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Abstract

In this work we investigate the multi-modal statistics of natural image sequences looking at
the modalities orientation, color, optic flow and contrast transition. It turns out that second
order interdependencies of local line detectors can be related to the Gestalt law collinearity.
Furthermore we can show that statistical interdependencies increase significantly when we
look not at orientation only but also at other modalities.

The occurrence of illusionary contour processing (in which the Gestalt law ’collinearity’ is
tightly involved) at a late stage during the development of the human visual system (see, e.g.,
[3]) makes it plausible that mechanisms involved in the processing of Gestalt laws depend
on visual experience about the underlying structures in visual data. This also suggests a
formalization of Gestalt laws in artificial systems depending on statistical measurements. We
discuss the usage of statistical interdependencies measured in this work within an artificial
visual systems and show first results.
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tightly involved) at a late stage during the development of the human visual system (see, e.g.,
[3]) makes it plausible that mechanisms involved in the processing of Gestalt laws depend
on visual experience about the underlying structures in visual data. This also suggests a
formalization of Gestalt laws in artificial systems depending on statistical measurements. We
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1 Introduction

A large amount of research has been focused on the usage of Gestalt laws in computer vision
systems (overviews are given in [19, 18]). The most often applied and also the most dominant
Gestalt principle in natural images is collinearity [5, 12]. Collinearity can be exploited to achieve
more robust feature extraction in different domains, such as, edge detection (see, e.g., [9, 10]) or
stereo estimation [4, 18]. In most applications in artificial visual systems, the relation between
features, i.e., the applied Gestalt principle, has been defined heuristically based on semantic
characteristics such as orientation or curvature. Mostly, explicit models of feature interaction
have been applied, connected with the introduction of parameters to be estimated beforehand, a
problem recognized as extremely awkward in computer vision.

In the human visual system beside local orientation also other modalities such as color and
optic flow are computed (see, e.g. [7]). All these low level processes face the problem of an
extremely high degree of vagueness and uncertainty [1]. However, the human visual systems
acquires visual representations which allow for actions with high precision and certainty within
the 3D world under rather uncontrolled conditions. The human visual system can achieve the
necessary certainty and completeness by integrating visual information across modalities (see,
e.g., [17, 11]). This integration is manifested in the dense connectivity within brain areas in which
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Figure 1: Grouping of visual entities becomes intensified (left triple) or weakened (right triple) by using
additional modalities: Since the visual entities are not only collinear but show also similarity in an
additional modality their grouping becomes more likely.
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Figure 2: Top left: Schematic representation of a basic feature vector. Bottom left: Frame
in an image (the frame is part of the image sequence shown in figure 3 left). Right: Extracted
Feature vectors.

the different visual modalities are processed as well as in the large number of feedback connections
from higher to lower cortical areas (see, e.g., [7]).

Also Gestalt principles are affected by multiple modalities. For example, figure 1 shows how
collinearity can be intensified by the different modalities contrast transition, optic flow and color.
This paper addresses statistics of natural images in these modalities. As a main result we found
that statistical interdependencies corresponding to the Gestalt law ”collinearity” in visual scenes
become significantly stronger when multiple modalities are taken into account (see section 3).
Furthermore, we discuss how these measured interdependencies can be used within artificial visual

systems (see section 4).

2 Feature Processing

In the work presented here we address the multi-modal statistics of natural images. We start
from a feature space (see also figure 1) and 2 containing the following sub-modalities:
Orientation: We compute local orientation o (and local phase p) by the specific isotropic linear
filter [6].

Contrast Transition: The contrast transition of the signal is coded in the phase p of the same
filter.

Color: Color is processed by integrating over image patches in coincidence with their edge struc-
ture (i.e., integrating over the left and right side of the edge separately). Hence, we represent
color by the two tuples (., c_f], ), (cr, cy»cp) representing the color in RGB space on the left and
right side of the edge.

Optic Flow: Local displacements (f1, f2) are computed by a well known optical flow technique

([15])-



Figure 3: Left: Images of the data set (top) and 2 images of a sequence (bottom). Explanation of the
Gestalt coefficient G(e'|e?): We define e as the occurrence of a line segment with a certain orientation
(anywhere in the image). Right: Let the second order event ! be: “occurrence of collinear line segments
two units away from an existing line segment e?”. Left: Computation of P(e'|e?). All possible occurrences
of events e! in the image are shown. Bold arcs represent real occurrences of the specific second order
relations e' whereas arcs in general represent possible occurrences of e'. In this image we have 17
possible occurrences of collinear line segments two units away from an existing line segment e” and 11 real
occurrences. Therefore we have P(e'|e?) = 11/17 = 0.64. Right: Approximation of the probability P(e')
by a Monte Carlo method. Entities e? (bold) are placed randomly in the image and the presence of the
event ’occurrence of collinear line segments two units apart of e’ is evaluated. (In our measurements we
used more than a 500000 samples for the estimation of P(e')). Only in 1 of 11 possible cases this event
takes place (bold arc). Therefore we have P(e') = 1/11 = 0.09 and the Gestalt coefficient for the second
order relation is G(e'|e?) = 0.64/0.09 = 7.1.

All modalities are extracted from a local image patch!. The output is a local interpretation of
the image patch by semantic properties (such as orientation and displacement) in analogy to the
sparse output of a V1 column in visual cortex.

For our statistics we use 9 image sequences with a total of 42 images of size 512x512 (18 images)
and 384x288 (24 images). Our data (see figure 3 left for examples) contains variations caused by
object motion as well as camera motion. There is a total of 3900 feature vectors in the Data set
(approximately 2600 from the outdoor images) and the statistic is based on 1555548 second order
comparisons.

3 Statistical Interdependencies in Image Sequences

The Gestalt coefficient is defined by the ratio of the likelihood of an event e! given another event
e? and the likelihood of the event e':

P(elle?)
G(e',e?) = ——— 1

(€,¢") =y 1)
For the modeling of feature interaction a high Gestalt coefficient is helpful since it indicates the
modification of likelihood of the event e! depending on other events. A Gestalt coefficient of one

1n our statistical measurements we only use image patches corresponding to intrinsically one-dimensional signals
(see [22]) since orientation is reasonably defined for these image patches only.
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Figure 4: The Gestalt coefficient for differences in position from -50 to 50 pixel in x— and y—
direction when orientation only is regarded. In a) the differecne of orientation of the line segments
is 7 (the line segments are ortogonal) while in e) the difference of orientation is 0, i.e., the line
segments have same orientation. The b), c), d) represent orientation difference between 7 and
0. Note that the Gestalt coefficient for position (0,0) and Ao = 0 is set to the maximum of the
surface for better display. The Gestalt coefficient is not interesting at this position, since e! and

e? are identical.

says, that the event e2 does not influence the likelihood of the occurrence of the event e!. A value
smaller than one indicates a negative dependency: the occurrence of the event e? reduces the
likelihood that el occurs. A value larger than one indicates a positive dependency: the occurrence
of the event e? increases the likelihood that e' occurs. The Gestalt coefficient is illustrated in
figure 3. Further details can be found in [13].

3.1 Second Order Relations Statistics of Natural Images

A large amount of work has addressed the question of efficient coding of visual information and
its relation to the statistics of images. Excellent overviews are given in [22, 21]. While many
publications were concerned with the statistics on the pixel level and the derivation of filters from
natural images by coding principles (see, e.g. [16, 2]), recently statistical investigation in the
feature space of local line segments have been performed (see, e.g., [12, 5, 8]) and have addressed
the representation of Gestalt principles in visual data.

Here we go one step further by investigating the second order relations of events in our multi—

modal feature space
€= (('Z.7y)70)p7 ((05-70[974))7 (C:JCZJCZ))7 (f17f2))'

In our measurements we collect second order events in bins defined by small patches in the
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Figure 5: The Gestalt coefficient for Ao = 0 and all possible combination of modalities.

(z1,22)-space and by regions in the modality—spaces defined by the metrics defined for each
modality (for details see [13]). Figure 4 shows the Gestalt coefficient for equidistantly separated
bins (one bin corresponds to a square of 10 x 10 pixels and an angle of ¥ rad). As already been
shown in [12, 8] collinearity can be detected as significant second order relation as a ridge in the
surface plot for Ao = 0 in figure 4e. Also parallelism is detectable as an offset of this surface.
A Gestalt coefficient significantly above one can also be detected for small orientation differences
(figure 4d,f, i.e., Ao = —% and Ao = %) corresponding to the frequent occurrence of curved
entities. The general shape of surfaces is similar in all following measurements concerned with
additional modalities:we find a ridge corresponding to collinearity and an offset corresponding to
parallelism and a Gestalt coefficient close to one for all larger orientation differences. Therefore, in
the following we will only look at the surface plots for equal orientation Ao = 0. These result shows
that Gestalt laws are reflected in the statistics of natural images: Collinearity and parallelism are
significant second order events of visual low level filters (see also [12]).

3.2 Pronounced Interdependencies by using additional Modalities

Now we can look at the Gestalt coefficient when we also take into account the modalities contrast
transition, optic flow and color.

Orientation and Contrast Transition: We say two events ((z1,22),0) and ((z},}),0') have
ssimilar contrast transition (i.e., ’similar phase’) when d(p, p') < t?*. The metrics in the different
modalities are precisely defined in [13]. #P* is defined such that only 10% of the comparisons
d(p,p') in the data set are smaller than #?. Figure 5b shows the Gestalt coefficient for the events
‘similar orientation and similar contrast transition’. In figure 6 the Gestalt coefficient along the
x-axes in the surface plot of figure 5 is shown. The Gestalt coefficient on the x-axes correspond
to the ’collinearity ridge’. The first column represents the Gestalt coefficient when we look at
similar orientation only, while the second columns represent the Gestalt coefficient when we look
at similar orientation and similar phase. We see a significant increase of the Gestalt coefficient
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Figure 6: The Gestalt coefficient for collinear feature vectors for all combinations of modalities.
For (0,0) the Gestalt coefficient is not shown, since e! and e? would be identical.

compared to the case when we look at orientation only for collinearity.

This result shows that assuming a line segment with a certain contrast transition does exist in
an image it not only that the likelihood for the existence of a collinear line segment increases but
that it also more likely that it has similar contrast transition.

Orientation and Color: Analogously, we define that two events have ’similar color structure’.
The corresponding surface plot is shown in figure 5d and the slice corresponding to collinearity is
shown in the fourth column in figure 6.

Orientation and Optic Flow: The corresponding surface plot is shown in figure 5c and the slice
corresponding to collinearity is shown in the third column in figure 6. An even more pronounced
increase of inferential power for collinearity can be detected.

Multiple additional Modalities: Figure 5 shows the surface for similar orientation, phase and
optic flow (figure 5e); similar orientation, phase and color (figure 5f) and similar orientation, optic
flow and color (figure 5g). The slices corresponding to collinearity are shown in the fifth to seventh
columns in figure 6. We can see that the the Gestalt coefficient for collinear line segments increases
significantly. Most distinctly for the combination optic flow and color (seventh column). Finally
we can look at the Gestalt coefficient when we take all three modalities into account. Figure 5h
and the eighth column in figure 6 shows the results. Again an increase of the Gestalt coefficient
compared to the case when we look at only two additional modalities can be achieved.

4 Summary and Examples of Possible Applications

In this paper we have addressed the statistics of local oriented line segments derived from natural
scenes by adding information to the line segment concerning the modalities contrast transition,
color, and optic flow. We could show that statistical interdependencies in the orientation—position
domain correspond to the Gestalt laws collinearity and parallelism and that they become signifi-
cantly stronger when multiple modalities are taken into account. Essentially it seems that visual
information bears a high degree of intrinsic redundancy. This redundancy can be used to reduce
the ambiguity of local feature processing.

The results presented here provide further evidence for the assumption that despite the vague-
ness of low level processes stability can be achieved by integration of information across modalities.
In addition, the attempt to model the application of Gestalt laws based on statistical measure-
ments, as suggested recently by some researchers (see, [8, 5, 12, 20]) gets further support. Most
importantly, the results derived in this paper suggest to formulate the application of Gestalt
principles in a multi-modal way.

Tllusionary contour processing (in which the Gestalt law ’collinearity’ is tightly involved) occurs
at a late stage (after approximately 6 months) during the development of the human visual system
(see [3] and [14]). This late development of the above mentioned mechanisms makes it likely



Figure 7: Left: Image of a car. Right top: Extraction of features with grouping based on the
Gestalt coefficient. Right bottom: Feature extraction without grouping.

that those mechanisms depend on visual experience of the underlying structures in visual data.
This also suggests a formalization of Gestalt laws in artificial systems depending on statistical
measurements.

Motivated by the measurable reflectance of Gestalt principles in the statistics of natural images

(as shown in this paper) and the late development of abilities in which these Gestalt principles are
involved, it is our aim to replace heuristic definition of Gestalt rules by interaction schemes based
on statistical measurements. We want to describe two examples: A process of self-emergence of
feature constellations and low—contrast edge detection. In both cases only a simple criterion based
on the Gestalt coefficient is applied to realize the collinear relation.
Self-Emergence of Feature Constellations: The need of entities going beyond local oriented
edges is widely accepted in computer vision systems across a wide range of different viewpoints.
Their role is to extract from the complex distribution of pixels in an image patch (or an image
patch sequence) a sparse and higher semantical representation which enables rich predictions
across modalities, spatial distances and frames. Accordingly, they consist of groups of early visual
features (such as local edges)

These higher feature constellations have been already applied in artificial systems but were
needed to be defined heuristically. By using a link criterion based on the Gestalt coefficient
(stating that there exist a link when the Gestalt coefficient is high) and the transitivity relation (if
two pairs of entities are linked then all entities have to be linked) we are able to define a process
in which groups of local entities do self emerge.

Detection of low Contrast Edges Once the groups have self-emerged they can be used



to detect low contrast edges and reduce falsely detected edges caused by structural noise by
combining local confidence and contextual confidence selected within the group an entity belongs
to. In figure 7b and c all features above a the very same threshold are displayed with a filled circle
while features below this threshold are displayed without these circles. Note the detection of the
low contrast edge (figure 7b, horizontal ellipse) when applying grouping based on the Gestalt
coefficient and the reduction of non meaningful features (vertical ellipse) without grouping.

The exact formalization of grouping and feature disambigution based on the statistical mea-
surements explained here is part of our current research and will be described in a forthcoming
paper.
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