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Abstract
In this paper we address the statistics of second-order relations of feature vectors
derived from image sequences. We compute the individual vector components
corresponding to the visual modalities orientation, contrast transition, optic
flow, and colour by conventional low-level early vision algorithms. As a main
result, we observe that collinear (or parallel) line pairs are, with very great
likelihood, also associated with other identical features, for example sharing
the same flow pattern, or colour or even sharing multiple feature combinations.

It is known that low level processes, such as edge detection, optic flow
estimation and stereo are ambiguous. Our results provide support for the
assumption that the ambiguity of low level processes can be substantially
reduced by integrating information across visual modalities. Furthermore, the
attempt to model the application of gestalt laws in computer vision systems
based on statistical measurements, as suggested recently by some researchers
(Elder H and Goldberg R M 1998 Perception Suppl. 27; Geisler W S, Perry J S,
Super B J and Gallogly D P 2002 Vis. Res. 41 711–24; Krüger N 1998
Neural Process. Lett. 8 117–29; Sigman M, Cecchi G A, Gilbert C D and
Magnasco M O 2001 Proc. Natl Acad. Sci. USA 98 1935–49), gets further
support and the results in this paper suggest formulation of gestalt principles in
artificial vision systems in a multi-modal way.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Substantial research has been focused on the usage of gestalt laws in computer vision systems See endnote 1
(excellent overviews are given in [9, 62]). The most often applied gestalt principle in artificial
visual systems and also the most dominant gestalt principle in the 2D projection of natural
scenes is collinearity [14, 21, 45, 66]. Collinearity can be exploited to achieve more robust See endnote 2

* This work has, to a large part, been performed during Norbert Krüger’s stay in the Cognitive System Group at the
University of Kiel, Germany.

0954-898X/02/000001+23$30.00 © 2002 IOP Publishing Ltd Printed in the UK 1
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feature extraction in different domains, such as edge detection (see, e.g., [25, 29, 36]) or stereo
estimation [11, 58].

In most applications of artificial visual systems, the relation between features, i.e. the
applied gestalt principle, has been defined heuristically, based on semantic characteristics
such as orientation or curvature (e.g. two line segments are defined to be collinear when they
lie on a contour with slowly changing curvature [77]). Mostly, explicit models of feature
interaction have been applied, connected with the introduction of parameters to be estimated
beforehand, a problem recognized as awkward in computer vision. Recently, Geisler et al [21]
introduced the idea to overcome heuristic and explicit models by relating feature interaction to
the statistics of natural images. The feasibility of this approach receives strong support from
the measurable interdependencies of features in visual scenes as performed here and in some
recent work [14, 21, 45, 66]. The necessity of an adaptive component in the formalization of
statistical interdependencies is also supported by the fact that the human visual system generates
these patterns of feature interaction by visual experience: developmental psychology shows
strong evidence that visual experience plays an important role in achieving the ability to use
these interdependencies in visual processing (e.g. the effect of illusionary contours appears
after 5 months [7, 38]).

In the human visual system, apart from local orientation other modalities1 such as colour
and optic flow are also computed (see, e.g., [20]). All these low level processes face the
problem of a high degree of vagueness and uncertainty [1]. This arises from a couple of factors.
Some of them are associated with image acquisition and interpretation: owing to noise in the
acquisition process along with the limited resolution of cameras, only inaccurate estimates
of semantic information (e.g. orientation) are possible. Furthermore, illumination variation
heavily influences the measured grey level values and is hard to model analytically [33].
Information extracted across image frames, e.g. in stereo and optic flow estimation, faces (in
addition to the above-mentioned problems) the correspondence and aperture problem which
interfere in a fundamental and especially difficult way (see, e.g., [2, 39]). However, the
human visual system acquires visual representations which allow actions with high precision
and certainty within the 3D world under rather uncontrolled conditions. It can achieve the
required certainty and completeness by integrating visual information across modalities (see,
e.g., [30, 57]). The power of modality fusion arises from the huge intrinsic relations given
by regularities within and across visual modalities. The essential need for integrating visual
information, in addition to optimizing single visual modalities to design efficient artificial
visual systems, has also been recognized in the vision community after a long period of work
on improving single modalities [1].

Gestalt principles are also affected by multiple visual modalities. For example, figure 1
shows how grouping based on the gestalt law collinearity can be intensified by the different
modalities contrast transition, optic flow and colour. This paper addresses the statistics of
natural images in these modalities. As a main result we report that statistical interdependencies
in visual scenes become significantly stronger when multiple visual modalities are taken into
account. This result gives further evidence for the assumption that, despite the vagueness of
low level processes, stability can be achieved by integration of information across modalities.
Furthermore, the attempt to model the application of gestalt laws based on statistical
measurements [14, 21, 45, 66] gets further support. Finally, the results in this paper suggest
the formulation of applications of gestalt principles in a multi-modal way.

1 In the following we use the term ‘modality’ to refer to visual modalities such as colour or stereo and we do not refer
to other sensorial modalities such as touch or sound.
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Orientation only Orientation and Contrast Transition

Orientation and Optic Flow Orientation and Colour

Figure 1. Grouping of entities becomes intensified (left triple) or weakened (right triple) by using
additional visual modalities.

2. Literature on gestalt principles and natural images and contribution of this work

A large amount of work has addressed the question of efficient coding of visual information
and its relation to the statistics of images. Excellent overviews are given in [67, 73, 78]. While
many publications were concerned with the statistics on the pixel level and the derivation
of filters from natural images by coding principles (see, e.g., [6, 28, 56]), recently statistical
investigations in more complex feature spaces have been performed (see, e.g., [14, 21, 45, 66])
and have addressed the reflection of gestalt principles in these feature spaces.

Collinearity and parallelism are two examples of gestalt laws (see, e.g., [42, 71]). Gestalt
laws reflect regularities of objects and object constellations caused by physical and biological
factors in the 3D world (such as gravity, growth and erosion) and projections thereof.
Collinearity and parallelism describe probabilistic feature relations. More specifically, the
occurrence of a line segment in visual data has a distinct impact on the likelihood of the
occurrence of a specific line segment at a different position. These probabilistic relations
can be measured from natural images (see [14, 21, 45, 66]). In [45], it has also been shown
that the distinctness of second-order dependencies between local oriented entities depends
significantly on their processing: while in the space of Gabor wavelet responses the statistical
dependencies were barely detectable, a post-processing which interprets Gabor wavelets as
line segment detectors2 made collinearity and parallelism distinctly visible in the second-order
statistics of natural images (see figure 2 and [45]).

Decades ago, Brunswick and Kamiya [10] first stated that gestalt principles should be
related to the statistics of the natural world. Unfortunately the limited computational power
at this time made it difficult to quantitatively support this statement. The strong prevalence of
collinearity in natural images has been investigated first by [45] and [14]. These results have
been confirmed and extended by [21, 66]. In addition to [45] and [14], in [66] a co-circularity
rule has been established as a generalization of collinearity, which says that, after straight
lines, circular structures form the most common second-order relations of line segments in

2 This post-processing played an important role in the object recognition system ORASSYLL [47].



4 N Krüger and F Wörgötter

Figure 2. The cross-correlation of pairs of post-processed Gabor wavelet responses (a)–(d) of four
orientations on a large set of natural images: (a) horizontal–horizontal, (b) horizontal–diagonal,
(c) horizontal–vertical, (d) horizontal–diagonal. The x and y axes represent the separation of
the kernels (labeling of all axes for (a)–(d) is the same as in (a) and the z axis represents the
correlation. In (a) parallelism and collinearity are clearly visible: collinearity is detectable as a
ridge in the first diagram and parallelism appears as a global property expressed in the flat part of the
surface in the first diagram clearly above the surfaces corresponding to non-parallel orientations.
In contrast, the correlation to non-similar orientations is low (b)–(d) (more detailed results can be
found in [45]).

natural images. While [45, 66] have investigated the second-order relation of line segment
responses without considering whether the two line segments belong to the same 3D contour or
not (called ‘absolute co-occurrence’ in [21]), [14, 21] have investigated conditional densities
which take this contour coincidence into account (so-called ‘Bayesian co-occurrence’). This
distinction is especially important since only in the case of a collinearity event caused by a
3D contour is the grouping of entities justified. However, [21] have shown that in both cases
the second-order statistics are similar, which indicates that collinearity is mostly determined
by projections of ‘real’ 3D contours. In addition to collinearity and parallelism, Elder and
Goldberg [14] show that other gestalt cues (proximity and luminance similarity) can also be
related to the statistics of natural images.

This work is concerned with the statistical interdependencies of specific posi-
tion/orientation relations of local oriented visual filters. It has been shown by [65] that there
is a general law holding for linear filters in different sensorial domains that states that the
standard deviation of one linear filter response scales linearly with the amplitude of another
neighboured linear filter response. They show that this is a property of linear filters applied to
natural signals in general, independent of the spatial relation or their relative orientation differ-
ences. However, they also note that the strength of this effect depends on the relative position
and orientation. Here and in [46] we investigate such quantitative differences explicitly and
we relate them to the gestalt principles of collinearity and parallelism.

In the work presented here we address the multi-modal statistics of natural images. We
start from a feature space (see also figure 1) which is motivated by feature processing in V1
(see, e.g., [20]) and is described in detail in section 4.2:

Orientation

We compute local orientation (and local phase) by the isotropic linear filter [18].
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Contrast transition

The contrast transition of the signal is coded in the phase of the applied filter.

Optic flow

Local displacements are computed by a well known optical flow technique [55].

Colour

Colour is processed by integrating over image patches in coincidence with their edge structure
(i.e.: integrating over the left and right side of the edge separately).

All visual modalities are extracted from a local image patch3, resembling columns in
V1 responsible for a certain retina patch. There is ample evidence that these modalities are
processed in early stages of visual processing (see, e.g., [20, 32, 35]). The feature vector
represents a local interpretation of the image patch by semantic properties (such as orientation
and displacement) similar to the sparse output of a V1 column (see section 4.2).

One main contribution of this paper is to show that statistical interdependencies of collinear
local line segments can be increased significantly by making use of the additional modalities
colour, contrast transition and optic flow. We evaluate the inferential power of each modality
separately (measured by the so-called gestalt coefficient, see section 3 and [45]) as well as the
inferential power of joint modalities. In our multi-modal feature space, we show that large
redundancies (much higher than when orientation only is considered) exist which become
even stronger when multiple visual modalities are taken into account at the same time. These
redundancies correspond to the gestalt principles collinearity and parallelism and reflect a
strong inferential power between our visual entities. We suggest that these redundancies can be
used by biological and artificial visual systems to overcome the uncertainty which is inherent
in the local processing of features. In this sense, the statistical investigations introduced
here, combined with the idea of relating statistical interdependencies to feature interaction
rules [14, 21, 45, 66], can be seen as a preparatory work for the design of more sophisticated
and efficient feature interaction across multiple visual modalities (see also section 6.2).

Another interesting result concerns the statistics of an intrinsically 1D structure: using
specific pre-processing which performs a split of an intrinsically 1D signal into geometrical
and structural information [18] we can characterize the distribution of intrinsically 1D signals
in natural images. It turns out that edge structures are much more dominant than line structures.

The paper is organized as follows: in section 3 we introduce the measure for
interdependence used in our statistical investigation. In section 4 we describe our feature
space as well as the data used in our simulations. Then, in section 5 we describe the results of
our simulations. In section 6 we discuss our results in the context of the realization of gestalt
principles in biological systems and their formalization within artificial systems.

3. Measuring statistical interdependencies

We measure statistical interdependencies between events by a mathematical term that we call
the ‘gestalt coefficient’. The gestalt coefficient is defined by the ratio of the likelihood of an
event e1 given another event e2 and the likelihood of the event e1:

G(e1, e2) = P(e1|e2)

P(e1)
= P(e1, e2)

P(e1)P(e2)
. (1)

3 In our statistical simulations we only use image patches corresponding to intrinsically one-dimensional signals since
orientation is reasonably defined for these image patches only. Intrinsically one-dimensional signals are constant in
one orientation (see, e.g., [24, 78]).
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Figure 3. Explanation of the gestalt coefficient G(e1|e2): we define e2 as the occurrence of a
line segment with a certain orientation (anywhere in the image). Let the second-order event e1

be: ‘occurrence of a line segment two units forward from an existing line segment e2 with the
same orientation as e2’. Left: computation of P(e1|e2). All potential occurrences of events e1 in
the image are shown. Bold arcs represent real occurrences of the specific second-order relations
e1 whereas grey arcs represent possible occurrences of e1. In this image we have 17 possible
occurrences of collinear line segments two units away from an existing line segment e2 and 11
real occurrences. Therefore we have P(e1|e2) = 11/17 = 0.64. Right: approximation of the
probability P(e1) by a Monte Carlo method. Entities e2 (bold) are placed randomly in the image
and the presence of the event ‘occurrence of a line segment two units forward from an existing
line segment e2 with the same orientation then e2’ is evaluated. (In our simulations we used more
than 500 000 samples for the estimation of P(e1).) Only in 1 of 11 possible cases does this event
takes place (bold arc). Therefore we have P(e1) = 1/11 = 0.09 and the gestalt coefficient for the
second-order relation is G(e1|e2) = 0.64/0.09 = 7.1.

For the modelling of feature interaction a high gestalt coefficient indicates an increase in the
likelihood of the event e1 depending on other events e2: since

P(e1|e2) = G(e1, e2)P(e1)

the gestalt coefficient says how the likelihood of the event e1 is modified by occurrence of the
event e2. A gestalt coefficient of one says that the event e2 does not influence the likelihood
of the occurrence of the event e1. A value smaller than one indicates a negative dependency:
the occurrence of the event e2 reduces the likelihood that e1 occurs. A value larger than one
indicates a positive dependency: the occurrence of the event e2 increases the likelihood that
e1 occurs.

In our case we are interested in the events e2 ‘occurrence of a line segment with a certain
orientation (anywhere in the image)’ and e1 ‘occurrence of a line segment two units forward
from an existing line segment e2 with the same orientation as e2’ (the gestalt coefficient for
these events is illustrated in figure 3). Since we are only interested in the relative position and
orientation relation of the two events we can also express G(e1, e2) by

G(�x1,�x2,�o) = G(e1, e2).

Note that the gestalt coefficient is related to the correlation of two random variables
(see [45]) as well as to the mutual information contained in two symbols used in information
theory (see, e.g., [27]). The mutual information is the logarithm of the gestalt coefficient.

4. Visual modalities and data

In our investigation we make use of the four visual modalities: orientation o, contrast transition
(expressed by the phase p), colour on the left and right side of the edge (�cl, �cr ) and optic flow �o.
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Figure 4. Top: images of the data set. Bottom: three images from a sequence.

Together with the position �x , these modalities create a feature vector

e = (�x, o, p, (�cl, �cr ), �o)

which describes the local area of an image patch (see figure 5, top left). In this section we
describe the data used for our statistics and the preprocessing of this feature vector.

4.1. Data

For our statistics we use 95 images from 20 image sequences of size 512 × 512 (11 images),
384 × 288 (36 images), and 359 × 273 (48 images). Our data set contains indoor as well
as outdoor scenes (see figure 4)4. The results of our statistical investigation were similar for
the indoor and outdoor sequences, i.e. they were not dominated by a specific subset. The
image sequences contain variations caused by object motion as well as camera motion. There
were more than 30 000 feature vectors detected in the data set (approximately 20 000 from the
outdoor images).

4.2. Feature processing

Edge detection and orientation estimation is based on the isotropic linear filter (called a
monogenic signal [18]) and on phase congruence over neighbouring frequency bands (see
e.g., [17, 44]). The monogenic signal performs a split of identity [18]: it orthogonally divides
an intrinsically one-dimensional bandpass filtered signal into energetic information (indicating
the likelihood of the presence of a structure), its geometric information (orientation) and its
contrast transition (called ‘structure’ in [17]). We look for energy maxima in the position–
orientation space (�x, o). We use hexagonally arranged patches with a diameter of 9 pixels. To
avoid the occurrence of very close line segments produced by the same image structure we
demand that line segments have a certain minimal distance.

The variance of orientation in an image patch (computed from pixel positions of high
energy) is indicated as a rectangle in the displays of feature vectors in figure 5, right. We use

4 The outdoor scenes can be downloaded from the internet via http://www.inrialpes.fr/movi/pub/Images/and
http://sampl.eng.ohio-state.edu/∼sampl/database.htm.
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Figure 5. Top left: schematic representation of a basic feature vector. Bottom left: frame in an
image. Right: extracted feature vectors.

it as a measure for the intrinsic dimensionality. In our simulations we only use features for
which the variance of orientation within a small patch is below a certain threshold t i D (in our
case t i D = 0.5). The distribution of orientations is not isotropic (see figure 7, left). We can
see maxima for horizontal and vertical orientation.

Orientation. As for all other modalities which we investigate here, we can define a metric
d(o, o′), i.e. we can speak of similarity and dissimilarity in the modality orientation. This metric
allows pooling of similar events. Note that metric organization is also a well established design
principle in biological visual systems (see, e.g., [40]). The metric for orientation and all other
modalities is defined in appendix A.

Contrast transition. Contrast transition is coded in the phase at a local maximum in the
(x, y, o) feature space [44]. It refers to the kind of intrinsically one-dimensional grey level
structure existent at the local image patch (as a dark/bright edge, or bright line on dark
background). The continuum of contrast transition at an intrinsic one-dimensional signal
patch can be expressed by the continuum of phases (see figure 6). Therefore, it allows coding
different kinds of edge-like structures by one parameter. A metric for the phase is defined in
appendix A. This metric plays a crucial role in a stereo algorithm described in [49].

The distribution of phases in our data is shown in figure 7 (middle). The peaks at p = π/2
and −π/2 show that edges (i.e. intrinsic one-dimensional signals with odd symmetry) are the
dominant one-dimensional structure in natural images while line structures (i.e. intrinsic one-
dimensional signals with even symmetry) are less dominant. Our model for an intrinsically
one-dimensional signal patch (see figure 5) therefore describes edges5,6.

In this paper we will show that the inferential power of oriented entities in images becomes
heavily increased by making use of phase (i.e. by looking at contrast transition) in addition to
orientation. This result is in accordance with the study of Elder and Goldberg [14] who have

5 Although there are significantly more edge-like structures than line-like structures in natural images it may also
make sense to introduce an extra line model to describe intrinsically one-dimensional image patches with phase close
to 0 or π .
6 The phase as an additional feature allows us to take the grey level information in an image patch, in addition
to orientation, into account in a very compact way. The argument between purely geometric and appearance-
based representations (see, e.g., [54]) becomes dissolved by integrating both descriptions within one representation.
This becomes possible by the split of identity of the monogenetic signal [18] and the interpretation of phase as
characterization of the contrast transition [18, 44].
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Figure 6. Left: variation of contrast transition according to phase variation. Note that a phase of
π codes a dark line on a bright background, a phase of −π/2 coded a bright/dark edge, a phase of
0 codes a bright line on a dark background while a phase of π/2 codes a dark/bright edge. As can
be seen the continuum between these case is also coded by the phase. Right: luminance profiles
corresponding to the image on the left.
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Figure 7. Distribution of orientation (left), phase (middle) and magnitude of optic flow (right) in
the data set.

also investigated luminance structure but using a different kind of description based on the
differences of luminance at both sides of the edge.

Colour. To integrate the modality colour at intrinsically one-dimensional image structures
we perform a Gaussian integration in the RGB colour space over the left and right part (‘left’
and ‘right’ defined by the associated line segment) of the image patch (see figure 5). Since
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Figure 8. (a) Transformation of the coordinate system such that e2 has position (0, 0) and
orientation 0. (b) The coordinate systems for the different modalities.

the distribution of phases indicates the dominance of edges (figure 7), this kind of integration
corresponds to the most likely model of intrinsically one-dimensional structures. We get two
vectors �cl = (cl

r , cl
g, cl

b) and �cr = (cr
r , cr

g, cr
b), representing the red, green and blue values of

the left and right sides of the edge. A metric for colour is defined in appendix A.

Optic flow. Optic flow �o is computed by a differential based method [55] which gives
especially good results at edges. We transfer the optic flow vector (�ox, �oy) to a representation
of magnitude and angle (�om, �oα) (see figure 8(b),(iii)). Figure 7 shows the distribution of optic
flow magnitudes. Since objects and/or camera move slowly, small displacements dominate
the data set.

5. Second-order relations statistics of natural images

In this subsection we investigate the second-order relations of events in our feature space

(�x, o, p, (�cl, �cr ), �o) = ((x1, x2), o, p, ((cl
r , cl

g, cl
b), (c

r
r , cr

g, cr
b)), (om, oα)).

5.1. Evaluation of known interdependencies in the features orientation and space

The distribution of orientations of the extracted multi-modal feature vectors is non-isotropic
(see figure 7 and [45]) with a significantly higher density for vertical and horizontal orientation
than for diagonal orientation. For our second-order statistics this plays no role. Therefore,
in our investigation of second-order relations we apply a transformation to the coordinate
system such that the entity e2 in the tuple (e1, e2) has zero orientation and zero position and is
positioned at the origin (see figure 8(a)). The exact transformation is given in appendix B. In
the following we assume this transformation always applied.

In our simulations we use a discretization of the position–orientation space in bins of size
10 × 10 and 1

8π . Figure 9 shows the gestalt coefficient when we use only orientation as a
visual modality.

As in figure 2 and as already shown in [21, 45] collinearity can be detected as a significant
second-order relation by a ridge in the surface plot for �o = 0 in figure 9(e). Also parallelism
is detectable as a slight offset of this surface. A gestalt coefficient significantly above one can
also be detected for small orientation differences (figures 9(d), (f), i.e. �o = −π

8 and π
8 ). The

general shape of surfaces is similar in all the following simulations concerned with additional
visual modalities: we find a ridge corresponding to collinearity and an offset corresponding to
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Figure 9. The gestalt coefficient for differences in position from −50 to 50 pixel in the x and
y direction when orientation only is regarded. Note that the gestalt coefficient for position (0,0)
and �o = 0 is set to the maximum of the surface for better display. The gestalt coefficient is not
interesting at this position, since e1 and e2 are identical.

parallelism and a gestalt coefficient close to one for all larger orientation differences. Therefore,
in the following we will only consider the surface plots for equal orientation �o = 0.

5.2. Pronounced interdependencies by using additional visual modalities

Now we can look at the gestalt coefficient when we also take the modalities contrast transition,
optic flow and colour into account. We are interested in whether and how a certain property
of an oriented entity e1 in one of the additional visual modalities allows for predictions for the
other oriented entities e2 in their associated properties.

Orientation and contrast transition. We define that two events ((x1, x2), o, p) and
((x ′

1, x ′
2), o′, p′) undergo a similar contrast transition (i.e. ‘similar phase’) when d(p, p′) <

t p+. t p+ is defined such that only 10% of the comparisons d(p, p′) in the data set are
smaller than t p (in our case t p = 0.13). We now compute the gestalt coefficient G(e1, e2)

(or G(�x1,�x2,�o)) for line segments with similar contrast transition. More specifically,
assume we have extracted an oriented edge e1 with associated contrast transition p at a certain
position (event e1), so the event e2 is the occurrence of a line segment with similar associated
contrast transition at a certain relative position (�x1,�x2) and orientation (�o). The exact
definition of our computation is given in appendix C.



12 N Krüger and F Wörgötter

colour colour

Figure 10. The gestalt coefficient for �o = 0 and all possible combinations of visual modalities.
Notice the change in scale.

Figure 10(a) replots figure 9(e). In comparison figure 10(b) shows the gestalt coefficient
for the events ‘similar orientation and similar phase’. In figure 11 the gestalt coefficient along
the x and y axes in the surface plots of figure 10 are shown. The gestalt coefficient on the x
axes correspond to the ‘collinearity’ ridge and the gestalt coefficient on the y axes corresponds
to parallelism in the orthogonal direction to the line segment. The leftmost bars represent the
gestalt coefficient when we look at similar orientation only (i.e. figure 10(a)), while the bars
on the right represent the gestalt coefficient when we look at similar orientation and similar
phase (i.e. figure 10(b)). We see a significant increase of the gestalt coefficient compared to
the case when we look at orientation only for collinearity and only a moderate increase (or
even decrease) for parallelism. This indicates that the visual modality orientation and contrast
transition can be used to predict entities that are collinear (and parallel). More precisely,
once we have extracted an oriented edge with an associated ‘contrast transition’ we are able to
predict spatially distinct collinear (and parallel) edges with likelihoods expressed by the gestalt
coefficient. In addition, we can predict that it is also likely that they are not only collinear but
also share similar ‘contrast transition’.

Orientation and optic flow. Analogously, we say that two events have ‘similar flow’ when
d(�o, �o′) < t f (t f = 0.17, defined analogously to t p and tc). The corresponding surface plot
is shown in figure 10(c) and the two slices corresponding to collinearity and parallelism are
shown as the third bar in figure 11. An even more pronounced increase of inferential power
for collinearity can be detected.
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Figure 11. The gestalt coefficient for collinear and parallel feature vectors for all combinations of
visual modalities. For (0, 0) the gestalt coefficient is not shown, since e1 and e2 would be identical.

Here we would like to remark that the significance of the inferential power of optic flow
is context dependent. In all our pictures we have object or ego-motion. In the case of only
little motion a smaller statistical interdependency is to be expected. In complex systems this
may lead to situation-dependent statistics of interdependencies and their application.

Orientation and colour. Analogously, we say that two events have ‘similar colour structure’
when d(c, c′) < tc (tc = 0.13 again is defined such that only 10% of the comparisons d(c, c′)
in the data set are smaller than t p). The corresponding surface plot is shown in figure 10(d)
and the two slices corresponding to collinearity and parallelism are shown as the fourth bar in
figure 11.

Multiple additional visual modalities. Figure 10 shows the surface for similar orientation,
phase and optic flow (figure 10(e)); similar orientation, phase and colour (figure 10(f))
and similar orientation, optic flow and colour (figure 10(g)). The slices corresponding to
collinearity and parallelism are shown in the fifth to seventh bar in figure 11. We can see that
the gestalt coefficient for collinear line segments increases significantly, most distinctly for
the combination of optic flow and colour (seventh column). Finally we can look at the gestalt
coefficient when we take all three modalities into account. Figure 10(h) and the eighth column
in figure 11 shows the results. Again, an increase of the gestalt coefficient compared to the
case when we look at only two additional modalities can be achieved.

Figure 12 shows the values for the approximation of P(e1|e2) and P(e1) in the case of
‘orientation only’ and ‘orientation and colour’. Note that, for ‘orientation and colour’, both
numerator and denominator decrease compared to ‘orientation only’, but the decrease in the
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Figure 12. Top: the numerator P(e1|e2) (left) and the denominator P(e1) (right) when we look at
orientation only. Bottom: analogous to the top, but regarding orientation and phase.

denominator is larger. Note also that the estimate of the denominator P(e1) is independent of
the position (see figure 12, left). Therefore we can average over the whole surface to stabilize
the estimate.

6. Conclusion and discussion

In this paper we have addressed the statistics of local oriented line segments derived from
natural scenes by adding information on contrast transition, colour and optic flow. We showed
that statistical interdependencies in the orientation-space domain corresponding to collinearity
and parallelism become significantly stronger when multiple visual modalities are taken into
account. Essentially it seems that visual information bears some degree of intrinsic redundancy.
Our results raise the following questions, which will be discussed now.

(1) What is the general use of such redundancies?
(2) How can these results be applied in biological and artificial visual systems?
(3) What does the preservation of redundancies imply for the understanding of visual processes

in the brain?

6.1. Redundancies can be used to reduce the ambiguity of local feature processing

Vision, although widely accepted as the most powerful sensor modality, faces the problem of
a high degree of vagueness and uncertainty in its low level processes such as edge detection,
optic flow analysis and stereo estimation. This arises from a number of factors. Some
of them are associated with image acquisition and interpretation: owing to noise in the
acquisition process along with the limited resolution of cameras, only rough estimates of
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semantic information (e.g. orientation) are possible. The severity of these problems even
increases for higher semantic information, such as curvature (see, e.g., [5, 34]) or junction
detection and interpretation (see, e.g., [26, 61]). Furthermore, illumination variation heavily
influences the measured grey level values and is hard to model analytically (see, e.g., [33]).
Extracting information across image frames, e.g. in stereo and optic flow estimation, faces (in
addition to the above-mentioned problems) the correspondence and aperture problem which
interfere in a fundamental and especially awkward way (see, e.g., [2, 39]). Furthermore,
visual information is essentially incomplete since it is difficult to directly extract meaningful
information at unstructured image regions because they are dominated by noise. As a result,
information extracted by local operators is necessarily ambiguous. However, by integrating
information across visual modalities (see, e.g., [1, 20, 30]), the human visual system acquires
visual representations that allow for actions with high precision and certainty in most natural
environments. The essential need for fusion of visual modalities, beside their improvement as
isolated methods, has also been recognized by the computer vision community during the last
10 years (see, e.g., [1, 12]).

The results presented here provide further evidence for the assumption that, despite the
vagueness of low level processes, stability can be achieved by integration of information
across modalities. In addition, the attempt to model the application of gestalt laws based on
statistical measurements, as suggested recently by some researchers (see [14, 21, 45, 66]) gets
further support. Most importantly, the results derived in this paper suggest the formulation
of the application of gestalt principles in a multi-modal way (see section 6.2) since the
use of additional modalities increases the statistical interdependency between visual entities.
However, by making use of additional visual modalities we face the problem that the likelihood
of events becomes smaller, e.g. there occur many more vertical edges in an image than See endnote 3
blue/green vertical edges with a certain optic flow vector associated. That means the events
become more meaningful and predictive but also rarer. It is known that in the human visual
system visual modalities beyond orientation are computed and the effect on grouping can be
demonstrated (see, e.g., [50]). Concerning the costs of coding of these rarer events, it is not
necessary to code the occurrence of all multiple modality events at all times but there do exist
mechanisms that allow for a dynamic coding of feature events such as binding and dynamic
grouping [69, 70].

The power of modality fusion arises from the huge number of intrinsic relations within
visual scenes. The relations investigated here are concerned with statistical regularities in the
sense that they allow probabilistic predictions: the occurrence of a local oriented entity with
specific semantic structure makes the occurrence of another local oriented entity with certain
semantic attributes at a different position more likely. Here we want to stress that another
important regularity in visual data, with quite distinct properties compared to collinearity
and parallelism, is motion, most importantly rigid body motion (RBM) (see, e.g., [16, 31]).
Knowing the RBM between two frames, deterministic predictions between frames can be made
(see, e.g., [15, 64]): the occurrence of an event in the first frame makes the occurrence of a
certain event in the second frame mandatory (except in the special case of occlusion). While
RBM leads to deterministic predictions which can also be used to stabilize feature extraction
(see, e.g., [41, 48, 76]) and statistical regularities only allow probabilistic predictions we think
that in a complete system both regularities have to be integrated.

6.2. Measured statistical interdependencies can be used to develop grouping algorithms

The measured multi-modal interdependencies can be used for the formalization of gestalt
principles in artificial systems in a probabilistic framework (see, e.g., [13, 21]). The claim is
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a) b)

c) d)

Figure 13. Schematic description of different kind of predictions. (a) Existence: the low
likelihood for the existence of the entity e1 (indicated by a thin line) increases because of the better
consolidated existence of e2 (indicated as a bold line) and the high gestalt coefficient G(e1, e2)

for such a constellation. (b) Grouping: the concurrent existence of collinear entities (i.e. entities
with high G(e1, e2)) leads to grouping into tuples and then (by the transitivity rule) to larger
feature assemblies. (c) + (d) Feature correction: by orientation correction (c) and colour correction
(d) across entities assembled within the group a smoother variation can be achieved.

that intrinsic regularities in visual data allow for predictions which can be used to stabilize
locally extracted information. To justify this, we want to address the issue of predictions
in more detail now. At least three kinds of predictions, which all make use of the gestalt
coefficient measured here, can be developed immediately:

Existence. The existence of an entity e1 becomes more likely when an entity e2 does exist
and G(e1, e2) is high. This kind of prediction can be used, for example, to stabilize the
system’s confidence for the existence of e1 in the case that there is only moderate evidence
(for the existence of e1) from local operations, i.e. at the basic feature extraction stage (see
figure 13(a)).

Grouping. Grouping can be achieved by assembling those extracted feature vectors into a
group for which high statistical interdependencies have been measured, i.e. in the case that
there is good evidence from local operations that e1 and e2 do exist and G(e1, e2) is high
they can be assumed to belong to the same group (see figure 13(b), first arrow). As already
suggested in [21], these feature assemblies can then be enlarged and stabilized by using the
transitivity relation, i.e. if e1 and e2 belong to a common feature group and e2 and e3 belong to
a common feature group then e1 and e3 belong to a common group as well (see figure 13(b),
second arrow). Note that in this approach grouping does not require an explicitly defined higher
feature constellation but is performed dynamically, i.e. features become assembled according
to the current input [70].

Feature disambiguation. In the case that entities e1, e2, . . . belong to the same group it can
be assumed that the semantic properties of the entities are influenced by all entities belonging
to the same group (see figures 13(c) and (d)). For different visual modalities such interactions
have to be formalized. Since metrics can be defined for all visual modalities (see section 4.2
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and appendix A) we can speak about similarity in a modality. One possible formalization of
an interaction rule can be: if the entities e1, e2, . . . belong to the same group and are similar in
a certain modality (e.g. have similar colour structure) we can define the value in this modality
(e.g. the RGB vector �cl = (cl

r , cl
g, cl

b)) for each entity as the (weighted) average over the values
of all entities in the group in this modality. In addition, it may be that specifics of the visual
modalities also have to be taken into account (e.g. the aperture problem for optic flow). The
formalization of interaction schemes based on the measured gestalt coefficient will be part of
future research.

In the formalization of gestalt principles suggested above an already measured gestalt
coefficient is assumed. In a biological system such a separation between measuring
and applications is not realistic but the neural interconnections which code statistical
interdependencies develop during experience (see, e.g., [57, 59]).

6.3. Preservation of redundancies have to be taken into consideration for the understanding
of early visual processes

There are two main approaches to designing feature spaces for visual systems. The first is to
learn features from natural images (see, e.g., [4, 6, 19, 28, 56, 67, 78]). The second approach is
to define feature spaces explicitly as done in most technical applications (see, e.g., [53, 63, 74]).
Related to this issue is the problem of innate versus learned structures in the human visual
system7. Developmental psychology and neuro-physiological research give indications for the
impressive adaptivity of the visual system and its capability to extract significant information
from experience (see, e.g., [8, 68]). However, they also indicate a large amount of genetic
pre-structuring [23, 38]. The connections of brain areas, the receptive field size of neurons in
different areas and the topographic organization of these areas are largely predetermined and
established at or soon after birth (see, e.g., [60]). Even the features extracted in some areas
(orientation, movement and colour [23, 72]), i.e. the coarse sensitivity of neurons and their
organization in feature maps, is basically initiated before the first post-natal visual experience8.
We favour neither pure feature learning nor explicit feature design (actually we think the truth
might be somewhere in between) but we want to discuss the consequences of our results in the
context of the design of feature spaces in general.

An explicit definition of a feature space (as done in this paper) faces the problem that a
priori assumptions about the structure of input signals have to be made. There is always a
certain amount of arbitrariness involved in such settings and a misleading choice may lead
to irrecoverable loss of performance. However, explicit definitions of feature spaces can be
justified not only by neuro-physiological facts (see above) but also by conceptional needs since
learning is inherently faced with the bias/variance dilemma (see, e.g., [22]): if the starting
configuration of the system has many degrees of freedom, it can learn from and specialize
to a wide variety of domains, but it will in general have to pay for this advantage by having
many internal degrees of freedom—the ‘variance’ problem. On the other hand, if the initial
system has few degrees of freedom it may be able to learn efficiently but there is a great
danger that the structural domain spanned by those degrees of freedom does not cover the
given domain of application at all—the ‘bias’ problem. Built-in a priori knowledge in terms
of design decisions for feature spaces may be useful (and possibly necessary) for the creation
of efficient visual systems since it allows the system to concentrate on significant aspects of
the data and it is likely that such kinds of feature processing have been designed to a certain

7 However, innate structures are learned as well, although by phylogeny and not by ontogeny.
8 A very compact summary of the results of neurophysiology and developmental psychology concerning the role of
experience and a priori knowledge in the human visual system is given in [47].
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extent by evolutionary learning (see, e.g., [22, 47]). In our multi-modal feature space (which
is motivated by analogies to the primate’s visual system as well as by computer vision) we
can show that significant redundancies corresponding to the gestalt principles of collinearity
and parallelism can be found and we have argued how these redundancies can be used in an
artificial system (see section 6.2) to overcome the ambiguity of local information.

An alternative approach to an explicit definition of feature spaces is the learning of features
(overviews are given in [67, 78]). This has so far only been done for orientation selective cells
with structure similar to Gabor wavelets [6, 56], but the future perspective is to extend this
approach to intermediate and higher stages of visual processing [67] and to learn other more
complex features. Many contributions indicate that a learning of early visual processing
units can be guided and explained by statistical principles such as redundancy reduction [4],
independence (see, e.g., [6]) or sparse coding (see, e.g.,[56]). Another useful criterion is
invariance or slow variation [75] in fast varying input signals9. Our results suggest that the
essential need to deal with uncertain data (see section 6.1) makes it likely that redundancy
preservation might also be an important statistical principle in cortical processes to overcome
the ambiguity of local feature processing (see also the discussion in [3, 66]). To put it in
even stronger terms, redundancies in early vision are necessary for the applicability of gestalt
principles and the applicability of modality fusion since the elimination of redundancies would
disable any predictions between visual entities or across modalities at all (see also [3, 37, 57]).

An open question remains which a priori settings are sensible and what role learning has in
the development of early and intermediate visual processing as opposed to or supplementing
‘pre-wiring’ mechanisms. Whatever answer one may prefer, we think the preservation of
redundancies plays an important role for the learning of visual features as well as for the
explicit design of feature spaces.
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Appendix A. Metrics for the different visual modalities

In this section we define metrics for the different modalities orientation, contrast transition,
colour and optic flow.

Orientation

The orientation o takes values in the interval o ∈ [0, π) (see figure 8(b), (i)). A metric do(o, o′)
in the orientation subspace can be defined by

do(o, o′) = min{|o − o′|, |(o + π) − o′|, |o − (o′ + π)|}
9 All these studies demonstrate that the human visual system seems to establish a description of visual data in V1
which meets rather general requirements. This seems to be different in other species: e.g. frogs possess prey detectors
in their retinas [51] and even among mammals different kinds of specialization exist in their retinal neurons. For
example, in the rabbit retina motion detectors are found while in the primate’s visual system such detectors first occur
in V1 [52].
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with do(o, o′) ∈ [0, π
2 ). Since orientations close to 0 must have a small distance to orientations

close to π the minimum over three cases has to be computed.

Contrast transition

The metric for contrast transition must also take the orientation into account, since a rotation
of π corresponds to a switch of the sign of the phase. This leads to a slightly subtle definition
of the metric. The phase takes values in the interval p ∈ [−π, π) (see figure 8(b), (ii)). A
metric d p(p, p′) can be defined by

d p(p, p′) = min(d1(p, p′), d2(p, p′))
d1(p, p′) = 1

2 (a tan2(sin(o − o′), cos(o − o′))2 + 1
2 (a tan2(sin(p − p′), cos(p − p′)))2

d2(p, p′) = 1
2 (a tan2(sin(o − o′ + π), cos(o − o′ + π))))2

+ 1
2 (a tan2(sin(p + p′), cos(p + p′)))2.

The metric d p(p, p′) takes values in [0, π). An extended interpretation of this definition and See endnote 4
the structure and meaning of the phase-orientation space will be given in [49].? See endnote 5

Colour

The colour vector �c = (cr , cg, cb) (consisting of the averaged red, green and blue values in
an image patch) takes values in [0, 1] × [0, 1] × [0, 1]. A metric in the colour space can be
defined by

dc(�c, �c ) =
√

((cr − c′
r )

2 + (cg − c′
g)

2 + (cb − c′
b)

2)

with dc(�c, �c ) ∈ [0,
√

3]. For a detailed discussion of metrics in different colour spaces see,
e.g., [39, 43].

Optic flow

For the optic flow vector holds (om, oα) ∈ [0,∞) × [−π, π), om representing the magnitude
of the flow vector and oα its angle (see figure 8(b), (iii)). A metric can be defined by

d f((om, op), (o
′
m, o′

p)) = 1
2 d(om, o′

m) + 1
2 d(oα, o′

α)

with d f ((om, op), (o′
m, o′

p)) ∈ [0, 2].

d(om, o′
m) = 1 − 1

1 + |om − o′
m|

represents the distance in magnitude. The transformation 1 − 1/(1 + |om − o′
m |) transforms

the differences in magnitude (which are in [0,∞)) to the interval [0, 1).

d(oα, o′
α) = 1

π
min(|oα − o′

α|, |(oα + 2π) − o′
α|, |oα − (o′

α + 2π)|)

represents the distance in the angle coordinates. Since there is a periodicity at −π and π (see
figure 8(b), (iii)) the minimum of three cases has to be computed.



20 N Krüger and F Wörgötter

Appendix B. Normalization of the coordinate system according to e2

Let X be our feature space ((x1, x2), o, p, ((cl
r , cl

g, cl
b), (c

r
r , cr

g, cr
b)), (om, oα)). We are after a

transformation T e2
: X → X which modifies the coordinate system such that the event T (e2)

is in the origin with 0 orientation. This transformation is non-trivial since it does not only
affect position and orientation but also phase, optic flow and colour (see figure 8(a)).

Given an entity e2 = ((x ′
1, x ′

2), o′, p′, ((�cl
′, �cr

′), (o′
m, o′

α))) the transformation T e2
is

defined by

T e2
((x1, x2), o, p, ((�cl, �cr ), (om, oα))) = ((x1 − x ′

1, x2 − x ′
2), T (o), T (p), T (�c), (om, T (op)))

with

T (o) :=
{

o − o′ if o − o′ � 0

o − o′ + π else

T (p) :=
{

p if o − o′ � 0

−p′ else.

This holds since a rotation of π corresponds to a change of sign of the phase:

T (�c) :=
{

(�c l′ , �c r ′
) if o − o′ � 0

(�c r ′
, �c l′ ) else.

A rotation of π corresponds to the switch of the two colour patches:

T (oα) :=
{

oα − o′ if oα − o′ � 0

oα − o′ + 2π else.

The optic flow rotates with the orientation but the singularity at −π, π has to be taken into
account.

Appendix C. Approximation of the gestalt coefficient

In this section we describe the approximation of the gestalt coefficient for two events from our
data. Since we have to work with discrete samples of events it is very unlikely that we will find
an exact identity T (e) = e1 in our data set. Therefore we have to approximate this identity.

The numerator P(e1|e2) in (1) can be defined by

P(T e2
(e) ∈ Bin(e1) ∧ di(T e2

(e), e1) < t i |e2) (2)

with i :p, c, f representing the different modalities phase (p), colour (c) and flow ( f ). We say
e ∈ Bin(e1)when e and e1 are close in the pixel-orientation domain, i.e. with e = (x1, x2, o, . . .)

and e1 = (x ′
1, x ′

2, o′, . . .) it is

e ∈ Bin(e1) ⇔ |x1 − x ′
1| < 5 ∧ |x1 − x ′

1| < 5 ∧ |o − o′| <
π

16
according to the bin sizes of 10 × 10 and �o = π

8 (see section 5)10. The term (2) represents the

likelihood that a transformed entity T e2
(e) is close to the specific event e1. Note that (as shown

in figure 9) we sample space and orientation explicitly.

10 Note that there is a difference between the modalities pixel position/orientation and the visual modalities contrast
transition, colour and optic flow. The gestalt coefficient is measured for all pixel/orientation combinations (with the
lower resolution defined by the bins). However, for contrast transition, colour and optic flow the gestalt coefficient
is only computed for the event ‘similar’ (in the specific modality) to e2, i.e. there is no explicit sampling of the full
feature space.
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Let er be an entity from our data set which is randomly transformed (the transformation
parameters (x, y, o) are equally distributed)11. Then the denominator P(e1) can be defined by

P(T r (e) ∈ Bin(e1) ∧ di(T r (e), e1) < t i |er ). (3)

The term (3) expresses the likelihood that a randomly (equally distributed) transformed entity
T r (e) is close to e1.

In our data set we can now perform the following approximation:

P(e1|e2) = P(T e2
(e) ∈ Bin(e1) ∧ di(T e2

(e), e1) < t i |e2)

≈ #{e|T e2
(e) ∈ Bin(e1) ∧ di(T e2

(e), e1) < t i }
N

P(e1) = P(T r (e) ∈ Bin(e1) ∧ di(T r (e), e1) < t i |er)

≈ #{e|T r (e) ∈ Bin(e1) ∧ di(T r (e), e1) < t i }
N

.

#{ } is the number of elements in the set { } while N represents the number of entities e2 in
the data set. Note that, in the case of orientation only, the term di(T r (e), e1) < t i is always
true and can therefore be neglected. In the case of regarding two modalities i, j at a time we
have to apply two comparisons, i.e. di (T e2

(e), e1) < t i ∧ d j(T e2
(e), e1) < t j .
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