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�

�
Department of Psychology

University of Stirling
Scotland, UK

norbert@cn.stir.ac.uk

Florentin Wörgötter
�

�
Department of Psychology

University of Stirling
Scotland, UK

worgott@cn.stir.ac.uk

Abstract

A new kind of multi-modal image representation that results in computer generated images is introduced. This
image representation has been motivated by human visual perception. We call the style of images ‘Symbolic
Pointillism’ since it resembles certain impressionist images drawn by the sub–group of Pointillists. However,
instead of points, symbolic icons represent condensed and meaningful local information.
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1 Introduction

We introduce a new kind of multi-modal image repre-
sentation that results in computer generated images with
considerable aesthetic value (see figure 1, 4 and 5). This
image representation is used in the artificial visual sys-
tem described in (Krüger et al., 2002a,b; Krüger and
Wörgötter, 2002; Krüger et al., 2003a; ModIP, 1998—)
and is a central pillar of the ongoing European project
ECOVISION (ECOVISION:, 2002–2004). This image
representation has been motivated by human visual per-
ception (Krüger et al., 2003b). We call the style of images
‘Symbolic Pointillism’ as will be motivated below.

Pointillism is a style of art that was part of the impres-
sionist movement. This movement aimed to paint images
not in a realistic way but in a way ‘humans perceive the
world’. The sub–group of impressionists called Pointil-
lists (most notably Seurat and Pissarro) decided to base
their paintings on small coloured dots (or even small ori-
ented patches). The observer then constructs the image
by mixing these dots. Perceived reality is, thus, a concept
constructed by the observer.

It is by now known that the human visual system op-
erated on a similar level. First, condensed and meaning-
ful image information (like orientation, colour, distance,
form, shape) is generated by localised processors (neu-
rons) (Hubel and Wiesel, 1979; Gazzaniga, 1995). These
neurons are highly connected and communicate with each
other (Gazzaniga, 1995; Watt and Phillips, 2000). The
need to reduce the cost of this communication process
drives the condensation to meaningful information in the
first place. As the consequence, it is almost as those nerve
cells would in the end communicate symbols. It seems
to be this specific neuronal communication process by
which our perceived ‘reality’ is generated.

Having the aim of building technical systems with sim-
ilar power and similar structure than the human visual sys-
tem, we invented an image representation that consists of
such abstract, symbolic icons. We include, for example,

information about colour, orientation and contrast transi-
tion (see figure 2). A communication process is estab-
lished by grouping related information (as represented by
linking lines). In this way our electronically generated
paintings visualise internal principles of image process-
ing in the brain.

In section 2, we give a short description of the compu-
tation of our image representation as well as its relation to
human perception. We then discuss this approach in the
context of the modelling of ‘creativity’ in section 3. As a
central thesis, we suggest that the understanding and mod-
elling of creativity can be supported by the understanding
and modelling of human perception.

2 Computation of ‘Symbolic
Pointillist’ Images

In section 2.1, we describe the processing of the basic en-
tities of our images which are symbol–like icons. These
icons carry condensed information about multiple aspects
of local image structures and organise themselves into
groups. In section 2.2, we discuss the specific role of the
icons in visual processing.

2.1 Symbolic Icons and Early Visual Fea-
ture Extraction

In our artificial system we process an image representa-
tion that codes different feature domains.
Position and Orientation: In our icons (see figure 2a)
orientation is represented as a local line with appropri-
ate angle. Edge detection and orientation estimation is
based on the isotropic linear filter (called monogenic sig-
nal (Felsberg and Sommer, 2001)). The monogenic signal
performs a split of identity: it orthogonally divides a sig-
nal into energetic information (indicating the likelihood
of the presence of a structure), its geometric information



Figure 1: Symbolic Pointillism: A computer generated image and an enlarged frame.
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Figure 2: a,b: Icons as basic elements of ‘Symbolic Pointillism’. c: Grouping is represented by linked lines.

(orientation) and its contrast transition. We look for en-
ergy maxima in the position–orientation space. We use
hexagonally arranged patches with a diameter of approx-
imately 15 pixels. To avoid the occurrence of very close
line–segments produced by the same image structure we
demand that line segments have a certain minimal dis-
tance.

Contrast Transition: The contrast transition is displayed
by a small arrow (see figure 2a). Using contrast transi-
tion, we can for example distinguish between lines and
step edges (see figure 2b). Contrast transition is coded
in the phase at a local maximum in the �����
	��
��� feature
space (Kovesi, 1999). It refers to the kind of grey level
structure existent at the local image patch (as dark/bright
edge, or bright line on dark background). The continuum
of contrast transition can be expressed by the continuum
of phases. Therefore, it allows for a coding different kinds
of edge–like structures by one parameter.

Colour: Colour is processed by integrating over image
patches in coincidence with their edge structure. In case
of a line we have in addition a colour value in a middle
strip that carries colour information (see figure 2b). To
code the modality color at intrinsically one–dimensional
image structures we perform a Gaussian integration in the
RGB color space over the left and right part (’left’ and

’right’ defined by the associated line segment) of the im-
age patch (see figure 2). Since the distribution of phases
indicates the dominance of edges (Krüger and Wörgötter,
2002), this kind of integration corresponds to the most
likely model of intrinsically one–dimensional structures.
Energy and Orientation Variance: The ‘homogeneous-
ness’, ‘edge–ness’ or ‘junction–ness’ of a local signal
patch can be computed from the variance of the local ori-
entation and the energy in this area. The variance is dis-
played as the diameter of a square (see figure 2a) while
the local energy is displayed as the grey value of the up-
per part of this square.

There is a huge amount of evidence that the above–
mentioned modalities are processed in early stages of vi-
sual processing in so called ‘hyper–columns’ (see, e.g.,
(Hubel and Wiesel, 1979; Jones and Palmer, 1987; Gaz-
zaniga, 1995)). However, it is not only a local image pro-
cessing that is going on in early visual processing. As
mentioned above, there occurs an extensive communica-
tion within visual brain areas as well as across these areas.
The communication process leads to a binding to groups
(v.d.Malsburg, 1981; Watt and Phillips, 2000) of local
entities. In (Krüger and Wörgötter, 2002), we have de-
scribed a process in which such a binding develop based
on statistical measurements in natural scenes. These sta-
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Figure 3: Different stages of image processing: First basic features in different domains (orientation, color, contrast
transition) are being processed which are then grouped. Feature processing in the different domains as well as grouping is
closely intertwined.

tistical measurements start a self–emergence process in
which groups organise themselves. In our images, icons
of the very same group are represented by links of very
same colour (see figure 2c). The complete image pro-
cessing is schematically displayed in figure 3.

2.2 Symbols as Carrier of condensed Infor-
mation

All the low level features described in section 2.1 face
the problem of an extremely high degree of vagueness
and uncertainty (Aloimonos and Shulman, 1989). How-
ever, the human visual systems acquires visual represen-
tations which allow actions with high precision and cer-
tainty within the 3D world under rather uncontrolled con-
ditions. The human visual system can achieve the needed
certainty and completeness by integrating visual informa-
tion (see, e.g., (Hoffman, 1980)) that occurs for example
in the displayed grouping processes.

However, integration of information makes it necessary
that local feature extraction is subject to modification by
contextual influences and this communication has neces-
sarily to be paid for with a certain cost. This cost can
be reduced by limiting the amount of information trans-
ferred from one place to the other, i.e. by reducing the
bandwidth. Therefore our symbolic icons represent a con-
densed description of a local image patch, which however
contains the relevant information: Although a usual im-
age patch has a dimension of, e.g., ����������������� pixel
values, the output of our symbolic icons has less than 10
values.

3 Creativity and Human Perception

As described in section 2, our computer program pro-
duces images that display a certain amount of aesthetic
value. People tend to find the images appealing, espe-
cially when they are displayed in a large format. Three
images have been displayed (with a size of 1m � each) in
‘The Lighthouse’, a well known museum for modern art
and design in Glasgow. A larger exhibition is on the way.
Some images have been sold to a public institution. So
they carry also financial value. But possesses our com-
puter program creativity?

There is at least one aspect that may lead to a nega-
tive judgement plausible: Our computer program ‘paints’
natural objects and does not create ‘paintings’ using its
‘imagination’. However, it has some understanding of vi-
sual structures in general and this understanding is dis-
played in the images by the design of the icons and their
grouping. Therefore, the generated ‘painting’ is not a
reproduction of nature but a significant restructuring of
the perceived image. In this way, our computer program
shows its own style.

We see the ability to be confronted, to process and to
a certain amount understand visual input as an important
property which is linked to creativity: It was this con-
frontation with the natural world that has been dominated
the work of most artists and even in most abstract paint-
ings general rules about aesthetic are applied that (with
high likelihood) have their origin in certain statistical or
geometric regularities in natural scenes (Mumford and
Gidas, 2001; Krüger, 1998).

AARON, developed by Harold Cohen, was the first



Figure 4: Symbolic Pointillism: Ape.

example of an ‘artificial artist’ that is able to paint im-
ages with considerable aesthetic value. Harold Cohen
nevver claimed AARON to be creative. In contrast to
our system, AARON was not equipped with the ability
to perceive the world. It may well be that future artificial
artists make experience in natural environments and de-
velop their work in a process of similar confrontation with
nature than many artists do. It may even be that the rules
on which exploratory–creativity and transformational–
creativity (Boden, 1990) is based upon, need to be learned
from rules valid in natural environments. And it is the use,
modification and deliberate violation of such well estab-
lished rules that makes successful artists. In this way, we
see our image representation as well as the produced im-
ages not only as an accidental ‘by–product’ of computer
vision research but as a step towards artificial artists that
are creative, and in this sense, can go beyond AARON.
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