entities (see figure 4 and 15). These groups can include

0T here exist methods that avoid an explicit coding of features or entities. In these methods, the rigid
body motion problem is formulated not on derived features but on the pure image data. As a consequence,
the formulation in equation (2) would appear only implicitly in these methods (see, e.g., [18, 136, 93, 49]).
In our approach, we do not follow this implicit approach. However, we will discuss the implications of the
different methods in section 4.3.1.

Note, that there exist sensors that record 3D information directly such as range finders [111]. However,
they are very different from standard cameras and have specific disadvantages such as high costs and
limited resolution and depth range. Furthermore, such approaches are rarely realized in biological systems.
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different kind of entities. For example point—like or line-segment—like entities. When
we want to apply such groups for RBM estimation it is advantageous to have the
ability to mix such correspondences.

e Correpondence problem: For RBM estimation, we have a correspondence prob-
lem (discussed in section 4.5) that is even more serious than the correspondence
problem in the stereo case (see section 4.1.2) since the epipolar constraint is not
directly applicable!?. The correspondence problem becomes even more severe in
scenes with multiple independent motions. In section 4.5, we will discuss the power
or value of different kind of correspondences as well as different constraints that
make the correspondence problem manageable. We will see that grouping can be
an important constraint that has only seldomly been used in artificial visual systems.

e RBM representation: There are some problems that are deeply connected to the
mathematical representation of Rigid Body Motion which are discussed in section
4.7. For example,

— the solution of equation (3) needs to be computed by some kind of numeri-
cal optimisation method. Different choices of numerical method may lead to
different kind of solutions (see section 4.7.1).

— the algebraic embedding of RBM may lead to systems of equations with more
unknowns than necessary. For example, the standard matrix formulations work
on 12 unknowns, but only 6 are needed to code an RBM. As a consequence,
such approaches search in the wrong and far too large space. This leads to
solutions that are no RBM anymore (see section 4.7.2).

— the way we represent mathematical entities such as points and lines (see sec-
tion 4.7.3) influences the formulation of our constraint equations (3). Their
definition is not trivial, since a proper formulation of distance between such
entities has to be found.

— it would be advantageous to have a geometric interpretation for the constraint
equation (3) to ensure stability of computation. This will be discussed in
section 4.7.4.

Moreover, we will see that all the above mentioned problems are deeply intertwined.

Having described basic problems of RBM estimation in section 4.3, 4.4, and 4.5, we will
derive four desired requirements of RBM estimation algorithms for real world applications
in section 4.6: accuracy, reliability, flexibility and minimality. We will show that grouping
can be a crucial aspect in RBM estimation that is involved in all four requirements.

"”However, the epipolar line constraint can be used implicitely (see [131])
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In the following, we will discuss the RBM estimation problem in a way that we hope is
understandable for a broad range of scientists with different background. However, RBM
estimation is also a mathematical problem and therefore math can not be completely
avoided. However, the discussion of mathematical problems is concentrated in section 4.7
and can be skipped in a first reading.

Within this review, we will outline an RBM estimation algorithm to some mathematical
detail that has been developed by our colleagues Bodo Rosenhahn, Oliver Granert and
Gerald Sommer [116, 115, 117, 38, 114]. This has three reasons: First, this specific
RBM estimation algorithm has certain unique advantages that will become obvious in
the following discussion. Secondly, we use this algorithm in our attempt to implement
artificial visual systems (see, e.g., [77]). Finally, we will use this pose estimation algorithm
to exemplify general problems of RBM estimation that can be easier understood by looking
at a specific mathematical formulation.

4.3 Classification of Methods and Situations
4.3.1 Different types of Methods

In RBM estimation entities used to define correspondences can be represented explicitely
as features (as done in equation 2) or implicitly. There has been a long debate about this
issue. According to the degree of expliciteness different methods can be separated into
feature based, optic flow based and direct methods (see [131]).

¢ Feature based methods: In feature based methods [112, 84|, at first features
(e.g., junctions [101] or lines [77]) are extracted. Once these features are found,
correspondences between features are defined and used in the constraint equations.
These methods have to deal with the problem of feature extraction. The ambiguity
of visual data leads to erroneous or missing features. For example, it may be that
the local interpretation is ‘wrong’. There may exist a weak line structure in the
first frame (slightly above threshold) but the corresponding structure in the second
frame is below threshold (or dominated by noise). Then there is no chance to
find a correspondence since the corresponding entity simply does not exist in the
second image. Therefore, special mechanisms to deal with these cases need to be
considered. One possibility to deal with this dilemma is to make use of confidences
associated to features (see, e.g., [77, 21, 75]).

e In optic flow methods (see, e.g., [18, 49]) the optic flow with all its inherent am-
biguities (see section 2) is used. A nice property of optic flow methods is that these
methods may acquire a good solution by implicitly averaging over the ambiguous
data. However, since this kind of correction process is implicit, one does have only
little control about the influence of specific outliers.
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e In direct methods no explicit representations as features or optic flow vectors
are used but image intensities are directly matched [136, 93, 25]. The advantage
of these methods is that all problems connected with feature extraction can be
avoided. However, the drawback is that the ambiguity of local interpretations is
also implicitly existent in the intensity patches.

In our system, we do feature based pose estimation. However, we are aware of the
difficulties connected with such approaches.

4.3.2 Different Types of Situations

The RBM estimation problem occurs in different situations.

e Single image: Alignment of an existing 3D model of an object within a 2D image
is a complex task since no constraints concerning the RBM can be made. This
problem occurs in case of object alignment in 2D images (see, e.g., [85, 116]). In
the constraint equations we therefore need correspondences between 3D object and
2D image equations (see figure 14b).'3

e Stereo: In case of recording the scene with a stereo system we have two images
that record the same RBM. Therefore, having an image entity in the left frame and
a corresponding entity in the right frame Cor(e!,e”) = 1, both describe the same

RBM and lead to one additional constraint equation'?:

((PZ(RBM(e)) — ) A (cor(el,ef))) — (P"(RBM(e)) = ¢").

Furthermore, we can use stereo to extract 3D information and then apply 3D-2D
pose estimation even if we have no prior object knowledge (see, e.g., [77]). As a
consequence, we can use correspondences between 3D object and 2D entities in our
constraint equations.

e Image sequences: When we record a scene with a (stereo)-camera system conti-
nously we have different frames that are connected by the camera’s RBM and the
motions of the objects within the scene. At normally used frame rates, it is very
unlikely that corresponding image coordinates have large distance in consecutive
frames. This continuity constraint reduced the correspondence problem consider-
ably and leads to more stable motion estimates.

13This is also the standard problem that has to be solved in camera calibration with known calibration
body.
14 plor P is the projective map of the left or right camera respectively
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3D-2D:

Figure 14: RBM-Estimation from different Correspondences. a) RBM estimation from
3D correspondences (displayed as circles). b) RBM estimation having a 3D model and
2D correspondences in an image. ¢) RBM estimation having 2D image coordinates in one
image and its 2D correspondences in a second image.

4.4 Using Different kinds of Entities

In our constraint equations, we need correspondences between visual entities. These
entities can have different spatial dimension (see section 4.4.1) as well as different semantic
(see section 4.4.2). We will see that in the context of grouping both aspects are relevant.

4.4.1 Entities of different Dimension

Following [48], we distinguish 3 cases of RBM estimation problems that differ depending
on the spatial dimension of visual entities. First, we can compute the RBM from 3D-3D
correspondences (see figure 14a). Second, we can have a model of an object that inherits
3D aspects, either by manual design (see, e.g., [85, 116]) or by some kind of acquisition
mechanism that has taken place beforehand (see, e.g., [74]). In this case, 3D aspects
of the object can be brought into correspondence with 2D aspects of its projection (see
figure 14b). Thirdly, we can deal with 2D projections only (see figure 14c).

3D—-3D Correspondences: We can extract 3D information by stereo or by a sensor
that works directly in the 3D domain (e.g., range finders [111]). Then we can define
correspondences in 3D and our constraint equations have the simple form
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RBM(e) = €. (4)

From a mathematical point of view, this is the easiest case since we can avoid any problems
resulting from the perspective projection (see section 4.1.1).

However, working with 3D entities inherits other problems. For example, in case of
extracting 3D information by stereo, we have to deal with its ambiguity (see section 2)
since wrong correspondences will lead to significant distortions in the RBM estimation.
In case of laser range finders, we have to deal with a type of sensor that has specific
problems such as the necessity for expensive and time consuming scanning and a limited
depth range. Furthermore, the determination of 3D-3D correspondences is not trivial.

RBM from 3D-2D Correspondences: A camera projects a scene to a 2D chip. There-
fore, it is convenient to use entities that are extracted from a 2D image only. However,
there occur many applications in which prior object knowledge does exist. For example in
industrial robot applications CAD descriptions of objects may be available (see, e.g., [29]).
This leads to the problem of estimation the RBM from entities of different dimensions:
The 3D object knowledge needs to be aligned with 2D entities in an image of this object.
The problem of computing the RBM from correspondences between 3D object and 2D
image entities is commonly referred to as 3D-2D pose estimation problem [41, 114].1° In
mathematical terms we have the following kind of constraint equations:

P(RBM(e)) = ¢/,

where P represents the perspective projection.

There exist different ways to approach the 3D-2D pose estimation problem. They differ
in the way they deal with the perspective projection. The perspective projection makes
the 3D-2D pose estimation problem mathematically more demanding than the 3D-3D
case since the perspective projection introduces a non-linear and non—invertible function.
However, one can try to deal with this problem by simplifying the projected 3D motion
or by a simplified camera model. Furthermore, there are approaches that reproject 2D
entities in the 3D space.

In the following we will discuss the different alternatives in more detail.

e Orthographic formulation: For objects with a large distance from or with similar
depth to the camera, the projective map can be approximated by the so called
orthographic projection

O: (z,y,2) = (z,9).

15When combined with ego-motion or object—motion we can apply this approach in an iterative scheme
leading to a particulary succesful approach based on the so called analysis—by-synthesis paradigm (see,
(68, 26]).
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This leads to the constraint equation

O(RBM(e)) = ¢

As the perspective projection, the orthographic map is not invertible, but it is much
simpler. Some authors (see, e.g., [15, 132]) formulate the pose estimation problem
by making use of the orthographic map.'®

e Simplified formulation in image coordinates: In Lowe’s pioneering work [85]
an error function measures the deviation of image points P(RBM (e)) and points
€/ in an iterative manner. However, the transformation of image coordinates is
simplified by an affine approximation.

e Fully projective formulation in image coordinates: Both approaches men-
tioned above have the serious drawback that their approximations are not necessar-
ily exact. Therefore, it is advantageous to deal with the full perspective projection.
This has been done by [5], who generalise Lowe’s algorithm [85] to a fully perspective
formulation.

e Formulation in 3D Space: Instead of formalising the pose estimation problem
in the image plane, we can associate a 3D entity to each 2D entity: For example a
2D image point together with the optical center of the camera spans a 3D line (see
figure 16b) and an image line together with the optical center generates a 3D plane
(see figure 16¢). We denote the 3D entity that is generated in this way from a 2D
entity ¢’ by eF '(¢). Now the RBM can be applied to 3D entities

RBM®")(e) = &P (<),

The Euclidian formulation has been applied by, e.g., [100, 38, 116]. This formulation
is elegant, since it deals with the full perspective projection. It works in the space
where the RBM takes place (i.e., the Euclidian space) and also allows for nicely in-
terpretable constraint equations. However, one problem of this formulation is that
the constraints are defined in 3D. This approach inherits problems since error mea-
surements of 3D entities depend on the depth: The estimation of feature attributes
of entities with large depth has a higher uncertainty than that of entities at a close
distance. Thus, correspondences of entities with large distance would have higher
influence in the constraint equations (see [79]).

$Note that Bregler and Malik [15] use some kind of scaling to minimise the effect of approximating of
the projective function with the orthographic map.

34



Structure from Motion using 2D-2D Correspondences: In the structure from
motion problem only 2D entities occur and the problem reads:

P(RBM®9) (eP7'(0))) = ¢/

A considerable amount of literature is concerned with this problem (see, e.g., [44]) and
reconstruction of complex 3D—scenes can be performed by this approach (see, e.g., [122,
68, 101]). However, 3D information can only be computed up to a scaling factor since a
small object with close distance and low speed would lead to the same pattern than a big
object that is identical except its size with high speed. In the following, we will mainly
concentrate on the first two cases, i.e., RBM estimation from 3D-3D and 3D-2D corre-
spondences. However, we want to point out that RBM is also the underlying regularity in
structure from motion algorithms. For overviews about structure from motion algorithms
we refer to [133, 44].

4.4.2 Entities of different Complexity

Visual Entities can not only be characterised by their spatial dimension but also by other
attributes such as, e.g., orientation or curvature. This has been also reflected in the RBM
estimation literature: There exist a large number of RBM estimation algorithms for points
(see, e.g., [41, 100, 85]) and lines (see, e.g., [48, 125]) and also for higher entities such as
circle-like structures (see, e.g., [67, 114]).

At this point we face a general problem. What are the entities we want to use for pose
estimation? We must be careful not to make assumptions that are motivated by the
mathematical framework we use but may not be in accordance with our problem. Since
geometry usually deals with points and lines these entities are not necessarily good visual
entities. For example, each point—feature in an image (such as a junction) has additional
attributes: in case of a junction there are oriented edges that are directed towards that
point and most line-like features have some kind of start and end point, i.e., are not of
infinite length such as mathematical lines are. Therefore, there are no ideal points and
lines in images.

In this work we suggest to use groups of multi-modal local entities as basic entities for
RBM estimation. Groups can be interpreted as ‘Gestalts’ generated by specific joint
properties. For example, by similar colour or collinear orientation. Figure 15 shows some
examples of possible groups. A particular property of groups (as will be discussed in
section 5) is

e that they consist of local entities of possibly different type (for example a line with
its end points or a junction point with its lines intersecting), and

e that they can not pre-defined but self-emerge dynamically depending on the actual
scene (see, e.g., [135]).
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Figure 15: Examples of groups: a) Constellation of collinear line segments. b) A junction
as a combination of an intrinsically two—dimensional and 3 intrinsically one—dimensional
primitive. ¢) A collinear group with two defined endpoints.

An RBM estimation algorithm that uses the power of grouping must have the property
to use different kinds of visual entities since groups may consist of entities of different
structure. However, mixing entities within one system of equation is not easy from a
mathematical point of view since the RBM may have different formalisations for different
entities. For example, the RBM of a point can be described straightforwardly by a
matrix [31] while dual quaternions are also suited to describe the RBM of a line (see,
e.g., [125] and 4.7.2). It is an important step forward to be able to mix these kind of
correspondences and it has been shown that this can be done by e.g., [38, 114]. A specific
algebraic formulation in ’conformal algebra’ (see, e.g., [46]) that allows for dealing with
different kind of entities at the same time was helpful to derive such a formulation.

4.5 The Correspondence Problem

When we want to estimate the RBM, we face a correspondence problem that is even
more serious than in the stereo case. The correspondence problem for RBM estimation
depends on the situation we have to deal with (see section 4.3.2). For example, when
we deal with image sequences, we can apply a continuity constraint, i.e., we can assume
that corresponding pixels in consecutive frames have a small distance (see, e.g., [101]).
However, for 3D-2D pose estimation from a single image (see, e.g., [84]) we can not apply
this constraint. If we have multiple motions, e.g., as in our car scenes, the correspondence
problem becomes much more severe since we have, on top of the correspondence problem
for single motion estimation, to find a separation of the data set that corresponds to the
different RBMs.

We will further see in section 4.7.4, that correspondences of different kind of entities have
‘different weight’ in the sense that they lead to different number of constraint equations.
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As a consequence, different number of correspondences are needed for different visual
entities to be able to compute the RBM. For example,

e 3 correspondence of a 3D point with a 3D point gives us three independent constraint
equations and we need at least three independent 3D /3D point correspondences to
compute an RBM,

e a correspondence of a 2D point with a 3D point gives us two independent constraint
equations and we need again three 2D point/3D point correspondences to compute
the RBM,

e a 2D point / 2D line correspondence gives us only one constraint equations. Then
we need six 2D point / 2D line correspondences to compute the RBM.

Note that in case of more complex entities (that are formed by combinations of more
primitive entities) less correspondences are needed since the constraints of each of the
more primitive entities can be combined. For example in case of a 3D junction with three
outgoing lines that is brought to correspondence with a similar 3D junction in the second
frame only 1 correspondence is needed since we have one 3D/3D point constraint and
three constraints in the outgoing lines.

If we have, e.g., a feature set of 1000 image features and 1000 3D features and we would
need 3 correspondences to compute an RBM then we have approximately 1000% = 10°
possible correspondences to consider. Even when we neglect the problem that correspond-
ing features may not be extracted because of the ambiguity in visual data this space is
not computable in any real time scenario.

There is one ‘easy way’ to solve the correspondence problem and that is to label corre-
spondences by hand (as done e.g., in the standard 3D extraction software [53]). However,
this is not satisfying since a manual intervention would be necessary in each situation.
Thus, it has turned out that it is the correspondence problem that is crucial in the context
of RBM estimation (see, e.g., [10]).

From the discussion in 4.1.2 about the correspondence problem in the stereo domain it
became clear that constraints are essential to reduce the correspondence problem and
in the following we will discuss such constraints for RBM estimation. It will turn out
that grouping in addition to other constraints can be an essential way to deal with the
combinatorial explosion.

e Multiple Modalities: As in the stereo case it is advantageous to use different
modalities for the elimination of wrong matches. The power of this constraint de-
pends on the situation and the modality. E.g., in case that markers of different
colour are associated to an object, colour alone can solve the correspondence prob-
lem (see, e.g., [115]). However, these situations are in some sense artificial and in
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natural scenes a combination of different modalities (weighted according to the cur-
rent situation) will give the best performance. This is why we represent different
modalities in our object representations (see, e.g, [80]). It has been shown that also
the human visual system makes use of different modalities to improve matching
performance (see, e.g., [47]).

e Initial Estimate based on few Correspondences: For RBM estimation we
only need a small number of correspondences (see section 4.5). Therefore, we can
compute an RBM by using only this small set of correspondences and then check
whether there exist other entities that can be brought to correspondence by the
computed RBM. This is the underlying principle in the so called RANSAC (Random
Sample Consensus) algorithm [33].

e Continuity: The continuity constraint is applicable in image sequences. It is very
powerful since it reduces the correspondence problem to a small area. Furthermore,
optic flow can give information where the corresponding entity is supposed to be
(see, e.g., [77]). Finally, correspondences need not to be defined in a two frame
scheme only but can be verified over a number of frames for which a similar RBM
can be assumed. In the last decade, it has turned out that the continuity constraints
is sufficient to solve the structure from motion problem in quite complex scenarios
(see, e.g., [44]).

e Epipolar Constraint: For RBM estimation no epipolar line constraint can be
used since it is the RBM that establishes the epipolar geometry. However, once an
RBM is computed we can use the epipolar constraint to decrease the search space
for finding further correspondences (see, e.g., [101, 131]).

4.6 RBM Estimation and Grouping

In section 4.2 we have introduced the RBM estimation problem. For feature beased
methods (see section 4.3.1) we have the option to formulate correspondences for entities
of different dimension (see 4.4.1) and different complexity (see 4.4.2). As discussed in
section 4.5 the correspondence problem is cruical in the context of RBM estimation.
From this discussion can now identify four desired properties in the context of RBM
estimation algorithms. All these properties are connected to the grouping problem.

e Accuracy: We want to have a high degree of precision in the estimation of pa-
rameters associated to the entities brought to correspondence in equation (2) and
(3) since any deviation from the truth leads to distortions within the constraint
equations and subsequently distorts the computed RBM.
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Reliability: Different kind of visual entities may be extracted with different relia-
bility. For example, an edge and its associated orientations can be extracted with
higher reliability in case of high contrast compared to a low contrast patch and also
3D points can be computed by stereo matching with different degree of reliability.
In the context of RBM estimation, we are interested in preferably using entities
that are reliable. Therefore, we want to code features as well as their reliability.
Note that this presupposes some degree of explicitness in our representations since
a distinction between reliable and unreliable features is not possible for implicit
representations.

Flexibility: We want to make flexible use of correspondences, i.e., we want to mix
them. Therefore, we are looking for RBM estimation methods that can deal with
several kinds of entities at the same time. For example, if we have found a reliable
point correspondence and two reliable line correspondences, we want to use these 3
correspondences to estimate the RBM, i.e., we want to apply and mix them within
one system of equations.

Minimality: As will be discussed in section 4.5, different kind of correspondences
have different value in the sense that they lead to a different number of constraint
equations. Since the space of possible correspondences increases exponentially with
the number of features we are interested in estimating an RBM with as few corre-
spondences as possible. Therefore we are after descriptors of high complexity.

Grouping, in addition to the other constraints, can play an important role to reduce the
RBM estimation problem. Grouping addresses three of the above-mentioned properties:
Accuracy, Reliability and Minimality. However, grouping demands Flexibility.

Accuracy: Within a group semantic properties of entities can be estimated with
higher accuracy. For example, the orientation and position of a line can be interpo-
lated by taking a number of points into account (see, e.g., [51]).

Reliability: Groups of entities have higher reliabilty than single entities since they
are confirmed by their context. For RBM estimation, we can start in a natural
way with correspondences of larger groups, i.e., we can make functional use of
correspondences of different reliability (see, e.g., [77]).

Flexibility: Since groups may consist of different kinds of entities (e.g., points and
line-like features, see figure 15) the utilised RBM estimation algorithm needs to
allow for dealing with different kinds of entities.

Minimality: The number of necessary correspondences to compute one RBM is
much smaller if entities are combined into groups. If, for example, a group is
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constituted by a corner point and the three lines intersecting in this point (see
figure 15b), one correspondence is sufficient.

4.7 Mathematical Formulation of the RBM Estimation Problem

So far we have addressed underlying problems of RBM estimation (such as, e.g., the cor-
respondence problem and the problem of choosing and mixing of visual entities) without
looking at concrete mathematical formulations of RBM and the RBM estimation problem.
This will be addressed now. We will see that the mathematical formalization of RBM
estimation is to a certain extent crucial and that all problems defined so far are deeply
intertwined with the mathematical representation.

This part necessarily has to deal with a mathematical framework of considerable com-
plexity. However, the reader who is not interested in this issue might directly skip to
section 4.8.

4.7.1 Different kind of Optimisation Algorithms

The constraint equations (2) and (3) lead to a set of equations for which an optimal
solution has to be found. The set of equations generally is overdetermined and a best
solution has to be found by numerical optimization methods.

We distinguish between linear and non-linear optimisation methods that both have differ-
ent advantages and disadvantages. For example, when we formulate an RBM as a matrix,
our system of equations is linear and we can use standard optimisation methods to find
the best matrix that minimizes the error

IRBM(p) — p'|| = ||A®PMp — p/|| (5)

where ARBM jg the matrix that represents the RBM.

However, what we get does not need to be an RBM since not all matrices represent an
RBM!7. Therefore, additional (non-linear) constraints need to be defined to make sure
that the matrix represents an RBM (see, e.g., [31]).

Using non-linear methods (see, e.g., [137]) we can make sure that we formalise the RBM
estimation problem in the appropriate space. It has been shown that with these methods
often also a higher accuracy can be achieved (see, e.g, [131]). However, the theory of sys-
tems with non-linear equations is much more complex and statements about uniqueness
of solutions, convergence etc. are much harder to establish.

As will be shown in section 4.7.4, the pose estimation algorithm [116, 115, 117, 38, 114]
combines some of the advantages of linear and non—linear optimization methods.

'7In general when using matrices, an RBM is coded as a 4 x 4 matrix. In this case the optimization
method would search in a 16—dimensional space instead of a 6—dimensional.
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4.7.2 Mathematical Formalisations of Rigid Body Motion

A Rigid Body Motion RBM®*) as well as visual entities can be formalised in different
ways. For example, an RBM of a 3D point x = (21, z9,z3) that is represented in homo-
geneous coordinates as the 4D vector (z1,z2,3,1) can be formalised by a 4 x 4 matrix
[31] and an RBM of a line as dual quaternions [125]. In the following, we will give a
description of different possible formalisations of RBM.

e Matrix Formulation. The most common formulation of RBM is in matrix form
(see, e.g., [31]). A RBM (") can be written as

T11 To1 T31 1

() _ | T2 re2 me2 f2 | _ [ Alr) t
REM 13 T3 T33 13 0 1 (6)
0 0 0 1

The 4 x 4 matrix consists of a rotational part that can be described by the 3 x 3
matrix A(r) (that has orthogonal columns and determinant 1) and a translation
vector t. r codes the axis of rotation as well as the angle of rotation in its length
(||r]| = ). Note that A(r), although spanned by the 3—dimensional, vector r has 9
dimensions.

This formulation has different advantages. First, matrix algebra is very common
and well understood. Each matrix represents a linear map and the well derived
theory of linear systems can be applied. However, one fundamental problem of the
matrix formulation is that it formulates the RBM estimation problem in a space
with too mnay degrees of freedom. An RBM is described by 6 parameters and
not by 12 or 16. So there are at least 6 degrees of freedom too much. This leads
to problems when we want to optimise our system of linear equations (see section
4.7.1): First, the solution might not correspond to an RBM. Second, due to the
large search space such an approach is noise sensitive.

e Quaternions and Dual Quaternions: A more compact representation of rota-
tion of points can be realized by the use of quaternions. A quaternion is a four
dimensional vector

q=(91,92,93,q4) = p1 +ig2 + jg3 + kqa

for which a multiplication q1qz = qg is defined by i? = 52 = k? = ijk = —1 (see,
e.g., [11]). The rotation of a point

p = (0,p1,p2,p3)
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around an axis w = (w1, ws, w3) with angle a can be described by the unit quater-
nion

a = (cos(5), sin(5 )wr, sin(5 Jws, sin(5 Juws)

and the final rotation can be described by
P’ =apq

where q is the conjugate of q. This kind of formulation has been used, e.g., by [100].
In contrast to the matrix formulation of rotation that has 6 degrees of freedom to
much, for the quaternion formulation we have only one additional degree of freedom.

Dual Quaternions are an extension of quaternions (see, e.g., [11]) that can be used
to describe the RBM of lines (see, e.g., [125]). They represent an eight—dimensional
formulation of the 6 dimensional problem. By introducing additional constraints on
the norm of dual quaternions the problem can be reduced to 6—dimensions.

Exponential Representation (Twists): The pose estimation algorithm [116,
115, 117, 38, 114] makes use of a formulation of RBM based on twists. We therefore
describe twists in more detail now. Twists have a straightforward linear approxi-
mation (using a Taylor series expension) and lead to a formalization that searches
in the 6 dimensional space of RBMs. Our description is motivated by (and close
to) the description given by Oliver Granert [38]. A formalization of the very same
approach using geometric algebra is given in [116, 115, 117, 114].

The rotation matrix A(r) can also be defined as the limit of a Taylor series. A
rotation of a point p around an axis w = (wi,wy,w3) with an angle @ can be
described by

p' = e%p = A(r)p.

e®® is the matrix that is constituted by the limit of the Taylor series

¢ =3 = (e @

n=0
with
0 —w3 w2
w = w3 0 —w1 s with ||WH =1.
—w2 w1 0
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The exponential representation allows for a straightforward linearisation by using
only the first two terms of (7), i.e.,
Do

e I3y + Wa. (8)

On the other hand, having % and « we can compute A(r) by the formula of Ro-
driguez (see, e.g., [89]):

A(r) =1+ sin(a)w + (1 — cos(a))w. (9)

The exponential representations can be extended to an RBM. However, for this we
need to apply another understanding how the RBM is constituted. In figure 13b
an RBM is understood as a rotation of angle a around a line [ in 3D space with
direction w and moment w X q (see section 4.7.3). In addition to the rotation a
translation with magnitude A along the line 1 is performed. According to Chasles’
theorem, each RBM can be expressed in this way (see, e.g., [89]).

Then an RBM can be represented as

p' = ¢f*p = RBMp

with
- e 1 -
e = Y —(Ea)" (10)
n=0
with € being the 4 x 4 matrix
0 —ws wy ws3qa— waqs+ Awy
5— W —Wq+ AW _ w3 0 —w; wW1g3 — W3q1 + Aws _
L0 0 —wy Wy 0  weqr — wige + dwo
0 0 0 0
0 —w3  wo V1
w3 0 —w; v
—w2 w1 0 v3
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with

V1 w3q2 — w2q3 + Awy
%) = w1q3 — w3q + Aws
V3 waq1 — wig2 + Aws

In analogy to (8) a straight forward linearisation is given by
et = (Ix3 + &) (11)

Having w, a, and v, we can apply the formula of Rodriguez for the RBM to get the
matrix representation:

t=(I—A(r))wv+ aww’v

and A(r) is computed as in equation (9).

At this point, we have expressed an approximation of an RBM as a 4 x 4 matrix.
Up to now nothing seems to be won compared to the matrix formulation in (6),
since we still deal with a 12 dimensional description. However this representation
expresses the motion parameters directly and, as will be shown in 4.7.4, can be used
to derive a formulation that is very compact and efficient.

4.7.3 Parametrisation of Visual Entities

When we want to estimate an RBM we need not only to choose a representation for the
RBM but we also need to formalize entities on which the RBM operates. There exist
different representations for points and lines that are relevant for the RBM estimation
problem.

Explicit Representation: A point can be described explicitely as a vector (p1, p2,p3)
and a line L can be described explicitely by

L(A\)=p+ar

with p being a point on the line and r its direction. This representation is well established.
However, in the context of the RBM estimation problem in our system we make use of
an implicit representation. This implicit representation allows for a direct representation
of the distance of correponding entities that will be cruical for RBM estimation.
Implicit Representation: In the formulation of the RBM estimation problem [116,
115, 117, 38, 114] that we use in our system [77], an implicit representation of entities as
null spaces of equations is applied.
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e Implicit Representation of 3D Points: We can represent a 3D point p =
(p1,p2,p3) by the null space of a set of equations

p1— 21 0
Fp(x) = P2 — T2 = 0 (12)
p3 — 3 0

If (z1,z9,z3) fullfills this equation it is identical with p. We can write the very
same expression in matrix notations by!8:

Z1

100 —p . 0
FP(x)=| 0 1 0 —p, ; =( o0 (13)
0 0 1 —p; 13 0

Note that the value ||FP(x)|| represents the Euclidian distance between x and p.

This will be important to derive interpretable constraint equations (see section
4.7.4).

e Implicit Representation of 3D Lines: A 3D line L can be expressed as two
3D vectors r,m. The vector r describes the direction and m describes the moment
which is the cross product of a point p on the line and the direction

m=p Xr.

r and m are called Pliicker coordinates. If we assume that r has length 1 this
representation is unique up to a sign'®.

The null space of the equation
xXr-m=20

is the set of all points on the line.

In matrix form this reads

Z1

z2

3
1

18Note that it must be ensured that the fourth component is equal to one (i.e., ) to let (13)

be identical to (12).
19The uniqueness can be easily proven: Let p; and p2 be two points on the line then ps = p1 + Ar.
Therefore, po Xr=(p1 +Ar) Xr=pi1 Xr+ Ar Xxr=p;1 Xr+0=p; xr
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T

0 Ty < —Ty —Mg .
Flx)=| -r, 0 1 -—-my - =0 (14)
ry —Tz 0 —m, 13

Note that the value ||FX(x)|| can be interpreted as the Euclidian distance between
the point (z1,z2,z3) and the closest point on the line to (z1, z2,z3) [60, 114].

e Implicit Representation of 3D Planes: A 3D plane P can be parametrised by
the unit normal vector n and the Hesse distance dy using the equation:

n-p=dgy.
In matrix formulation this reads:
I 0
FP(x) = ( ny mo mn3 —dg ) 2 =1 o (15)
I3 0
1

Note that F¥(x) describes the Euclidian distance between the closest point on P
to x.

In section 4.7.4, we will see that this implicit representation of entities in combination
with the twist representation of an RBM (see section 4.7.2) and the formulation of the
pose estimation problem in the Euclidian space (see section 4.4.1) allows for defining
suitable and geometrically interpretable constraint equations.

4.7.4 Constraint Equations

After having formalized an RBM as a twist transformation in section 4.7.2 and geomet-
ric entities in section 4.7.3 we can now define constraint equations for different kind of
correspondences.

3D-point/3D-point constraint: One can express the constraint equation (4) for the
case that our corresponding entities are 3D points by using the linear approximation (11)
of the twist £ and the implicit representation of points (12) by

FP'((Is03 + €0)p) = 0.
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b

3D Point/3D Point Constraint 3D Point/3D Line Constraint 3D Point/3D Plane Constraint

Figure 16: Geometric Interpretation of constraint equations. a) The 3D-3D point con-
straint realized the Euclidian distance between the two points. b) The 3D point/3D line
constraint realizes the shortest Euclidian distance between the 3D Point and the 3D line.
c¢) The 3D Point/3D Line constraint realizes the shortest Euclidian distance between the
3D Point and the 3D Plane.

In matrix form this reads

1 —aw aw av 0

O 1 0 _p,2 aws awp Qv P2 _
00 1 —p —awy oW 1 avs p3 0
3 0 0 0 1 1 0

Any deviation from 0 describes a vector whose norm is the Euclidian distance from p, i.e,
it describes a geometrically interpretable measure (see figure 16a).
By simply re-ordering the system we get:

vy
[04)]
100 0 p3 -po Y ' —m
av, ,
010 —p3 0 pm =| po—p2
001 po —p1 O e p's —p3
Ol’LUy 3
Qw,

Note that our optimisation method now directly acts on the parameters of the RBM.
Since ||w|| = 1, « represents the angle of rotation.

3D point/2D point constraint: We now want to formulate constraints between 2D
image entities and 3D object entities. Given a 3D point p and a 2D point p we first
generate the 3D line L(r, m) that is generated by the optical center and the image point
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(see figure 16a).2° Now the constraint reads:
FL(p) ((I3><3 + ga)p) = (.

Using the implicit representation of 3D lines in (14) we get:

0 , v —m, 1 —Qws3 oWy QU P1 0
! 2 ! Qws 1 —Qqwi QU P2 0
—T3 0 T —m9 —
—awy oW 1 avs p3 0
om0 —ma 0 0 0 1 1 0

Once again we can make use of the intuitive geometrically interpretable measure coming
along with the implicit representation of our geometric entities introduced in section 4.7.3
(see also figure 16b).

Simple reordering gives:

Uy
Oé’Uy
0 —r3 19 —p3r3—pors P1T2 P1T3 ov
Z
Ty 0 -—r paT1 —Pp1T1 — P3T3 P2T3 ow =
X
—-Try Tz 0 p3T1 P3T2 —paory — PIT1
awy
Qw,

DP3T2 — P23 + M

P1T3 — P31+ M2

P2r1 — Pp1T2 + M3
Given a 3D point 2D point correspondence we have now a different set of constraints
that work on the very same RBM parameters. Therefore we can simply combine these
correspondences by adding the set of equations derived from the 3D point/3D point cor-
respondence to the set of equations derived from the 3D point/2D point correspondences.

3D Point/2D Line constraint: Given a 3D point and a corresponding 2D image line
[ we can construct the 3D Plane P(/) that is spanned by the image line and the optical
center of the camera (see figure 16c). We can then define the constraint

FPO (I35 + a)p) = 0.

Using the implicit representation of 3D planes we get the equations

1 —Qws Qws Qv D1
aws 1 —qwi Qv p2 |
(n m2 ny —du ) —aqwy  ow 1 o3 p3 | 0.
0 0 0 1 1

2ONote that the line L depends on the camera parameters.
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Reordering leads to the constraint equations:

vy,

(n1 n2 n3g —ngps —nops —mips —N3p1 —NoP1 — NP2 ) =

( —dg —nip1 — naps —n3ps ).

Figure 16c shows the geometric interpretation of the 3D point/2D line constraint.

4.8 Properties of Rosenhahn et al’s RBM estimation algorithm

In this section, we have discussed different aspects of the RBM estimation problem. We
have especially addressed the problem of choosing good entities for RBM estimation and
we have seen that this is cruical in terms of the correspondence problem. It turned out
that these issues are deeply intertwined with the mathematical representation of the RBM
and the estimation problem.

The representation of the RBM estimation problem introduced by [116, 115, 117, 38, 114]
that has been described in section 4.7.3 and 4.7.4 has several advantages:

Searching in the space of RBMs: It leads to a set of equations that (although
approximated) directly acts on the RBM parameters. The final RBM is computed
iteratively. Twists have been proven to be an efficient representation of RBM en-
abling such a formalization. Twists have been also used by [15], although for an
orthographic formulation of the RBM estimation problem.

Geometric Interpretation: The constraint equations give a geometrically inter-
pretable intuitive measure in terms of Euclidian distance. This has become possible
by making use of an implicit representation of geometric entities introduced in sec-
tion 4.7.3. Implicit representations of geometric entities had also been used by [60]
but had not been applied to the pose estimation problem before.

Mixing of different Entities: Correspondences of different kinds of entities can
be mixed. This concerns differences in dimension as well as in complexity. This
issue has also been adressed by, e.g., [141].

In the discussion, we have also seen that grouping can play an important role to overcome
problems of RBM estimation in terms of four properties: Accuracy, reliability, flexibility
and minimality. In the next section, we therefore address grouping in more detail.
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5 The Utilisation of Statistical Regularities in Artificial Vi-
sual Systems

So called ‘Gestalt laws’ were defined by Gestalt psychologists such as Wertheimer [138],
Koffka [69] and Kdhler [70]. The Gestalt approach emphasizes the idea that we perceive
the world as a whole rather than a set of isolated entities. The Gestalt laws represent
holistic rules that are applied by the human visual system to group local visual entities into
more complex groups. However, the exact number of rules remains unclear. Estimates
range between 1 and 114 (see, e.g., [102]).

The most prominent Gestalt laws are the following;:

Law of Proximity: Visual entities near each other tend to be perceived as a unit
(see figure 2b).

Law of Similarity: Visual entities that are similar (in e.g., shape, colour, texture)
tend to be perceived as a unit (see figure 2a).

Law of Good Continuation: Visual entities that are organized in a straight or
curved line tend to be perceived as a unit (see figure 2c).

Law of Closure: Gaps in the organisation of visual entities are filled to perceive
rather a unit than a set of isolated entities (see figure 2e).

Law of Common Fate: Visual entities that move in a similar fashion tend to be
perceived as a unit (see figure 2f).

Law of Pragnanz: Of several possible organisations of visual entities the best,
simplest and most stable one is chosen (see figure 2g).

In the context of the ambiguity problem of visual information (see section 2), most Gestalt
laws represent statistical regularities in visual data that can be used to disambiguate visual
information. For example, there is a broad spectrum of work that utilizes the Gestalt Law
‘Good continuation’ to improve edge detection (see, e.g., [140, 24, 43]). For a detailed
overview of the application of Gestalt laws in artificial visual systems we refer to, e.g.,
120, 14].

All the approaches that utilize Gestalt laws rely on the fact that visual data is not a
mix of accidental structures but that there occur certain patterns of organisation that
are generated by a common cause. Given a certain organisation of visual features, we
are interested in the prediction of a such a cause behind the organisation. In terms of
probability theory, we are interested in the expression

P(Causality|Organisation).
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For example, the occurrence of a specific organisation of points with a common motion in
a scene makes it very likely that this common motion is caused by the same object and
therefore it is liekly that these points belong to the same object. As another example,
the specific occurrence of a set of collinear line segments is likely not to be an accidental
event but is likely to have a common cause, e.g., in belonging to a collinear 3D structure
(possibly belonging to a 3D object boundary).

However, it is the organization that is detectable in visual scenes and not the cause. But
we can refer from the organisation to the underlying cause by using Bayes rule:

P isati lity) P li
P(Causality|Organisation) = (Orgamsa;l’(()g (;Zu?:a{:i)(f)) ] (Causality) (16)
rgan i1l

The different terms in (16) have different meaning:

P(Causality): Without any causality in visual data P(Causality|Organisation)
would always be low and no kind of perceptual organsisation could occur. For
example, in white noise (see figure 8a) this factor is zero. However, as discussed
in section 3.1, visual data is dominated by statistical and deterministic regularities
and therefore P(Causality) is expected to be high.

P(Organisation): In case that a certain pattern of organisation is likely its value
for predictions does decrease since P(Organisation) occurs in the denominator of
equation (16). In this sense, the occurrence of line segments that are collinear in
3D are ‘more valuable’ than collinear line segments in 2D.

P(Organisation|Causality): This term represents a measure for the effect of a
cause to a specific organisation. If this term is low the cause, although present,
might not lead to the expected pattern of organisation. Therefore, we want the
likelihood of the occurrence of a certain organisation given the cause to be high.

In the next subsection, we will discuss two issues concerning perceptual organisation.

Entities in grouping: The question which entities to use for perceptual organiza-
tion arises as for the formalization of RBM (see section 4.4). As for RBM the choice
of entities used is crucial and is discussed in section 5.1. However, in the grouping
process new, more complex entities can emerge which gives the problem of visual
entities a more dynamic character. Furthermore, we will see that although grouping
in the 2D domain has been addressed by many researches, there is little work about
grouping in 3D and a void of work that addresses grouping in the spatial-temporal
domain.
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Grounding and Grouping: The questions of grounding of Gestalt laws is more
urgent for statistical regularities than for deterministic regularities for which an
analytic description is feasible. Furthermore, in the context of the bias—variance
problem (see section 3.3) the question arises whether Gestalt laws are learned or
genetically determined. It has been shown in section 3.3.2, that the establishment
of some abilities based on Gestalt laws occurs rather late in the development of
the human visual system. This makes the involvement of learning likely. In this
paper, we suggest a grounding of percetual organisation based on the aquisition of
statistical properties of the visual input.

In this section, we will restrict ourselves to issues that are relevant to the problem of
combining RBM and Grouping.

5.1 Basic Entities in perceptual Organisation

To classify different approaches to perceptual organisation, Sarkar and Boyer [120, 14]
have suggested a table with two axes. One axis represents the dimension of the input
space which can be 2D entities (e.g., a pixel image), 3D entities (e.g., a range image
or visual entities extracted by stereo), 2D—temporal entities (e.g., an image stream), or
3D-temporal entities. The other axis represents the entities that evolve in the grouping
process. Sarkar and Boyer distinguish between a signal, primitive, structural and assembly
level that correspond to different levels of abstraction. In table 5.1, we show a simplified
version of the table of Sarkar and Boyer.

An essential property of perceptual organisation is the change in complezity of visual
entities in the process of perceptual organisation (represented with the vertical axis in
table 5.1). In this respect, the utilisation of statistical regularities differs fundamentally
from the utilisation of RBM as discussed in section 4: The change of entities in the
process of rigid motion only affects parameters such as position and orientation but the
entity itself does not change its structure. However, it is a central property of perceptual
organisation that a hierarchy of complexity becomes established. A specification of levels
in this hierarchy is difficult to achieve and the whole process is rather dynamic: New
constellations of visual entities become organized to more complex entities in a process
of self-emergence.

This dynamic nature of the grouping process in which new, more complex entities evolve
(indicated in the top row of each structural level) leads necessarily to some fuzziness in
the vertical axis of table 5.1. The different levels in the hierarchy of entities might not be
precisely definable since they are the results of a complex, dynamic process. It may even
lead to a process which starts with 2D features that become grouped to 3D or temporal
features, i.e., the hierarchy of complexity might not only be vertical (in terms of table
5.1) but might also occur along the horizontal axis.
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Assembly || arrangement of polygons surface clusters
Level [108, 119] [34]
Structural || closed regions, Polygons surface combinations
Level [3] [34]
Primitive regions, edge chains parametrised surfaces, 3D curves flow patterns
Level [12, 3] [34, 13, 19] [143]
Signal point clusters, features surface patches, 3D line segments optic flow 6D motion descriptors
Level [144, 43] range segmentation, stereo grouping | optic flow work [61]
2D 3D 2D + time 3D + time
points, grey level image range images, stereo image sequences | stereo image sequences

Table 1: Classification of Perceptual Organisation according to Sarkar and Boyer [120,
14]. The horizontal axis of the table represents the input domain while the vertical axis
represents different levels of complexity.

What becomes most apparent in table 5.1 is the empty space at the top right corner,
representing the lack of work addressing the combination of grouping in the temporal-
spatial domain as addressed here in this review. In our view, this lack has two main

reasons:

Conceptional and technical complexity: To deal with spatial-temporal pat-
terns in visual scenes a machinery of considerable complexity is needed: 2D features
need to be extracted from which 3D entities can be computed (preferably by making
use of different visual modalities), motion has to be computed and the motion has to
be used to stabilize the ambiguous input data. This requires a system in which the
different modules realizing the different sub-aspects are organized in an integrated
software structure (see, e.g., [87]). Also perceptual organization in itself requires
a machinery of similar complexity. Therefore, it is a conceptional and technical
pretentious task to bring these two streams together.

Difference of the formalisation framework: As discussed in section 3.4, the
machinery to realize perceptual organization and the machinery that utilizes RBM
have to be different. While for RBM an analytical framework can be applied in
perceptual grouping a statistical framework is necessarily involved. The combina-
tion of perceptual grouping and RBM therefore requires a detailed knowledge of
techniques of rather different character.

5.2 Approaches to ground Gestalt Laws

As discussed in 4, there exists a solid analytic framework of reasonable complexity that
describes rigid body motion. No such framework has yet been defined for statistical reg-
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ularities and it is unlikely that this is possible at all since statistical interdependencies
are of much higher complexity. The classical Gestalt laws have been defined by heuristic
rules and their exact formalisation allows for many, not necessarily equivalent, alterna-
tives. This leads to the problem of grounding the Gestalt laws to overcome such heuristic
assumptions.

Some attempts have been made for such a grounding. They will be briefly discussed
now. Among them, the idea to ground Gestalt laws on the statistics of visual scenes
(first formulated by Brunswick [17]) has become recently supported by different sources
of evidence (see, section 5.3).

Iterative application of rules: For example, in [92] it is suggested that an ap-
plication of low and high level rules may lead to significant percepts. A problem
of such approaches is that the specific formulation of rules involves a considerable
amount of arbitrariness. A grounding of such rules in a more general concept is
therefore desired.

Coding theory Leeuwenberg [83] argued that perceptual organization is guided
by a ‘minimal coding principle’: The percept is preferred for which a minimal
amount of bits for memorizing is needed. However, the amount of information
needed to represent a percept depends on, e.g., the choice of features and the process
of development of more complex feature assemblies. Furthermore, measuring the
amount of information in a complex visual representation might not be as easy
as for an array of bits. The problem of heuristics in the definition of rules might
then be displaced to the problem of heuristics in the measurement of quantities of
information.

e Group Theory: Palmer [97] states that a good percept shows stability over a
group of (e.g., Euclidean) transformations. For example, relative length of lines
or number of lines are stable over a large variety of viewpoints and are therefore
good concepts for visual representation. Such approaches take the importance of
the spatial-temporal domain in visual perception into account. However, grouping
occurs also in still images. Furthermore, it is difficult to incorporate learning in
such an approach.

e Global Coherence through Energy Minimization: The relation of global co-
herence through local interaction is addressed in optimization methods that min-
imize a global energy term (see, e.g., [42, 1]). The global energy is computed by
associating energies to local interactions between visual entities. A very convenient
property is that a global guidance of the organisation is ensured. In a similar spirit,
in [63] local rules are derived from a global principle. However, as for the approaches
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that are based on coding theory a significant amount of arbitrariness is involved in
the terms that compute the global energy from local interactions.

In the next subsection, we discuss another approach to ground Gestalt laws that takes
the aspect of learning into account.

5.3 Relating Gestalt principles to the statistics of natural images

In section 3.3, we discussed evidence for a large influence of learning in the development of
abilities based on statistical regularities. This is not reflected in the attempts to ground
Gestalt laws discussed in section 5.2. However, decades ago, Brunswick and Kamiya
[17] first had stated that Gestalt principles should be related to the statistics of the
natural world. This offers the perspective to establish a bootstrapping process in which
perceptual rules are learned by statistical measurements in visual scenes. This could lead
to rule-based systems that are grounded in specific statistical properties of the world.
Unfortunately, the limited computational power at Brunswick’s time made it difficult to
quantitatively support his ideas quantitatively. Only recently, the strong prevalence of
Gestalt laws such as collinearity and parallelism in natural images have been investigated
by [72] and [27] (see figure 9). There results have been confirmed and extended by [127, 35].
These investigations suggest that Gestalt laws are reflected in the statistics of low level
filter operation well established in human and artificial vision. In addition, it has been
shown that these interdependencies become much stronger (in order of magnitudes) when
we look at multi-modal statistics (taking also color, optic flow and contrast transition into
account). The diagram in figure 9c shows that the probability for two segments being
collinear rises if the segments show also similarities in other modalities (for details see [80]).
Therefore, there is conceptional evidence for the possibility to learn such interdependencies
from statistical measurements in visual data. Elder and Goldberg [28] demonstrated that
not only collinearity and parallelism can be related to statistical properties of visual scenes
but that also other Gestalt laws such as the ‘Law of Proximity’ and the ‘Law of Similarity’
are reflected in such statistics. They could also demonstrate a high correlation between
the strength in the statistical occurrence of Proximity in images as well as the role of
Proximity in human perception.

Evidence from computational neuroscience has been given by, e.g., [106] who have imple-
mented a neural network model of primary visual cortex that leads to the emergence of
collinearity when exposed to visual real world data. This emergence was accelerated by
the additional use of motion that supports a segmentation of the object. Moreover, in
[104] it is indicated that even more complex feature constellations (i.e., vertices) become
significant in the statistics of natural images when segmentation by motion is applied
as a pre—processing step. Here the idea is to use common fate as an initial cue to or-
ganize visual perception that initiates a bootstrapping algorithm in which other, more
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complex Gestalt laws develop. This approach can be motivated by the specific order in
the development of Gestalt laws as discussed in section 3.

6 Combination of Statistical and Deterministic Regularities

In this review, we have discussed two main regularities in visual data. There exists a
solid analytic framework for RBM as discussed in section 4 and the utilisation of RBM
in artificial visual systems has lead to impressive work in scene analysis (see, e.g., [44,
68, 66]). However, many problems remain open. The estimation of motion in complex
scenes is not yet fully solved. This is not so much grounded in a lack of analytical
understanding of motion but more in the problem of finding corresponding features across
frames. Therefore, all the aspects of ambiguity in visual information (see section 2) enter
the motion estimation problem. This holds even more in case of multiple motions where
we have a segmentation problem on top of the correspondence problem.

In contrast to deterministic regularities, there is lack of grounding of statistical interde-
pendencies for which an analytic framework can not be defined (see section 5.2). This is
probably also the reason why the full potential of the statistical regularities is by far not
used yet. The combined exploitation of statistical and deterministic regularities has only
been addressed by very few scientists (see, e.g., [34, 19]). However, we hope that this
review will help to address such a combined exploitation.

Sarkar and Boyer [14] have recently described five open problems in formalization of
perceptual organisation from which we have addressed three in this paper.

Learning in perceptual organisation: In this review, we have argued that learn-
ing is a necessary component in the formalization of perceptual organisation. In the
human visual system abilities based on perceptual organisation develop much later
than abilities based on deterministic regularities leaving time for incorporating vi-
sual experience into the system. We think that the incorporating of statistical
measurements may also lead to a grounding of Gestalt laws (see section 5.3).

Perceptual Organisation in 3D: Sarkar and Boyer discuss the understanding or
perceptual organisation in range images as one important field of future research.
Another example is the combination of grouping and stereo. In perceptual organi-
sation new complex entities emerge from combination of less complex entities. This
dynamic process of feature emergence can be used also to improve stereo matching:
To give an example, assume a local line segment in the left image is part of a group
(defined initially by collinearity of local line segments) in the left image (see figure
12b). Furthermore, assume that this line segment has a correspondence in the right
image which in a similar way is part of another group, then all local entities of the
group in the left image must have a correspondence in one of the local entities of
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a)

b)

Figure 17: Motion Estimation and Grouping: a) For each entity in the top row there are
6 correspondences possibly leading to 6 = 46656 possible patterns of correspondences.
b) Grouping leads to a reduction to 2 correspondences only.

the group in the right image. By using this stereo constraint the existence of in-
dividual groups (first characterised by collinearity only) gets reconfirmed now also
by the stereo correspondences of the local line segments the group consists of. As
a consequence, groups of collinear local line segments emerge in this simple recur-
rent prediction process. This type of emergence is embedded, supported and gets
support in the stereo correspondence process.

Perceptual Organisation in Motion Sequences: The joint power of statistical
and deterministic regularities can also be applied in the temporal domain. As
discussed in section 4.5, there is a serious correspondence problem in the motion
estimation task that becomes even more significant in case of multiple motions. The
perceptual organisation of local entities to more complex entities can support RBM
estimation in respect of 3 aspects:

— The number of possible correspondences decreases with the complexity of en-
tities (see figure 17).

— For perceptually organised entities more powerful constraint equations can
be defined as combination of the constraint equations corresponding to the
single entities (see section 4). Actually, for one sufficient complex group one
correspondence might be sufficient to estimate an RBM.
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— The grouping allows for a more precise estimate of the parameters of the local
entities and therefore allows for more precise RBM estimates.

7 Conclusion

In this review, we have characterised two different kind of regularities in visual data.
Their role in human vision and their application in artificial visual systems has been
discussed. We have shown in section 2 and 3, that the use of regularities is necessary
to disambiguate visual information. Both regularities, statistical and deterministc ones,
have different properties and are realized on a different time scale in human vision (see
section 3). They have been exploited also in artificial visual systems, however rarely in
a combined way. We have discussed the potential of such an combined usage as well as
the underlying problems. We hope that this review will help to overcome some of these
problems.

Remark: This review addresses a broad field. Actually, it addresses a couple of broad
fields. Although we have tried to get a good literature overview of all these fields, we
found out that this is probably an impossible task. Therefore, it is likely that some
researchers may feel that their work should be mentioned within the scope of this paper.
Some may feel that their has not been described correctly or they may have some remarks
to the paper as such and the mentioning of their work in particular. We would like to
ask all readers who want to comment on the issues addressed here to give us feedback.
Our feeling and hope is that the combination of perceptual organisation and motion will
become a ‘hot topic’ for future research and we are happy to address all remarks in future
publications.
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