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Abstract

In this work we investigate the multi-modal statistics of natural im-
age sequences looking at the modalities orientation, color, optic flow and
contrast transition. It turns out the statistical interdependencies corre-
sponding to the Gestalt law collinearity increase significantly when we
look not at orientation only

1 Introduction

A large amount of research has been focused on the usage of Gestalt laws in com-
puter vision systems (overviews are given in [14, 13]). The most often applied
and also the most dominant Gestalt principle in natural images is collinearity
[3, 9]. Collinearity can be exploited to achieve more robust feature extraction in
different domains, such as, edge detection (see, e.g., [7, 8]) or stereo estimation
[2, 13]. In most applications in artificial visual systems, the relation between fea-
tures, i.e., the applied Gestalt principle, has been defined heuristically based on
semantic characteristics such as orientation or curvature. Mostly, explicit mod-
els of feature interaction have been applied, connected with the introduction
of parameters to be estimated beforehand, a problem recognized as extremely
awkward in computer vision. Recently, Geisler et al [6] introduced the idea to
overcome heuristic and explicit models by relating feature interaction to the
statistics of natural images. The feasibility of this approach becomes strong
support from the measurable interdependencies of features in visual scenes that
turn out to correspond to Gestalt laws [9, 3, 6].

In the human visual system beside local orientation also other modalities
such as color and optic flow are computed (see, e.g. [5]). Gestalt principles are
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Figure 1: Grouping of entities becomes intensified (left triple) or weakened (right

triple) by using additional modalities.




affected by multiple modalities. For example, figure 1 shows how collinearity
can be intensified by the different modalities contrast transition, optic flow and
color. This paper addresses statistics of natural images in these modalities. As
a main result we found that statistical interdependencies corresponding to the
Gestalt law ”collinearity” in visual scenes become significantly stronger when
multiple modalities are taken into account (see section 2).

2 Multi—-Modal Statistics in Image Sequences

In the work presented here we address the multi-modal statistics of natural
images. We start from a feature space (see also figure 1) containing the sub-
modalities:

Orientation: We compute local orientation o (and local phase p) by the specific
isotropic linear filter [4].

Contrast Transition: The contrast transition of the signal is coded in the
phase p of the same filter.

Color: Color is processed by integrating over image patches in coincidence with
their edge structure (i.e., integrating over the left and right side of the edge
separately). Hence, we represent color by the two tuples (ck,d}, ¢}), (¢, ¢}, ¢)
representing the color in RGB space on the left and right side of the edge.
Optic Flow: Local displacements (f1, f2) are computed by a well known optical
flow technique ([11]).

2.1 Measuring Statistical Interdependencies:

We measure statistical interdependencies by the so called ‘Gestalt coefficient’
(see also [9]). The Gestalt coefficient is defined by the ratio of the likelihood of
an event e’ given another event e? and the likelihood of the event e!:

P(e'|e?)

G(el,e?) = Pleh)

(1)

For the modeling of feature interaction a high Gestalt coefficient is helpful since
it indicates the modification of likelihood of the event e! depending on other
events. A Gestalt coefficient of one says, that the event €2 does not influence the
likelihood of the occurrence of the event e!. A value smaller than one indicates
a negative dependency: the occurrence of the event e? reduces the likelihood
that e! occurs. A value larger than one indicates a positive dependency: the
occurrence of the event e? increases the likelihood that e! occurs. The Gestalt
coefficient is illustrated in figure 2. Further details can be found in [10].

2.2 Second Order Relations Statistics of Natural Images

A large amount of work has addressed the question of efficient coding of visual
information and its relation to the statistics of images. Excellent overviews are
given in [16, 15]. While many publications were concerned with the statistics
on the pixel level and the derivation of filters from natural images by coding
principles (see, e.g. [12, 1]), recently statistical investigation for local edge



Figure 2: Left: Images of the data set (top) and 2 images of a sequence (bottom).
Right: Explanation of the Gestalt coefficient G(e'|e?): We define e? as the occur-
rence of a line segment with a certain orientation (anywhere in the image). Let the
second order event e' be: “occurrence of collinear line segments two units away from
an existing line segment e*”. Left diagram: Computation of P(e'|e?). All possible oc-
currences of events e! in the image are shown. Bold arcs represent real occurrences of
the specific second order relations e' whereas arcs in general represent possible occur-
rences of e'. In this image we have 17 possible occurrences of collinear line segments
two units away from an existing line segment e? and 11 real occurrences. Therefore
we have P(e'|e®) = 11/17 = 0.64. Right diagram: Approximation of the probability
P(e') by a Monte Carlo method. Entities e® (bold) are placed randomly in the image
and the presence of the event ’occurrence of collinear line segments two units apart
of ¢?’ is evaluated. (In our simulations we used more than a 500000 samples for the
estimation of P(e')). Only in 1 of 11 possible cases this event takes place (bold arc).
Therefore we have P(e') = 1/11 = 0.09 and the Gestalt coefficient for the second
order relation is G(e'|e?) = 0.64/0.09 = 7.1.

structures have been performed (see, e.g., [9, 3, 6]) and have addressed the
representation of Gestalt principles.

Here we go one step further by investigating the second order relations not
only in the modality orientation but in our multi-modal feature space

€= ((1171,.'172),0,]?, ((Ci.,c‘lq,Cé), (C:,C;,Cg)), (fla f2))

In our simulations we collect second order events in bins defined by small
patches in the (x1,2z2)-space and by regions in the modality—spaces defined by
the metrics defined for each modality (for details see [10]). Figure 3 shows the
Gestalt coefficient for equidistantly separated bins (one bin corresponds to a
square of 10 x 10 pixels and an angle of ¥ rad). As already been shown in [9, 6]
collinearity can be detected as significant second order relation as a ridge in the
surface plot for Ao = 0 in figure 3e. Also parallelism is detectable as an offset of
this surface. A Gestalt coefficient significantly above one can also be detected
for small orientation differences (figure 3d.f, i.e., Ao = —% and Ao = %).

The general shape of surfaces is similar in all following measurements con-
cerned with additional modalities: we find a ridge corresponding to collinearity
and an offset corresponding to parallelism and a Gestalt coefficient close to one
for all larger orientation differences. Therefore, in the following we will only
look at the surface plots for equal orientation Ao = 0. These result shows that
Gestalt laws are reflected in the statistics of natural images: Collinearity and
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Figure 3: The Gestalt coeflicient for differences in position from -50 to 50 pixel
in x— and y— direction when orientation only is regarded. Note that the Gestalt
coefficient for position (0,0) and Ao = 0 is set to the maximum of the surface for
better display. The Gestalt coefficient is not interesting at this position, since
e! and e? are identical

parallelism correspond to significant second order events of visual low level filters
(see also [9]).

2.3 Pronounced Interdependencies by using additional Mo-
dalities

Now we can look at the Gestalt coefficient when we also take into account the
modalities contrast transition, optic flow and color.

One additional modality: Figure 4b shows the Gestalt coefficient for the
events ’similar orientation and similar contrast transition’ (the metrics for the
different modalities are defined precisely in [10]). In figure 5 the Gestalt coef-
ficient along the x-axes in the surface plot of figure 4 is shown. The Gestalt
coefficient on the x-axes correspond to the ’collinearity’ ridge. The first col-
umn represents the Gestalt coefficient when we look at similar orientation only,
while the second columns represent the Gestalt coefficient when we look at sim-
ilar orientation and similar phase. We see a significant increase of the Gestalt
coefficient compared to the case when we look at orientation only corresponding
to the Gestalt law collinearity. Analogously, we define that two events have
‘similar color structure’ or ’similar optic flow’. The corresponding surface plot
is shown in figure 4c¢ and 4d. The slice corresponding to the collinearity ridge
is shown in the third and fourth column in figure 5. An even more pronounced
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Figure 4: The Gestalt coefficient for Ao = 0 and all possible combination of
modalities.

increase of inferential power for collinearity can be detected.

Multiple additional Modalities: Figure 4 shows the surface for similar ori-
entation, phase and optic flow (figure 4e); similar orientation, phase and color
(figure 4f) and similar orientation, optic flow and color (figure 4g). The slices
corresponding to collinearity are shown in the fifth to seventh columns in figure
5. We can see that the the Gestalt coefficient for collinear line segments again
increases significantly. Most distinctly for the combination optic flow and color
(seventh column). Finally we can look at the Gestalt coefficient when we take
all three modalities into account. Figure 4h and the eighth column in figure 5
shows the results. Again an increase of the Gestalt coefficient compared to the
case when we look at only two additional modalities can be achieved.

Conclusion: In this paper we have addressed the statistics of local oriented
line segments derived from natural scenes by adding information to the line
segment concerning the modalities contrast transition, color, and optic flow. We
could show that statistical interdependencies in the orientation—position domain
correspond to the Gestalt laws collinearity and parallelism and that they become
significantly stronger when multiple modalities are taken into account.

The results presented here provide further evidence for the assumption that
despite the vagueness of low level processes stability can be achieved by inte-
gration of information across modalities. In addition, the attempt to model
the application of Gestalt laws based on statistical measurements, as suggested
recently by some researchers (see, [6, 3, 9]) gets further support. Most impor-
tantly, the results derived in this paper suggest to formulate the application of
Gestalt principles in a multi-modal way.
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Figure 5: The Gestalt coefficient for collinear feature vectors for all combinations
of modalities. The x-axis represents the distance of the collinear line segments
in pixel and corresponds to the collinearity ridge in figure 3 and 4. For (0,0)
the Gestalt coefficient is not shown, since e! and e? would be identical.
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