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Abstract

We investigate the multi-modal statistics of natural
image sequences looking at the modalities orientation,
color, optic flow and contrast transition. We can show
that the Gestalt law collinearity is measurable in vi-
sual data as a second order event of local line segment
detectors. Furthermore, we can show that the statisti-
cal interdependencies corresponding to the Gestalt law
collinearity increase significantly when we look not at
orientation only but also at other modalities in addition
to orientation. By these investigation, the attempt to
model the application of Gestalt laws in computer vi-
sion systems based on statistical measurements (as sug-
gested recently by some researchers ([10, 7, 15, 23]))
gets further support. The results in this paper also sug-
gest to formulate Gestalt principles in artificial vision
systems in a multi-modal way. We discuss the poten-
tial usage of statistical interdependencies measured in
this work within artificial visual systems and show first
results.

Keywords: Grouping, Modality Integration, Statistics
of Natural Images

1 Introduction

A large amount of research has been focused on
the usage of Gestalt laws in computer vision systems
(overviews are given in [22, 21]). The most often ap-
plied and also the most dominant Gestalt principle in
natural images is collinearity [7, 15]. Collinearity can
be exploited to achieve more robust feature extraction
in different domains, such as, edge detection (see, e.g.,
[11, 12]) or stereo estimation [5, 21]. In most applica-
tions in artificial visual systems, the relation between
features, i.e., the applied Gestalt principle, has been
defined heuristically. Mostly, explicit models of feature
interaction have been applied, connected with the in-
troduction of parameters to be estimated beforehand, a
problem recognized as extremely awkward in computer
vision. Recently, Geisler et al [10] introduced the idea
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Figure 1. Grouping of entities becomes intensified
(left triple) or weakened (right triple) by using addi-
tional modalities: Since the visual entities are not
only collinear but also show similarity in another
modality their grouping becomes more likely.

to overcome heuristic and explicit models by relating
feature interaction to the statistics of natural images.
The feasibility of this approach becomes strong sup-
port from the measurable interdependencies of features
in visual scenes as performed here and in some recent
work [15, 7, 10].

Many publications have addressed the question of
efficient coding of visual information and its relation
to the statistics of natural images (excellent overviews
are given in [26, 24]). While many publications were
concerned with the statistics on the pixel level and
the derivation of filters from natural images by cod-
ing principles (see, e.g. [19, 2]), recently statistical
investigation in the position-orientation feature space
(i-e., ssstatistics of local line detector responses) have
been performed (see, e.g., [15, 7, 10]) and have ad-
dressed the representation of Gestalt principles in this
feature space. This relates to an old idea. Decades ago,
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Figure 2. Top: Images of the data set. Bot-
tom: 3 Images from a sequence.

Brunswick and Kamiya [4] first had stated that Gestalt
principles should be related to the statistics of the nat-
ural world. Unfortunately the limited computational
power at this time made it difficult to quantitatively
support this statement. However, recently, the strong
prevalence of collinearity in natural images could be
measured first by [15] and [7]. These results have been
confirmed and extended by [23, 10].

Interestingly, the occurrence of illusionary contour
processing (in which the Gestalt law ’collinearity’ is
also tightly involved) develops at a late stage (after
approximately 6 months) during the development of
the human visual system (see [3] and [17]). This late
occurrence of the above mentioned mechanisms suggets
that those depend on visual experience about the un-
derlying structures in visual data. This also suggests
a formalization of Gestalt laws in artificial systems de-
pending on statistical measurements and thereby re-
placing heursitics by statistics.

In the human visual system beside local orientation
also other modalities such as color and optic flow are
computed (see, e.g., [9]). All these low level processes
face the problem of an extremely high degree of vague-
ness and uncertainty [1]. However, the human visual
systems acquires visual representations which allow for
actions with high precision and certainty within the
3D world under rather uncontrolled conditions. The
human visual system can achieve the necessary cer-
tainty and completeness by integrating visual informa-
tion across modalities (see, e.g., ([20, 13]).

Also Gestalt principles are affected by multiple
modalities. For example, figure 1 shows how collinear-
ity can be intensified by the different modalities con-
trast transition, optic flow and color. This paper ad-
dresses statistics of natural images in these modalities.
As a main result we find that statistical interdependen-
cies corresponding to the Gestalt law ”collinearity” in

visual scenes become significantly stronger when mul-
tiple modalities are taken into account (see section 3).
Furthermore, we show first results how instead of using
explicit rules for collinearity a simple criterion based
on our measurements can be used to code collinearity
within an artificial systems (see section 4).

2 Feature Processing

In the work presented here we address the multi—
modal statistics of natural images. We start from a
feature space (see also figure 3) containing the following
sub-modalities:

Orientation: We compute local orientation o (and
local phase p) by the filter [8].

Contrast Transition: The contrast transition of the
signal is coded in the phase p of the same filter. The
phase at a local maximum can be used to interpret the
kind of contrast transition at this maximum [14], e.g.,
a phase of % corresponds to a dark-bright edge, while
a phase of 0 corresponds to a bright line on dark back-
ground. The continuum of contrast transition at an in-
trinsic one-dimensional signal patch can be expressed
by the continuum of phases.

Color: Color is processed by integrating over image
patches in coincidence with their edge structure (i.e.,
integrating over the left and right side of the edge sep-
arately). Hence, we represent color by the two tuples
a(d,d,c),é = (c,c;,c;) representing the color in
RGB space on the left and right side of the edge. Note
that our coding of color information does not contain
any phase information since the tupels (c,,cg,cp) are
normalized to norm one, i.e., ¢, + ¢4 + ¢, = 1 with
¢ > 0.

Optic Flow: Local displacements 6 = (f1, f2) are
computed by the well known optical flow technique
[18].

All modalities are extracted from a local image
patch!, resembling to columns in V1 responsible for
a certain retina patch. The output is a local interpre-
tation of the image patch by semantic properties (such
as orientation and displacement).

For our statistics we use 9 Image sequences with
a total of 42 images of size 512x512 (18 images) and
384x288 (24 images). The image sequences contain
variations caused by object motion as well as camera
motion (see figure 2). There is a total of 3900 feature
vectors in the Data set (approximately 2600 from the
outdoor images) and the statistic is based on 1555548
second order comparisons.

Tn our statistical measurements we only use image patches
corresponding to intrinsically one-dimensional signals (see [26])
since orientation is reasonably defined for these image patches
only.
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Figure 3. Top left: Schematic representation of a basic feature vector. Bottom left: Frame in an
image (from image sequence shown in figure 2 (bottom)). Right: Extracted Feature vectors.

3 Statistical Interdependencies in Im-
age Sequences

We measure statistical interdependencies by the so
called "Gestalt coefficient’ which is defined by the ratio
of the likelihood of an event e' given another event e?
and the likelihood of the event e':

P(e'|e?)
Ple).

For the modeling of feature interaction a high Gestalt
coefficient is helpful since it indicates the modification
of likelihood of the event e! depending on other events.
A Gestalt coefficient of one says, that the event e? does
not influence the likelihood of the occurrence of the
event e'. A value smaller than one indicates a negative
dependency: the occurrence of the event e? reduces
the likelihood that e! occurs. A value larger than one
indicates a positive dependency: the occurrence of the
event e? increases the likelihood that e' occurs. The
Gestalt coefficient is illustrated in figure 4. Further
details can be found in [16].

G(e',e*) = 1)

3.1 Second Order Relations Statistics of Natural
Images

Here we not only perform statistics in the position—
orientation domain (as done by [15, 7, 10]) but we go

one step further by investigating the second order re-
lations of events in the multi-modal feature space

e = ((z,y),0,p, ((clr,clg,cf,), (C:acgac;;))a (f1, f2))

described above.

The distribution of the position (z,y) of entities in
the image space is approximately isotropic. However,
the distribution of orientations in the extracted enti-
ties is non—isotropic (see, e.g., [15]) with a significantly
higher density for vertical and horizontal orientation
than for diagonal orientation. Here, for the sake of
simplicity, we want to neglect this anisotropy (for a
detailed discussion see [15]). Therefore, in our inves-
tigation of second order relations we apply a transfor-
mation to the coordinate system such that the entity
€2 in the tuple (e!,e?) has zero orientation and zero
position.

In our measurements we collect second order events
in bins defined by small patches in the (z1,x2)-space
and by regions in the modality—spaces defined by the
metrics defined for each modality (for details see [16]).
Figure 5 shows the Gestalt coefficient for equidistantly
separated bins (one bin corresponds to a square of
10 x 10 pixels and an angle of ¥ rad). As already
been shown in [15, 10] collinearity can be detected as
significant second order relation as a ridge along the
x-axis in the surface plot for Ao = 0 in figure 5e. Also
parallelism is detectable as an offset of this surface (for



Figure 4. Let the second order event e be: “occur-
rence of collinear line segments two units away from
an existing line segment e2”. Left: Computation of
P(e'|e?). All possible occurrences of events e' in the
image are shown. Bold arcs represent real occurrences
of the specific second order relations e! whereas arcs
in general represent possible occurrences of ¢*. In this
image we have 17 possible occurrences of collinear
line segments two units away from an existing line
segment e® and 11 real occurrences. Therefore we
have P(e'le?) = 11/17 = 0.64. Right: Approxi-
mation of the probability P(e') by a Monte Carlo
method. Entities e? (bold) are placed randomly in
the image and the presence of the event ’occurrence
of collinear line segments two units apart of e?’ is
evaluated. (In our measurements we used more than
a 500000 samples for the estimation of P(e')). Only
in 1 of 11 possible cases this event takes place (bold
arc). Therefore we have P(e') = 1/11 = 0.09 and
the Gestalt coefficient for the second order relation is
G(e'|e?) = 0.64/0.09 = 7.1.

details see [16] and [15]). A Gestalt coefficient signif-
icantly above one can also be detected for small ori-

entation differences (figure 5d.f, i.e., Ao = —% and
Ao = %) corresponding to curved lines. The general

shape of surfaces is similar in all following measure-
ments concerned with additional modalities: we find a
ridge corresponding to collinearity and an offset corre-
sponding to parallelism and a Gestalt coefficient close
to one for all larger orientation differences. Therefore,
in the following we will only look at the surface plots
for equal orientation Ao = 0.

These result shows that Gestalt laws are reflected
in the statistics of natural images: Collinearity and
parallelism are significant second order events of visual
low level filters (see also [15]).

3.2 Pronounced Interdependencies by using addi-
tional Modalities

Now we can look at the Gestalt coefficient when we
also take into account the modalities contrast transi-
tion, optic flow and color.

Orientation and Contrast Transition: We say two

events ((z1,x2),0) and ((z],x}),0") have contrast tran-
sition (i.e., ’similar phase’) when d(p,p’) < tPT. tPt is
defined such that only 10% of the comparisons d(p, p')
in the data set are smaller than t?. The metric for
phase and all other modalities is defined in precisely in
[16].

Figure 6b shows the Gestalt coefficient for the events
’similar orientation and similar contrast transition’. In
figure 7 the Gestalt coefficient along the x-axes in the
surface plot of figure 6 (i.e., the collinearity ridge) is
shown. The Gestalt coefficient on the x-axes corre-
sponds to the ’collinearity’ ridge.

The first column of each group of 8 columns in fig-

ure 7 represents the Gestalt coefficient when we look
at similar orientation only, while the second columns
represent the Gestalt coefficient when we look at simi-
lar orientation and similar phase. We see a significant
increase of the Gestalt coefficient compared to the case
when we look at orientation only for collinearity.
Orientation and Optic Flow: The corresponding
surface plot is shown in figure 6¢ and the slice corre-
sponding to the collinearity ridge is shown as the third
columns in figure 7. An even more pronounced increase
of inferential power for collinearity can be detected.
Orientation and Color: Analogously, we define that
two events have ’similar color structure’. The corre-
sponding surface plot is shown in figure 6d and the
slice corresponding to the collinearity ridge is shown
the fourth columns in figure 7.
Multiple additional Modalities: Figure 6 shows
the surface for similar orientation, phase and optic flow
(figure 6e); similar orientation, phase and color (figure
6f) and similar orientation, optic flow and color (fig-
ure 6g). The slices corresponding to collinearity are
shown in the fifth to seventh columns in figure 7. We
can see that the the Gestalt coefficient for collinear line
segments increases significantly. Most distinctly for the
combination optic flow and color (seventh column). Fi-
nally we can look at the Gestalt coefficient when we
take all three modalities into account. Figure 6h and
the eighth column in figure 7 shows the results. Again
an increase of the Gestalt coefficient compared to the
case when we look at only two additional modalities
can be achieved.

This result shows that assuming a line segment with
a certain contrast transition does exist in an image
it not only that the likelihood for the existence of a
collinear line segment increases but that it also more
likely that it has similar contrast transition.

4 Conclusion and Discussion

In this paper we have addressed the statistics of lo-
cal oriented line segments derived from natural scenes.
We could validate that the Gestalt law collinearity is
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Figure 5. The Gestalt coefficient for differences in position from -50 to 50 pixel in x— and y— direction
when orientation only is regarded. In a) the differecne of orientation of the line segments is 7 (the
line segments are orhtogonal) while in e) the difference of orientation is 0, i.e., the line segments
have same orientation. The b), c), d) represent orientation difference between 7 and 0. Note that
the Gestalt coefficient for position (0,0) and Ao = 0 is set to the maximum of the surface for better
display. The Gestalt coefficient is not interesting at this position, since ¢! and ¢? are identical

measurable in natural images as a second order event
in the statistics of a local line segment detectors. Fur-
thermore, by adding information on contrast transi-
tion, color, and optic flow we could show that statis-
tical interdependencies in the orientation—position do-
main corresponding to collinearity become significantly
stronger if one additional modality is taken into ac-
count. The statistical interdependencies increase again
when multiple modalities are added. Essentially it
seems that visual information bears a high degree of
intrinsic redundancy that potentially can be used to
reduce the ambiguity of local feature processing.

The measured multi-modal interdependencies can
be used for the formalization of Gestalt principles in
artificial systems in a probabilistic framework (see, e.g.,
[10, 6]). The claim is that intrinsic regularities in visual
data allow for predictions which can be used to stabilize
locally extracted information. To justify this, we want
to address the issue of predictions in more detail now.
At least three kinds of predictions which all make use of
the Gestalt coefficient measured here, can be developed
immediately:

Existence: The existence of an entity e! becomes
more likely when an entity e? does exist and G(e!, e?)
is high. This kind of prediction can be used, e.g., to
stabilize the system’s confidence for the existence of e!
in case that there is only moderate evidence (for the
existence of e!) from local operations, i.e. at the basic
feature extraction stage (see figure 8a).

Grouping: Grouping can be achieved by assembling
those extracted feature vectors into a group for which
high statistical interdependencies have been measured,
i.e., in case that there is good evidence from local op-
erations that e! and e? do exist and G(e',e?) is high
they can be assumed to belong to the same group (see
figure 8b, first arrow). As already suggested in [10],
these feature assemblies can then be enlarged and sta-
bilized by using the transitivity relation, i.e., if ! and
€2 belong to a common feature group and e? and e?
belong to a common feature group than e! and e® be-
long to a common group as well (see figure 8b, second
arrow). Note that in this approach grouping does not
require explicitly defined higher feature constellation
but is performed dynamically, i.e. features become as-
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Figure 6. The Gestalt coefficient for Ao = 0 and all possible combination of modalities.

sembled according to the current input [25].

Feature Disambiguation: In case that entities
el,e2,... belong to the same group it can be assumed
that the semantic properties of the entities are influ-
enced by all entities belonging to the same group (see
figure 8¢ and 8d). For different modalities such inter-
actions have to formalized. Since metrics can be de-
fined for all modalities we can speak about similarity
in a modality. One possible formalization of an interac-
tion rule can be: If the entities e', €2, ... belong to the
same group and are similar in a certain modality (e.g.,
have similar color structure) we can define the value in
this modality (e.g., the RGB-vector & = (c., c}, ¢})) for
each entity as the (weighted) average over the values of
all entities in the group in this modality. In addition,
it may be that also specifics of the modalities have to
be taken into account (e.g., the aperture problem for
optic flow).

The formalization of interaction schemes based on
the measured Gestalt coefficient are addressed in our
current research. Here, we want to describe two exam-
ples: A process of self-emergence of feature constella-
tions and low—contrast edge detection. In both cases
only a simple criterion based on the Gestalt coefficient
is applied to realize the collinear relation.
Self-Emergence of Feature Constellations: The
need of entities going beyond local oriented edges is
widely accepted in computer vision systems across a
wide range of different viewpoints. Their role is to
extract from the complex distribution of pixels in an

image patch (or an image patch sequence) a sparse
and higher semantical representation which enables
rich predictions across modalities, spatial distances and
frames. Accordingly, they consist of groups of early vi-
sual features (such as local edges).

These higher feature constellations have been al-
ready applied in artificial systems but were needed to
be defined heuristically. By using a link criterion based
on the Gestalt coefficient (stating that there exist a link
when the Gestalt coefficient is high) and the transitiv-
ity relation (if two pairs of entities are linked then all
entities have to be linked) we are able to define a pro-
cess in which groups of local entities do self emerge.
Since the link relation defines an equivalent relation
on the space of entities this space can be separated in
disjunct linked groups which can be found by a simple
algorithm. In figure 9 (left) such groups are labeled by
same color at the center of the feature patches.

Detection of low Contrast Edges: Once the groups
have self-emerged they can be used to detect low con-
trast edges and reduce falsely detected edges caused
by structural noise by combining local confidence and
contextual confidence selected within the group an en-
tity belongs to. In figure 9b all features above a certain
threshold are displayed with a filled circle. Note the de-
tection of the low contrast edge (figure 9b, horizontal
ellipse) when applying grouping based on the Gestalt
coeflicient and the reduction of non meaningful features
(vertical ellipse) without grouping. The extraction of
features using only local information is shown in figure
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Figure 8. Schematic description of differ-
ent kind of predictions. a) Existence: The
low likelihood for the existence of the en-
tity ¢! (indicated as thin line) increases be-
cause of the better consolidated existence
of ¢? (indicated as bold line) and the high
Gestalt coefficient G(e',e?) for such a con-
stellation. b) Grouping: The concurrent ex-
istence of collinear entities (i.e., entities with
high G(e!,e?)) leads to grouping into tuples
and then (by the transitivity rule) to larger fea-
ture assemblies. c+d) Feature Disambigua-
tion: Orientation correction (c) and color cor-
rection (d) across entities assembled within
one group.

9c.

The exact formalization of grouping and feature dis-
ambigution based on sthe statistical measurements ex-
plained here is part of our current research and will be

described in a forecoming paper.
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