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Abstract

In this paper we address the problem of predetermined structural knowledge human
and artificial visual systems have to apply to be able to start a bootstrapping process
that enables them to interact with the world efficiently. We focus on two different kind
of regularities, namely deterministic and statistical, which visual system need to apply
to overcome the ambiguity of visual low level processes.

1 Introduction

An important problem the visual system (as well as each system with the ability to learn) has
to deal with is the bias variance dilemma [12]: If the starting configuration of the system has
many degrees of freedom, it can learn from and specialise to a wide variety of domains, but
it will in general have to pay for this advantage by having many internal degrees of freedom
—the “variance” problem. On the other hand, if the initial system has few degrees of freedom
it may be able to learn efficiently but there is great danger that the structural domain spanned
by those degrees of freedom does not cover the given application domain at all —the “bias”
problem. As a conclusion [12] argue “bias needs to be designed to each particular problem”.

Within a biological system bias can be established by genetical coding. The question of
predetermined components is also most essential for the design of any visual artificial system
that is able to learn since this predetermined knowledge helps the system to focus on essential
aspects in the huge amount of data it has to cope with. However, to actually find out what the
genetically determined component is can be a difficult undertaking since learning and a priori
knowledge may be deeply intertwined and difficult to separate by any kind of observation.
Each concrete choice of a priori knowledge is a crucial point. A wrong choice may lead to the
exclusion of good solutions in the search space. A choice of predetermined knowledge that
is too restricted may result in an increase of the search space, leading to unrealistic learning
time and bad generalisation.

How can we escape the bias/variance dilemma? The existence of a the human visual
system with its ability to deal with its surroundings efficiently and with sufficient adaptivity



Deterministic versus Statistical Interdependencies
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Figure 1: Examples of deterministic predictions based on geometrical regularities (left) and
probabilistic predictions based on statistical regularities.

raises hope that this problem can be indeed solved. The predefined structural constraints have
evolved during evolution and appear to be well suited to organise visual experience. Therefore
they seem to cover essential structure of the physical world. Thus it is a valuable opportunity
to look at the results from biology to become inspired for suitable definitions of constraints.

Another important problem the visual system has to cope with is an extremely high degree
of vagueness and uncertainty in its low level processes such as edge detection, optic flow
analysis and stereo estimation [1]. However, by integrating information across visual modalities
(see, e.g., [32, 8]), the human visual systems acquires visual representations which allows for
actions with high precision and certainty within the 3D world even under rather uncontrolled
conditions .

The power of modality fusion arises from the huge number of intrinsic relations across
visual modalities. We suggest to distinguish between two kind of regularities:

1) Deterministic interdependencies (most importantly rigid body motion, RBM) ap-
plied in, e.g., stereo and motion processing (see figure 1a,b) and,

2) Statistical interdependencies between features as applied in, e.g, Gestalt laws such
as collinearity (see figure 1c) or in pictorial depth cues (see figure 1d,e).

Deterministic interdependencies are based on analytically describable geometrical relations
grounded on different perspectives of a scene or an object (see figure 1b). For example,
knowing the RBM between two frames deterministic predictions between frames can be made
(see, e.g., [10, 38]): The occurrence of an event in the first frame makes the occurrence of a
certain event in the second frame mandatory (except in the special case of occlusion). While
the regularity RBM leads to deterministic predictions, statistical interdependencies occur as



statistical correlations between events which only lead to probabilistic predictions about the
occurrence of other events.

We claim that in order to develop the ability to exploit these regularities a distinguishable
amount of genetical pre-structuring in the human visual system is determined: We suggest
that the use of deterministic interdependencies is to a large degree genetically determined. On
the other hand, we argue that the use of statistical interdependencies presupposes an extensive
interaction with visual real world data. We are aware that we address a to a high degree
arguable issue and there do exist divergent point of views (see, e.g., [13]) that suggest that
also the use of deterministic regularities based on geometrical relations are learned.

This work is organised as follows: In section 2 we discuss structural differences between
geometrical and statistical regularities in visual data. In section 3 we summarize neurophysi-
ological and psychophysical research indicating a large degree of genetically determination in
the ontogenesis of geometrical regularities. In section 4 we discuss analog kind of research for
statistical regularities indication a later development and a larger degree of adaptivity in the
ontogenetic process. In section 5 we draw conclusions for the design of artificial systems and
give examples of the application of both regularities applying different degrees of adaptivity.

This work is in similar spirit to that in [25] in which a priori constraints for object recogni-
tion have been motivated by neurophyiological and psychophysical investigations. In [25] we
focused on 2D aspects of vision and local feature processing. However, the work introduced
here goes beyond [25] by looking at aspects in the 8D-time domain and discussing intermediate
stages of visual processing, namely the coding of constellations of local features.

2 Structural Differences of Deterministic and Statistical
Interdependencies

Deterministic and statistical regularities interdependencies are already widely used in artificial
systems to stabilise uncertain and vague image information (for applications of deterministic
interdependencies see, e.g., [10, 26, 38]; for applications of statistical interdependencies see,
e.g., [16, 36]). As it will be shown below, these two regularities have different properties. As
a consequence they have mostly been treated independently ([36, 37]).

There is a distinct difference in the success of usage of deterministic and statistical reg-
ularities in artificial visual systems. While the potential of geometrical constraints has been
very successfully applied for, e.g., scene reconstruction (see, e.g., [23, 22]) the potential of
statistical regularities has only been exploited to a much smaller degree [36, 37]. This holds
even more for their combined exploitation [36, 37]. We argue that one reason for the different
success in exploitation of deterministic and statistical interdependencies lies in their structural
differences: Deterministic regularities are easier to model since they are analytically treatable
with a machinery of reasonable complexity.

RBM reflects a geometric dependency in the time-space continuum: The transformation of
a non-deformable (rigid) object from one position to another. It is analytically describable by
six parameters, three for translation and three for rotation (see, e.g., [10, 29]). The motion
of a camera, the motion of a car within a static scene and also the motion of an rigid object
on an assembly line can be fully captured by their RBMs. RBM is also the underlying
regularity in stereo processing since it is the RBM between left and right camera that makes
reconstruction possible. Once the parameters of motion are known, RBM can be used for



feature integration and robust feature extraction (see e.g., [4, 26]) since RBM allows for the
deterministic prediction of a huge number of feature events in the following frame based on
simple mathematical transformations (see also figure 1b).

Collinearity and parallelism are two examples of statistical reqularities in visual data, which
are also associated with the so called ‘Gestalt laws’ formulated by Gestalt psychologists (see,
e.g., [40]). These occur as statistical correlations between events which only allow probabilistic
predictions about the occurrence of other events. Take for example the Gestalt law 'collinearity’
(or ’good continuation’): The occurrence of collinear line segments makes the existence of other
collinear line segments more likely (see figure 1c). Another example in which probabilistic
predictions are involved is the pictorial depth cue ’shape from shading’. The pattern in figure
1d makes us believe to see a 3D convex sphere illuminated from above. However, the same
pattern can be produced by an appropriate textured plane or an concave surface illuminated
from below. A further pictorial depth cues is linear perspective. The image in figure le (left)
makes us see a sphere on a road-like surface. However, the same projective pattern can be
also produced by a completely different 3D structure (see figure le (right)).

In contrast to RBM, statistical relations between features cannot normally be described
analytically. A lot of work has focused on the usage of these relations to achieve robust feature
extraction in different domains, e.g., edge detection (see, e.g., [16]) or stereo estimation ([7]).
In most of these contributions the relation between features, i.e., the applied Gestalt principle,
has so far been only heuristically defined based on semantic characteristics such as orientation
or curvature (e.g., two line segments are defined to be collinear when they lie on a contour with
slowly changing curvature ([41])). However, we argue that by relating statistical regularities to
statistics in visual data we can overcome such heuristic settings. However, to achieve this the
visual system has to be equipped with the ability to adapt according to the statistical structure
of visual data.

Both kind of regularities, deterministic as well as statistical, can be used to extract depth
information. However, they work in a complementary way. For example the stereo cue only
works for close depth since the basis width of the camera system has to be sufficiently large
in relation to the depth. Using ego motion we can increase the basic width and we can extent
the range of depth for which reconstruction is possible. However, we always need different
perspective views of the scene. Statistical regularities are applied in ’pictorial cues’ (see figure
1d,e for two examples). Pictorial cues allow to extract 3D information from 2D images without
direct geometric experience of the 3D space. In section 4 we will see that the ability to use
pictorial cues evolves later in the ontogenetical development of the visual system, indicating
the need of a certain amount of adaptivity of the system.

To sum up this section, we have shown that geometrical and statistical regularities in vi-
sual data have distinguishable properties. 1) While the first regularity leads to deterministic
predictions the second only allows probabilistic predictions. 2) Deterministic regularities are
reasonably analytical describable while statistical regularities need more sophisticated descrip-
tions. 3) The application in artificial visual systems has been so far more successful realized
for deterministic than statistical regularities. 4) Geometric regularities allow depth estimation
based on two or more views of a scene only while the statistical regularities enable depth esti-
mation from one view. In the next two sections we will show that there also exist differences
in the ontogenetic development of abilities based on geometrical and statistical regularities.



3 Evidence for a large Degree of Genetic Determination
of Deterministic Regularities

At the end of the 19** century William James [19] characterized the world of the newborn as a
“blooming, buzzing confusion”. Imagine that there would not be any innate concept of depth,
the idea that objects come into or leave existence when they appear or dissappear from the
visual field would be inescapable. However, there exists a good amount of evidence that the
newborn’s world is not as confusing as assumed by James. Indeed, psychopohysical research
indicates that the idea of geometric relations in 3D is very likely not a learned one but is to a
large degree genetically determined.

3D information can be acquired by different cues. Cues based on deterministic dependen-
cies are stereo, shape from motion and convergence of two eyes during fixation. Statistical
regularities are used by pictorial cues such as occlusion, shading and linear perspective are
applied for static depth extraction. It is interesting in which order these cues develop and
whether there is a percept of 3D already working from birth on.

Kellman and Arterberry [20] state that 3D information is acquired even by the newborn:
"Achieving accurate size perception ... implies that at least one source of egocentric distance
information ... is functional at birth’. There it is also claimed that convergence must be
the cue first applied. The stereo cue is used by babies after approximately 12 weeks and the
whole stereo machinery starts rather instantly than showing steady increase of performance
[17] probably caused by ’maturational change in cortical disparity-sensitive units’ [20].

The starting of utilizing motion information (as well based on deterministic regularities)
for extracting 3D information is not fully clear. Some work indicates that one month old
babies already can use motion information to extract depth [30]. In general, it is assumed
that 'motion carried information about space appears to operate at the beginning ... [20].
But is is also stated that 'more study is needed here to uncover the origins ...." [20].

Neurophysiological research indicates that our concept of space (used, e.g., for navigation
tasks) is realized in cortical maps as well as in maps in the hippocampus (probably relating to
different competences on different evolutionary stages). There seems to be genetically some
kind of areas reserved in which our geometrical representation of the world is realized in the
brain and this representation is multi-sensorial ([2]), i.e., in these maps information of multiple
sensors (e.g., vision, sound, touch, ...) is coded.

The most likely conclusion we can draw from these findings is that the concept of depth
(realized in reserved genetically determined maps is existing from birth) on but that this idea
is first (coarsely) realized by convergence, then in addition by stereo and motion cues. The
use of pictorial cues evolves later as discussed in the next section.

4 Evidence for an Adaptive Component in the Ontogen-
esis of Abilities connected with Statistical Regularities

In contrast to the early use of deterministic interdependencies in depth perception, the use
of pictorial cues more likely involves visual experience since these cues are used by 7 months
old babies but still not in the 5 months [20]. This has been independently shown for several
pictorial depth cues (linear perspective [31], familiar size [42], occlusion [14] and shading [15]).
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Figure 2: Statistical interdependencies in natural image sequences for collinear features mea-
sured by the so called ’Gestalt coefficient’ for the modalities phase, optic flow and color and
their combinations. The x-axis represents the distance of collinear line segments in pixels.
The Gestalt coefficient is a measure for the predictive power of a visual entity. A Gestalt
coefficient of 1 means no predictive power, a value larger than 1 expresses the degree of pre-
dictive power. As it can be seen from the figure, the predictive power increases tremendously
be taking multiple modalities into account (for details, see [27]).

Interestingly, the ability to estimate depth by pictorial cues evolved at the same time as the
baby is able to make use of the so called edge sensitive process (ESP) [21] for unit—perception,
i.e., a process in which oriented line segments are involved (such as, e.g., in the Gestalt law
collinearity). At the very same time the occurrence of illusionary contour processing develops
[5] (in which the Gestalt law ’collinearity’ is also tightly involved).

The late occurrence of the above mentioned mechanisms makes it more likely that those
depend on visual experience about the underlying structures in visual data. An interesting
question (which to our knowledge has not been addressed so far) is whether the use of pictorial
cues starts with a similar fast onset than the use of stereo information. A more gradually
development would makes an adaptive mechanism more likely than a sudden maturation
process.

Another question is whether the development of pictorial cues depends on our ability to
self-navigate, i.e., whether an active component is involved. There are two psychophysical
results which give contradicting evidence to this assumption. Firstly, the visual and motoric
system develop on different time scales, the human visual abilities evolve much faster (some
abilities working already at birth and most others maturating during the first 5 months) but
motor skills are very limited during the first 5 months. E.g., the ability to self-navigate appears
at around 6 months of age. Secondly, the use of pictorial depth information does not depend
on crawling competence [3]. However, in other species a correlation between locomotion and
space perception has been found [18]. How depth perception does depend on the motion
experienced passively has (to our knowledge) not yet been addressed.

Beside the relative late occurrence of the ability to use pictorial cues there is concep-
tional evidence [24, 9, 11] and evidence from computational neuroscience [34] for an adaptive
component in the ontogenesis of the ability to use statistical regularities.

Decades ago, Brunswick and Kamiya [6] first had stated that Gestalt principles should be
related to the statistics of the natural world. Unfortunately the limited computational power
at this time made it difficult to quantitatively support this statement. Only recently, the
strong prevalence of collinearity has been investigated in natural images by [24] and [9] and
have been confirmed and extended by [39, 11]. These investigations suggest that Gestalt laws



Figure 3: Top: Samples from an image sequence. Bottom: Projected 3D—line segments after
first (left) and after 6t" iteration (right).

are reflected in the statistics of low level filter operation well established in human and artificial
vision. In addition, it has been shown that these interdependencies become much stronger (in
order of magnitudes) when we look at multi-modal statistics (taking also color, optic flow and
contrast transition into account). The diagram in figure 2 shows that the probability for two
segments being collinear rises if the segments show also similarities in other modalities (for
details see [27]). Therefore, there is conceptional evidence for the possibility to learn those
interdependencies.

Evidence from computational neuroscience has been given by [34] who have implemented
a neural network model of primary visual cortex that leads to the emergence of collinearity
when exposed to visual real world data. This emergence was accelerated by the additional
use of motion that supports a segmentation of the object. Moreover, [33] indicates that even
more complex feature constellation (i.e., vertices) become significant in the statistics of natural
images when segmentation by motion is applied as a pre—processing step.

To sum up this section, there exists evidence from developmental psychology as well as
conceptional evidence that the usage of statistical regularities depend on visual experience.
Therefore, indirect prediction of 3D from static monocular images is very likely based on the
experience of the 3D world. Interestingly pictorial cues are used at the same time when visual
control of grasping and crawling evolves but evidence contradicting the necessity of interaction
between ego—motion and using pictorial cues in human infants does exist [3].

5 Consequences for the Design of Artificial Visual Sys-
tems

As discussed before, the human visual system faces two serious problems: Firstly, it faces the
bias—variance dilemma and as a consequence thereof in order to be able to learn it already
has to know something about its environment in form of predefined structural constraints. As
a designer of an artificial system we have the awkward task to decide about the structural
knowledge we want to use to configure the system. Secondly, it has to deal with a huge
amount of uncertainty in its low—level modalities but the human has to perform actions with
high certainty. It is widely agreed that this precision is achieved by modality integration.



Figure 4: Left: Image of a car. Right top: Extraction of features with grouping based on the
Gestalt coefficient. Right bottom: Feature extraction without grouping.

Taking the results described in section 3 into account we think it is also justified to equip
an artificial human like system with basic mechanisms for depth extraction from stereo based
on geometrical regularities (see, e.g., [22, 26]). Furthermore, we find it justified to equip the
system with a basic mechanism to estimate the RBM between frames [35] and an accumula-
tion scheme based om RBM which accumulates stable information from the unreliable stereo
information over different time frames [23, 26]. Figure 3 (top) shows object representations
extracted from unreliable stereo representations. The representations in Figure 3 (bottom)
have been extracted by a mechanisms which stabilises these representations over time making
use of RBM (for details see [26]).

Using deterministic relations based on RBM as hardwired components we want to make
use of the statistical interdependencies by a mechanisms which relies on visual experience with
real world datae. In [27] we further suggest a mechanism which uses these measured interdepen-
dencies to stabilze unreliable visual low-level processes. That means, our grouping mechanism
adapts depending on experience based on statistical measurements in real world data. Based
on the measured Gestalt coefficient we were able to formulate a grouping procedure in that
more complex feature constellations do emerge (see figure 4) and as can be seen in figure 4,
the grouping can be used, e.g., for improving feature extraction. Note the detection of the low
contrast edge (horizontal ellipse) and the reduction of non meaningful features (more vertical
ellipse). More details can be found in [28].

6 Conclusion
It is widely agreed that there exists no general learning machine for a complex task such

as vision. As a conclusion we have to ask for each visual sub-modality what the necessary
genetical determined structural knowledge is that we use to be able to learn. However, we may



get help from psychophysical and neurophysiological data to determine what these structural
constraints are that are applied in the human visual system. We claim that this knowledge
can be used to establish constraints also for artificial visual systems.

For the sensorial modality vision we can conclude from the psychophysical data that it is
likely that in the human visual system deterministic interdependencies are to a wide degree
genetically coded but that the use of statistical interdependencies depend to a certain degree on
visual experience. We have further discussed mechanisms that use deterministic and statistical
interdependencies within an artificial visual system to reduce the unreliability of visual low—
level modalities. The mechanisms based on deterministic regularities were basically hard coded
but the mechanism that utilizes statistical interdependencies makes use of visual experience.
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