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Abstract In this article, we describe technologies facili-

tating the set-up of automated assembly solutions which

have been developed in the context of the IntellAct project

(2011–2014). Tedious procedures are currently still

required to establish such robot solutions. This hinders

especially the automation of so called few-of-a-kind pro-

duction. Therefore, most production of this kind is done

manually and thus often performed in low-wage countries.

In the IntellAct project, we have developed a set of

methods which facilitate the set-up of a complex automatic

assembly process, and here we present our work on tele-

operation, dexterous grasping, pose estimation and learning

of control strategies. The prototype developed in IntellAct

is at a TRL4 (corresponding to ‘demonstration in lab

environment’).

Keywords Robotics � Automated assembly � Pose

estimation � Robot control

1 Introduction

In the IntellAct project [IntellAct (2011–2014): Intelligent

observation and execution of Actions and manipulations,

http://intellact.sdu.dk/], we created new technologies for

facilitating the setting up of automated assembly pro-

cesses with robots. The use of robots is still considerably

hindered by the complexities involved in setting up robot

solutions since these usually require expert knowledge

and also significant time for testing and fine-tuning. The

developed technologies in IntellAct allow for faster set-up

times, which is crucial for the use of robots especially for
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small batch size production (also called ‘few-of-a-kind

production’).

In the IntellAct project, we used a well known

assembly task—the so called Cranfield benchmark [1]

(see Fig. 1a)—as a test case. The Cranfield benchmark

reflects problems also prevalent in other assembly tasks

typically occurring in companies, both in terms of com-

plexity of the individual assembly actions as well as the

number of entities to be assembled. It involves 5 Peg-in-

Hole (PiH) operations (see Fig. 1c) as well as other

(reverse) insertion tasks (see Fig. 1b) with objects of

rather different size and shape. However, as it will

become clear from this article, the technologies developed

in IntellAct are not restricted to the Cranfield benchmark

but are generically applicable for a wide class of assembly

tasks.

Set-up times for automated assembly solutions are

dominated by a number of sub-problems: First, often spe-

cialized grippers are used for grasping and manipulation

that allow for good force control (see Fig. 2a). These

grippers often need to be designed or refined for particular

objects occurring in the assembly process. Moreover, the

different shapes and sizes in the Cranfield set do not allow

for the use of only a single simple gripper type. Second, in

today’s robot solutions it is often required to assure that the

position and orientation of objects is predetermined with a

high degree of precision. This usually requires specific

machinery for precise positioning, as shown in Fig. 2b.

This causes additional hardware costs but usually also

requires some expert knowledge at the end-user side to

integrate such systems in the automated assembly system.

Third, robot grasps and trajectories (including appropriate

forces) need to be taught in or programmed, which in

general is done through menu-oriented control devices (see

Fig. 2c) or kinesthetic guidance, both potentially quite

tedious procedures.

However, new technologies have been developed over

the last decade that address the above mentioned problems.

Firstly, dexterous grippers—which are becoming increas-

ingly relevant for industry—facilitate the realization of a

variety of grasp types and by that are able to deal with

objects of rather different size and shape (see Fig. 3).

Secondly, vision-based pose estimation is entering assem-

bly processes and relieve the need for designing systems

that require high accuracy of object positions. Thirdly, new

methods and devices for teaching trajectories to robots are

emerging. Fourthly, control strategies have been developed

that can adapt to new task contexts. In the course of the

IntellAct project, it became increasingly clear that the first

two points and the fourth point are tightly connected, since

the use of dexterous hands as well as pose estimation by

vision introduce uncertainties in the process that control

strategies need to be able to compensate for.

2 Robot Platform

Our robot platform MARVIN is a robotic platform

designed to simulate industrial assembly tasks (see

Fig. 4a). The setup includes both perception and manipu-

lation devices. The perception part includes three sets of

vision sensors, each set consisting of a Bumblebee21 stereo

camera, a Kinect sensor as well as a projector which is used

to project texture on the objects in case the Bumblebee

cameras are used (Fig. 4c). In general the precision of 3D

reconstruction was higher with the Bumblebee cameras

than with the kinect cameras; however the achievable

frame-rate was higher with the Kinect cameras. The three

vision sensor sets are placed with approx. 120� separation,

as shown in Fig. 4b. In addition to the cameras, the plat-

form is also equipped with high-precision magnetic track-

ers of the type trakSTAR2 providing 6D poses

simultaneously from up to four sensors. For manipulation,

two Universal Robots (UR) are mounted on each side of

Fig. 1 a Cranfield assembly task. b An insertion action from the

Cranfield benchmark. c An peg-in-hole action from the Cranfield

benchmark
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the main table (see Fig. 4a). One robot is equipped with a

Schunk SDH II gripper. Although the Cranfield objects

vary significantly in size and shape, the SDH-II hand is

able to grasp all objects of the Cranfield set (see Fig. 3). On

one UR-arm, a force-torque sensor is mounted between the

robot end effector and the SDH gripper. Force/torque

information is crucial for the learning of execution actions

as described in Sect. 3.3. For further details see [2].

3 IntellAct Technologies

The grasps are taught in by means of tele-operation (see

Sect. 3.1). The need for exact object positioning is over-

come by vision-based pose estimation using a multi-cam-

era set-up (see Sect. 3.2). Finally, robot control strategies

based on Dynamic Motor Primitives (DMPs) [3] are

established, which allow for the adaptation of the taught-in

trajectories to the robot embodiment and to the concrete

task context (as described in Sect. 3.3).

3.1 Teleoperation

Tele-operating control methods should be rather intuitive

and should also allow the user to ‘act naturally’, and by

that facilitate the transfer of human manipulation expe-

rience and intelligence into the tele-operated process.

Assembly actions can be broken down into three sub-

phases: The first phase concerns the grasping of objects,

the second concerns the transport of the object to a

position in which then, in the third phase, the physical

interaction between two objects—the actual assembly

operation—occurs.

Within the IntellAct project, we have experimented with

a variety of tele-operation methods, using different control

modalities, such as a data glove (see Fig. 5a, c) and a

control peg from the Cranfield set (see Fig. 5d). In both

data glove and control peg, a trakStar sensor was inte-

grated, which tracks the 6D pose relative to the transmitter

and transforms this to the robot on a 1:1 scale (see [4] and

Fig. 5b, d). In addition, we also investigated the use of the

Universal Robot control panel and kinesthetic guidance.

The aim was to determine what the advantages and dis-

advantages of each tele-operation modality are with respect

to success rate, efficiency and number of errors. Our results

show that the data glove (see [5]) yields relatively low

success rates since human embodiment can interfere with

intuitive use [4].3

The control peg was found to be superior also with

respect to truing time needed and intuitive handling.

Similarly, while users prefer the control panel because it

seems highly transparent and while it is very well suited

for large movements of the robot, fine-tuning the gripper

on an object turned out to be more complicated than

expected using the control panel [6]. Furthermore, our

experiments show that in the tele-operation modality,

errors occur concerning too much pressure, self-collision

and singularity (which means to bring the robot into a

position that does not allow to read out inverse kinematics

for learning from demonstration). Interestingly, users have

no intuitions about how to avoid or even resolve such

errors [7]. Moreover, the errors are not due to the tele-

operation speed [8]. In sum, our experiments have shown

that the choice of teleoperation modality can have a

considerable impact on the data quality for learning by

demonstration.

Fig. 2 a Specialized gripper for a specific assembly task with a specific object. b Typical feeding machine used in automated assembly.

c Control panel based programming of the UR robot arm

Fig. 3 Dexterous grasping of parts of the Cranfield benchmark

3 The experiments in [4, 6–8] were done by people not knowing the

system before.
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In the IntellAct project, we have eventually used the

data glove mode for teaching the first phase discussed

above (i.e., grasping). For the second phase—i.e., reach-

ing a position in which the third assembly phase in which

physical object interaction occurs can start—no demon-

stration was required since appropriate trajectories can be

directly computed from the object poses extracted from

vision and the target poses. A direct use of the objects (as

shown in Fig. 4d in the context of peg-in-hole actions)

was then used to teach in the final assembly phase to

allow for an optimal transfer of human dexterous skills. In

particular, forces and torques similar to the forces and

torques that were experienced by the human could be

recorded by the FT-sensor in the wrist of the robot in

such a set-up. This information was then used for the

learning of appropriate motor control strategies as

described in Sect. 3.3.

The second demonstration4 at the final review shows the

teaching of the action by means of the technology devel-

oped in IntellAct.

3.2 Pose Estimation and Tracking

A particularly challenging problem is the perception and

monitoring aspect. Especially in few-of-a-kind production

environments, there is a need to be able to adapt to novel

objects, which can be recognized and localized with high

reliability and precision. This challenge is fundamental to

computer vision, and a great body of work is dedicated to a

generic detection from both, 2D (see e.g., [10]) and 3D (see

e.g., [11]) data. An additional complication arises under

assembly tasks, since the vision system has to be able to

track relevant parts, potentially undergoing complex

manipulations with the risk of occlusions.

For the MARVIN platform we have developed an array

of algorithms to deal with these perception problems. Our

object recognition system performs all processing on 3D

point clouds, and for this reason no complicated training

phase is required, assuming that a 3D CAD model is

available. This allows us to describe objects and their

locations in the coordinate frame of the acting robot using

the calibrated robot-camera extrinsics. During processing,

3D data from the scene is captured by both 2.5D sensors

Robot Base Robot Reach CameraCamera viewWorkspace
BA

C D

Fig. 4 a MARVIN platform. b Top-view indicating the workspace of the two robots and the viewing field of the three distributed camera

systems. c The two vision sensors and projector. d Tele-operation and recording of forces and torques

4 See http://www.youtube.com/watch?v=c4Yc3_ES2YY.
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(Kinects) and stereo cameras (see also Fig. 4c). The objects

involved in the process are in our case given as CAD files

which we have sampled to point clouds, but our platform

also allows for capturing novel objects from multi-view

stereo or Kinect to obtain an object representation. We

outline the proposed algorithms for recognition, pose esti-

mation and tracking below. An evaluation of the monitoring

system with focus on the tracking is presented in [12].

3.2.1 Object Recognition

At the very beginning of a process, the perception system is

presented with a scene occupied by an unknown number of

objects. To recognize which objects are present, we use the

algorithm presented in [13], which is based on multi-view

Kinect observations to cover the viewing sphere. The

objects in the scene are described by global histograms

capturing both appearance and geometry statistics. Each

object histogram is fed to a random forest classifier [14],

which has been pre-trained for the known objects.

3.2.2 Pose Estimation

Upon completion, the object recognition system returns the

identities of the parts present in the scene. We now apply

an efficient pose estimation algorithm proposed in [15] for

obtaining the absolute orientation and translation of all the

objects. This algorithm implements a prerejection step

based on low-level 3D geometric invariants on top of the

RANSAC [16] algorithm for a fast search for the correct

pose. This leads to a running time of less than 0.5 s per

object. The output of the recognition and pose estimation

systems for the Cranfield set is shown in Fig. 6, left, with

the aligned object models indicated by random colors.

3.2.3 Tracking

When all object identities and their locations have been

recovered, a trigger is sent to initiate the manipulation

system and from this point on the objects can move in an

unpredicted manner. To maintain the objects in moving

sequences, we apply a particle filter based tracker [17].

This tracker directly makes use of the 3D model repre-

sentation, and provides a reliable monitoring of the objects

during various manipulations. Using CPU parallelization,

the algorithm runs in real-time, which is crucial for online

monitoring. A visualization of the end configurations and

the foregoing tracks of the Cranfield objects can be seen in

Fig. 6, right. The performance of the IntellAct vision sys-

tem can also be seen in a video5.

3.3 DMP Learning

One of the major requirements for a faster set-up of auto-

mated assembly systems is robustness and fast adaptation

to some unexpected environment changes. There are many

aspects that can affect the final success of an assembly

operation, such as non-precise pose estimation of objects,

uncertainties about the gripping pose, small tolerances in

object shape, etc. Assembly processes are characterized by

the fact that very large forces can arise from small toler-

ances in object poses and shapes, which can result in

failure of the operation or even in damage to the robot and

the equipment. It is therefore necessary to provide

Fig. 6 Left recognized Cranfield objects and their estimated poses,

shown by random colors. Right state of the tracking system, seen from

a different camera view, upon completion of a complex assembly

sequence performed by the robots. Each object is correctly monitored

during the sequence, shown by colored tracks

Fig. 5 Two tele-operating modes utilizing the trakStar sensor: a, c:

Teleoperation via the data glove. b, d: Teleoperation via the external

device

5 See https://www.youtube.com/watch?v=LXhzSckFy9I.
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methodologies that enable on-line adaptation of assembly

policies in presence of uncertainties. Some previously

proposed solutions rely on passive mechanical devices

mounted at the robot wrist, such as Remote-Center-of-

Compliance. In our work, we focused on adaptation based

on explicit force sensing and corresponding robot actions,

which we refer to as active strategies. Such strategies can

account for larger positioning errors and can therefore be

used for more complex assembly operations [19]. In the

past, many active force control approaches were proposed

to solve Peg-in-hole tasks with robot manipulators [20, 21].

One problem that often arises in these approaches is that

the optimal control policy depends on the shape of the peg

and the hole. The adaptation of control strategies to the

shape of the manipulated objects is therefore often defined

manually by a skilled engineer [22]. Despite this, the

assembly speed achieved by active approaches is still not

comparable to humans, since force control strategies usu-

ally require low speed in order to assure stable operation in

presence of environment uncertainties [19]. When high

gain force control was used in our experiments, the peg

often got stuck in the hole and couldn’t be inserted in its

entirety. This gave rise to the key idea underlying our

approach, namely to first execute the movement slowly and

then to increase the speed of execution gradually based on

the prediction of force feedback through the adaptation

provided by an appropriate learning algorithm. Since

humans are very good at performing assembly tasks that

require compliance and force control, we use human

demonstration of the task as a starting point. Our approach

is to associate pre-recorded Cartesian space trajectories

with force profiles sensed by the robot hand, which arise

due to contacts between objects involved in an assembly

operation.

Since our trajectories are specified in Cartesian space,

we can transform them to new workpiece configurations,

which can for example be recorded by vision. However,

PiH-like tasks normally fail if the recorded and trans-

formed trajectories are just repeated without any feedback

control. Even small noise, which is always present if the

workpiece pose is estimated by vision, can introduce large

discrepancies between the recorded and current force pro-

files. In our approach we thus slow down the execution and

adapt the recorded and transformed trajectories to better

match the force profile associated to the recorded trajectory

with the force profile of the current trajectory.

In order to implement our approach, which allows

continuous temporal and spatial modification of the ini-

tially demonstrated policy, we applied the framework of

Dynamic Motion Primitives (DMP), initially proposed by

Ijspeert et al. [3]. A DMP contains free parameters that can

be computed from a single human demonstration to encode

the demonstrated trajectory. In contrast to most trajectory

representations, which are time dependent, DMPs are phase

dependent and only indirectly dependent on time. Through

a simple modulation of the phase, we can change the time

evolution of the encoded movement, which enables to

implement our first idea: to slow down the assembly task

execution whenever excessive forces arise. This gives the

robot enough time to adapt to the previously recorded force

profile through the application of iterative learning control

[23, 24], which results in a stable execution of PiH-like

tasks in new configurations. More details about the DMP

modulation approach can be found in [18].

Especially in industry, there are a lot of operations that

need to be executed many times in exactly the same con-

figuration. Even in natural environments, tasks often need
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Fig. 7 The upper three graphs show the sensed forces as the function

of phase. The dashed trajectory shows the forces recorded during

training as the function of phase. When the task needs to be executed in

a new workcell configuration, the developed DMP playback algorithm

with phase modulation and feedback control enables the robot to

successfully execute the task in the first attempt (denoted here by 1),

albeit with the increased execution time. Using phase modulation

procedure described in [18], the execution is slowed down if the sensed

forces deviate from the forces recorded during human demonstration.

This process enables the robot to adapt its movement so that the sensed

forces become closer to the recorded forces. In subsequent repetitions

of the task, there is less need for phase modulation and the execution

time can be reduced by a factor of more than 2. Most of the

improvement occurs in the first two adaptation steps
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to be repeated many times. Humans can improve their skill

knowledge by repeating the same action over and over

again. The same approach is adopted by our system, where

the information about the force profile tracking error is

exploited to improve the performance in the next repetition

of the same action. This is accomplished through a DMP

adaptation procedure described in [25]. In our experiments

we showed the improvement of execution in terms of

reduction of execution time and force tracking error. On

the average, after executing the desired operation 5 times,

execution time could be decreased by a factor of more than

2. The forces could also be reduced and made more similar

to the ones recorded during human demonstration. The

learning of control strategies is shown in a video6. Quan-

titative results are shown in Fig. 7.

4 The IntellAct System

A video7 shows the complete assembly of the Cranfield set

(except the screwing action), which has also been dem-

onstrated live at the review. All actions have been taught-in

by human demonstration as described in Sect. 3.1, pose

estimation and tracking are performed as described in Sect.

3.2 and the control of the executions in the third phase of

execution when object-object contacts occur is performed

as described in Sect. 3.3. Note that one screwing action (the

screwing of a cylinder onto the pendulum) has not been

implemented on the MARVIN platform due to the difficult

to control compliance of the Universal Robot arm. This

screwing however, has been implemented by one of the

partners on a KUKA lightweight arm.

The system is able to monitor a complex scene with nine

objects in terms of pose estimation and tracking (Fig. 8 shows

a screenshot of the display of the IntellAct system). Initial

object recognition for the rather small pegs—which were

basically indistinguishable even for humans in the generated

3D point clouds—was done in a larger magazine in which the

pegs were stored. However, pose estimation and tracking

were done on the full nine objects independently using two

kinect cameras in parallel. The robot could move with nor-

mal speed in that process. The complete assembly takes

approximately 9 min, which is still much more what a human

would require which would be less than a minute. The

complete assembly succeeded in ca. 50 % of the trials. For

most errors rather minor technical modifications could have

prevented the errors occurring (e.g., workspace constraints).

Note also that the system is able to recover and learn

from mistakes. This has been shown in another demon-

stration at the final review8. In this demonstration, a peg is

taken out of the gripper of the robot by an interfering

human and is then put on the table in an unknown pose (a

laying pose instead of the usual upright pose). The robot

realizes that it is not able to deal with the novel situation

and requests then input from a teacher to deal with it. After

demonstration, the robot than extends its repertoire of

Fig. 8 Cranfield assembly at the second last assembly step. Top left

the tracking history of different objects and the currentstate of the

vision system in IntellAct. Top middle estimated poses and images

taken of two of the kinect cameras. Rightview from a camera installed

on the robot arm. Bottom left output of high level planning modules

not described in this paper

6 See http://www.youtube.com/watch?v=c4Yc3_ES2YY.
7 See http://www.youtube.com/watch?v=LXhzSckFy9I. 8 See http://www.youtube.com/watch?v=zW_zH80IO_M.
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actions an dis able to deal with a similar situation in the

future.

5 Conclusion

In this article, we have described technologies which are

relevant for the fast-set up of robot solutions. Decreasing

set-up times and complexity involved in establishing robot

solutions is crucial for an economical use of robots espe-

cially for few-of-a-kind production. This is also crucial for

maintaining and increasing production in developed

countries. In the last decade, new technical developments

have occurred with the emergence of new dexterous grip-

pers, easy to program robots, cheap 3D sensors and

increasingly robust vision algorithms and advanced control

strategies. In IntellAct we showed that when vision and

dexterous grasping are applied, the robot control strategies

need to be robust to pose uncertainties. Transferring human

manipulation skills to robots is therefore crucial as well as

an autonomous adaptation of the control strategy to the

actual robot set-up.

In IntellAct, we covered all aspects required to establish

systems in an industrial context that can be set up faster than

it is the case today. The IntellAct system is a prototype at

Technical Readiness Level9 (TRL) 4. The next step is—

now in interaction with companies—to increase the TRL

level further such that the technology developed in IntellAct

has an impact on the use of robots in production. For that, a

number of rather engineering issues need to be addresses

such as efficient workspace management, increasing user

friendliness as well as the intuitiveness of different aspects

of the system. While speed concerning vision only needs to

be increased by a minor factor, calibration routines still

need to be more easy to use.

The use of dexterous hands in IntellAct gave promising

results. However, how such devices perform when they are

used over several days still needs to be shown. An alternative

to using dexterous grippers for avoiding a tedious design

process of specialized grippers could also be the learning of

specialized finger shapes in simulation as done in [26].

Finally, execution speed in the third phase of an

action—when physical contact between objects and high

forces occur—is still rather slow. We are currently working

on achieving even higher execution speeds than in the

human demonstration by speeding up the recorded trajec-

tories via reinforcement learning and iterative learning

control [27]. However, all of these issues do not pose big

scientific but rather engineering challenges and what is

now required is the possibly painstaking process of starting

from a prototype and arriving at a user friendly system that

works reliably in an industrial setting, or in other words,

advancing the system from TRL 4 to TRL 6 (i.e., from

’Integrated basic technological components’ to ’testing

prototype in a relevant environment’).
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