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Abstract

Autonomous cognitive robots must be able to interact with the world and
reason about their interactions. On the one hand, physical interactions are
inherently continuous, noisy, and require feedback. On the other hand, the
knowledge needed for reasoning about high-level objectives and plans is more
conveniently expressed as symbolic predictions about state changes. Bridg-
ing this gap between control knowledge and abstract reasoning has been a
fundamental concern of autonomous robotics.

This paper proposes a formalism called an Object-Action Complex as
the basis for symbolic representations of sensorimotor experience. OACs are
designed to capture the interaction between objects and associated actions
in artificial cognitive systems. This paper defines a formalism for describing
object action relations and their use for autonomous cognitive robots, and
describes how OACs can be learned. We also demonstrate how OACs in-
teract across different levels of abstraction in the context of two tasks: the
grounding of objects and grasping affordances, and the execution of plans
using grounded representations.

Keywords: Object Action Complexes, Affordances, Cognitive Architecture,
Grounding, Planning.
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1. Introduction

Autonomous cognitive robots must be able to interact with the world and
reason about the results of those interactions, a problem that requires over-
coming a number of representational challenges. On the one hand, physical
interactions are inherently continuous, noisy, and require feedback (e.g., move
forward by 42.8 centimeters or until the forward pressure sensor is triggered).
On the other hand, the knowledge needed for reasoning about high-level ob-
jectives and plans is more conveniently expressed as symbolic predictions
about state changes (e.g., going into the kitchen enables retrieving the coffee
pot). Bridging this gap between control knowledge and abstract reasoning
has been a fundamental concern of autonomous robotics [1, 2, 3, 4]. However,
the task of providing autonomous robots with the ability to build symbolic
representations of continuous sensorimotor experience de novo has received
much less attention, even though this capability is crucial if robots are ever
to perform at levels comparable to humans.

This paper proposes a formalism called an Object-Action Complex (OAC,
pronounced “oak”) as the basis for symbolic representations of sensorimotor
experience. OACs are designed to capture the interaction between objects
and associated actions in artificial cognitive systems [5, 6]. In particular, this
paper:

• defines a formalism for describing object-action relations and their use
in autonomous cognitive robots,

• describes how OACs can be learned, and

• demonstrates how OACs interact across different levels of abstraction.

We will illustrate this concept using a number of example OACs. These OACs
will interact in a learning system that uses exploration to autonomously
acquire object-dependent grasp affordances, and create plans composed of
action sequences.

2. Motivation

Object-Action Complexes (OACs) are a universal representation enabling
efficient planning and the execution of purposeful action at all levels of a cog-
nitive architecture. OACs combine the representational and computational
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efficiency of STRIPS rules [7] and the object- and situation-oriented concept
of affordance [8, 9] with the logical clarity of the event calculus [10, 11]. Af-
fordance is the relation between a situation, usually including an object of a
defined type, and the actions that it allows. While affordances have mostly
been analyzed in their purely perceptual aspect, the OAC concept defines
them more generally as state-transition functions suited to prediction. Such
functions can be used for efficiently learning the multiple representations
needed by an embodied agent for symbolic planning, execution, and sensori-
motor control.

2.1. Representational Congruency

To achieve its goals in the real world, an embodied agent must develop
predictive models that capture the dynamics of the world and describe how
its actions affect the world. Building such models, by interacting with the
world, requires overcoming certain representational challenges imposed by

• the continuous nature of the world itself,

• the limitations of the agent’s sensors, and

• the stochastic nature of real world environments.

OACs are proposed as a framework for representing new actions and ob-
jects at all levels of abstraction, from the discrete high-level planning and
reasoning processes all the way down to continuous low-level sensors and ef-
fectors. While multiple representations may be necessary, due to the diversity
of components required in a complex system, building different representa-
tions for the same domain is only helpful if solving the problem at a higher
level of abstraction also solves (or at least informs the solution of) the prob-
lem at a lower level of abstraction. We call this property representational
congruency. That is, high-level plans must be interpreted in terms of low-
level effector commands, and evidence of their success or failure must be
recoverable in real time from the agent’s sensors.

Figure 1 illustrates this idea with an OAC that predicts the behaviour
of a low-level control program CP functioning in the real world to move an
agent’s end effectors. Since the agent’s perception of the world is completely
mediated by its sensors and effectors, any change in the world can only be
observed by the agent through its (possibly faulty) sensors. Thus, executing
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Model

 Sensed World

OAC

wso wsa

spso

CP Actual World
awsaawso

Figure 1: Graphical representation of an OAC and its relationship to a control program

CP causes the actual state of the world to move from an initial world state
awso (sensed as wso) to some resulting state awsa (sensed as wsa).

For an OAC to be effective for planning, its higher level states must map
to states that are equivalent to those the control program actually produces.
For instance, if wso maps to state so and wsa maps to state sp then all OACs
that model this particular CP must also map so to sp to maintain represen-
tational congruency. Thus, we envision real-time cognitive systems as using
OACs to solve a problem at one level of abstraction such that the resulting
solution can be understood in terms of the lower levels of abstraction, even
down to the level of the agent’s sensors and effectors.

In practice, we can simplify this diagram slightly. Because the available
sensor suite of a given agent is fixed, we can treat the actual world and
the sensed world as a single level, as shown in Figure 2. We will make this
assumption for the remainder of the paper.

2.2. Design Principles

Six design principles underlie and motivate our formalization of OACs.
As motivation for our later formal definitions, we briefly introduce these
principles here.
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Model

Sensed World

OAC

wso wsa

so

CP

sp

Actual World

Figure 2: Graphical representation of an OAC and its relationship to the sensed world
and a control program

P1 Attributes: Any formalization of actions, observations, and interac-
tions with the world requires the specification of an attribute space
and associated values that our definitions will operate over. An agent’s
expectations and predictions about how the world will change will be
defined over subspaces of this attribute space.

While the attribute spaces for different levels of action representation
may differ, all levels of representation must be downwardly congruent.
That is, higher-level (more abstract) attribute spaces must be related
to lower-level (less abstract) attribute spaces by a (possibly partial)
functional relation that establishes corresponding states. This allows
low-level state information to be used by higher-level OACs and guar-
antees that higher-level OACs reflect actual changes from the lower
levels.

P2 Prediction: A cognitive agent performing an action to achieve some
effect must be able to predict how the world will change as a result of its
actions. That is, it must know which attributes of the world must hold
for an action to be possible (which will typically include the presence
of an object), which attributes will change, and how they will change
as a result of the action. Such representations will typically be partial,
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i.e., defined over a subspace of the attribute space. Again, predictions
at all levels must be congruent, so that high-level action predictions
can be interpreted at lower levels, and low-level changes in the world
can be captured by high-level features.

P3 Execution: Many previous efforts to produce fully autonomous robotic
agents have been limited by simplifying sensor, action, and effector
models. We instead take the approach that complete robotic systems
must be built with the means to actually perform actions in the world
and evaluate their success. This requires agents to be embodied within
physical systems interacting with the physical world.

P4 Evaluation: In order to improve its performance in a nondeterministic
physical world, an agent must be able to evaluate the effectiveness of
its actions, by recognizing the difference between the states it predicted
would arise from its actions, and the states that actually resulted from
action execution.

P5 Learning: State and action representations are dynamic entities that
can be extended by learning in a number of ways: continuous parame-
ters can be optimized, attribute spaces can be refined or extended, new
control programs can be added, and prediction functions can be im-
proved. Embodied physical experiences with actions, predictions, and
outcomes deliver the input to such processes at all levels of the system.

P6 Reliability: It is not sufficient for an agent merely to have a model
of the changing world. It must also learn the reliability of this model.
Thus, OACs must maintain measurements that capture the accuracy
of their predictions over past executions.

The rest of this paper is organised as follows. Section 3 provides a for-
mal definition of the OAC concept, based on the above design principles.
Section 4 characterizes how OACs learn. Section 5 describes how OACs are
executed within a physical robot system. Section 6 gives examples of OACs
represented at different levels of a cognitive architecture. Section 7 extends
our prior examples to demonstrate the interaction between OACs within the
same system. Section 8 discusses the relationship between OACs and other
existing representations in the literature. Finally, we conclude in Section 9.
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3. Definitions

Our OAC definition is split into two parts: a symbolic description con-
sisting of a prediction function [P2] that operates on a mental model (i.e.,
attribute space [P1]) of the world, and an execution specification [P3] that
defines how the OAC is executed by the embodied system. This separation is
intended to capture the difference between the knowledge needed for action
applicability and effect reasoning (represented in the symbolic description),
and the procedural knowledge required for execution (encapsulated in the
execution specification). Furthermore, OACs are not limited to continuous
or discrete representations of actions. Instead, our definitions are flexible
enough to accommodate both kinds of representations, as we will see in Sec-
tion 6. In the remainder of this section we will describe an OAC’s formal
description. The execution specification will be discussed in Section 5.

We begin with a set of definitions.

Definition 3.1. An attribute space S is the set of all possible configura-
tions of a world model. A point s ∈ S denotes a state within the space.

Definition 3.2. An Object-Action Complex (OAC) is a triple

(id, T,M) (1)

where:

• id is a unique identifier,

• T : S → S is a prediction function encoding the system’s beliefs as to
how the world (and the robot) will change if the OAC is executed [P2],
and

• M is a statistical measure representing the success of the OAC within
a window over the past [P6].

As notation, we will use range(T ) and domain(T ) to denote the range
and domain of T respectively. In general, much of S will be irrelevant for
many OACs. Thus, we anticipate that both the range and domain of T will
typically be subsets of S. Since observations are costly in real world systems,
we can often use range(T ) and domain(T ) to more efficiently allocate system
resources for verifying OAC execution, thereby reducing sensor load.
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Different OACs within the same agent may be defined on very different
state spaces. For example, consider an OAC defined on an attribute space
that includes an end-effector’s joint space and the location of a ball. Such an
OAC might make predictions, given a particular torque, of the final position
of the end-effector and the trajectory of the ball. In contrast, the same agent
might also have a more abstract OAC that describes the game of basketball.
In this case, the OAC might predict that exerting the same torque will result
in the ball scoring two points.

Given the diversity of state spaces that an OAC can be defined on, M
must be flexible enough to capture the reliability of the OAC’s prediction
function. As a result, we allow each OAC to define M as an appropriate
statistical measure for its needs. Thus, different OACs in a single system
might define M in very different ways. For example:

1. In a simple domain where an OAC is used until it fails and then is
never used again, we might define M as a Boolean flag that indicates
whether the OAC has failed.

2. In a more complex domain where M tracks the accuracy of an OAC’s
prediction function over time, we might also want to know how reliable
the estimate of that accuracy is. If M 〈〉 indicates the expectated value
of the OAC’s performance, and N specifies the reliability of these esti-
mates in terms of the number of past experiences, then we could define
M as a pair that contains these two values.

3. In even more complex domains it might be convenient to store statis-
tical data beyond M 〈〉 and N , e.g., lower-level OACs might maintain
differences in specific attributes.

We will give further examples of OACs and their reliability measures in
Section 6.

In order to discuss how an OAC’s T and M are learned we provide the
following two definitions.

Definition 3.3. Given an attribute space S and an OAC with identifier id

defined on S, an experiment is a tuple

(so, id, sp, sa) (2)

where:

• so ∈ S,
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• sp ∈ S such that OAC id predicts state sp will result from its execution
in so, i.e., sp = Tid(so), and

• sa ∈ S such that sa is observed as a result of actually executing OAC
id in state so.

Thus, an experiment is an empirical event grounded in sensory experience.
As such, experiments can be used to update OACs in cycles of execution and
learning (see Section 6) based on evaluations of their success [P4].

Definition 3.4. Let execute be a function that maps an OAC id to an ex-
periment, i.e.,

execute : id→ (so, id, sp, sa). (3)

The execute function should be interpreted as an operation that exe-
cutes the control program specified by the OAC in the current world state,
returning an experiment containing: the state so in which execution began,
the OAC id that was executed, the state sp the OAC predicted would result
from its execution in state so, and the state sa that actually resulted from
the OAC’s execution.

We note that there can be significant differences between sp and sa. In
fact, there is no reason why sa must even fall within range(Tid). (E.g.,
range(Tid) may be incorrect and not include attributes that are relevant
to the OAC instance that we want to learn.) More generally, there is no
requirement that the features of an attribute space be relevant to the OAC’s
prediction function. The prediction function need not be defined over the
whole attribute space or make use of all of the attributes in the space. This
means the attribute space can (and in our examples will) contain things that
are not part of the domain or range of the prediction function. However,
it is important to keep in mind that all the features changed by executing
the OAC are reflected in the states returned by an experiment, even if those
states are not within the domain and range of the prediction function.

In the next section we will discuss how an agent’s OACs are learned [P5]
from the information provided by its day to day experiences in the form of
experiments.

4. Learning

Recall from Figure 2 that OACs are symbolic models of control programs
that are executable by an agent in the real world. This characterization
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Model

Sensed World

T, M

wso wsa

sa

so

CP

sp

wsp

1 1 1

3

2

4

Actual World

Figure 3: Graphical representation of the OAC learning problems

immediately gives rise to a number of learning questions that must be ad-
dressed for OACs to be effective. Figure 3 shows the OAC from Figure 2 and
indicates portions of the model that are related to specific learning tasks. In
particular, we consider four main types of learning:

1. Translation: Learning the mapping from states of the real
world to states of the model (labeled 1) Learning the mapping
from sensed world states to model states goes beyond simply learning
the mapping between existing attributes. It also involves identifying
those properties of the world that are key to effectively predicting state
transitions and, when necessary, building new attributes that define
the domain and range of an OAC’s prediction function. We define the
following procedure to perform this type of learning:

Definition 4.1. Let updateModel be a procedure that takes an exper-
iment on a particular OAC

updateModel : experiment→ void. (4)

updateModel should be interpreted as a procedure that updates an
OAC’s model of the world on the basis of an experiment: the experi-
ment’s outcome is inspected and a decision is made as to whether or
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not the OAC’s model needs to change. If so, the procedure modifies the
model. Every OAC that addresses this learning problem should define
this procedure. For instance, such learning might be used to create
new attributes for high-level actions from more low-level sensorial (vi-
sual and haptic) information, e.g., the categories “open” and “closed”
used as preconditions for certain grasping or filling actions.

2. Assimilation: Learning the low-level control program (labeled
2) This learning task modifies an OAC’s control program to minimize
the distance between the world state wsp predicted by the OAC and the
actual world state wsa. We define the following procedure to perform
this type of learning:

Definition 4.2. Let updateCP be a procedure that takes an experiment
on a particular OAC and returns true or false,

updateCP : experiment→ void. (5)

updateCP should be interpreted as a procedure that updates an OAC’s
control program on the basis of an experiment, to bring its resulting
states in line with a given OAC. This function considers the experi-
ment’s outcome and modifies the OAC’s control program appropriately.
Every OAC that addresses this learning problem should define this pro-
cedure (see Sections 6.1 and 6.2). For example, suppose an agent knows
it wants to throw a ball into a basket. If the OAC modelling the act of
throwing a ball into a basket is known then the control program must
be modified in order to ensure this effect can be repeatedly caused in
the world.

3. Accommodation: Learning the prediction function (labeled 3)
This learning task modifies the prediction function to minimize the
distance between a predicted model state sp, and the actual resulting
model state sa. We define the following procedure to perform this type
of learning:

Definition 4.3. Let updateT be a procedure that takes an experiment
on a particular OAC

updateT : experiment→ void. (6)

updateT should be interpreted as a procedure that updates an OAC’s
prediction function on the basis of an experiment. It considers the
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experiment’s outcome and modifies the OAC’s prediction function ap-
propriately. Every OAC that addresses this learning problem should
define this procedure (see, e.g., Section 6.3).

4. Reliability measurement: Learning the prediction function’s
long term statistics (labeled 4) This learning task updates the OAC’s
reliability measure M to reflect the long term success of the OAC. We
define the following procedure to perform this type of learning:

Definition 4.4. Let updateM be a procedure that takes an experiment
on a particular OAC

updateM : experiment→ void. (7)

updateM should be interpreted as a procedure that updates an OAC’s
long term statistics on the basis of an experiment. This procedure
considers the experiment’s outcome and modifies the OAC’s statistics
appropriately. updateM is normally defined for every OAC.

We note that all of these learning problems can be addressed by rec-
ognizing the differences between predicted states and those states actually
achieved, as captured by experiments. We will see further applications of
these learning tasks in Section 6.

5. Execution

In Section 3 we defined an OAC as comprising two components: a sym-
bolic description and an execution specification. In this section we define
an OAC’s execution specification by describing how OACs are anchored to
specific control programs.

5.1. One-to-One OAC Execution

In our discussion up to this point, we have only considered single OACs
modelling single control programs. This simplification makes execution rel-
atively straightforward: the execution specification is the mapping of the
OAC to the control program. Given such a mapping, the OAC’s execute

function can then invoke the specified control program and allow it to run
until it terminates. The control program can then report the result of the
experiment.

For instance, consider an autonomous system equipped with sensors and
reflexive control programs for discovering objects in the world. In such a
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system, an object may first be recognized through the repeatable and pre-
dictable action of a control program on the object. This “Birth of an Object”
[12] can be extended to a “Birth of an OAC” [13, 14]: a grasping OAC is
acquired for a particular object by incrementally extending grasping affor-
dences associated to the object by playing with it (see Section 7.1). Thus,
the grasping OAC forms a one-to-one execution relationship with the con-
trol program that performs the actual grasping in the world. We will see
examples of this type of execution control in Section 6.1.

We can also consider higher-level OACs that stand in one-to-one corre-
spondence with lower-level OACs. Rather than modelling control programs,
these higher-level OACs model lower-level OACs defined on congruent at-
tribute spaces. In terms of execution, we define the execution specification
of a high-level OAC as simply calling the execute function of the correspond-
ing lower-level OAC. We can also imagine more general “towers” of OACs
where each OAC stands in one-to-one relation with an OAC (or a control
program in the base case) that is beneath it in the tower. In such cases, the
execution specification of each OAC is just the invocation of the next lower
OAC in the tower. Thus, calling execute for the highest OAC results in a
stack of calls to execute, one for each level of the tower, where each OAC
invokes the OAC at the next level down until the process grounds out in the
execution of a single motor program. The experiment that results from this
execution is then returned (and appropriately translated for each attribute
space) as the result of each call. Section 6.4 will discuss the use of high-level
OACs for planning that stand in one-to-one correspondence to lower-level
OACs (see Section 6.2) defined on a different attribute space.

5.2. One-to-Many Execution

The one-to-one mappings we previously discussed are not the only kind
of relationship we can envision for OACs. We can also imagine more complex
scenarios, where an OAC is mapped to a sequence of OACs or motor pro-
grams, or has an execution specification that uses iteration and conditional
invocation of the kind found in dynamic logic [15]. For example, an OAC for
opening a door might be comprised of a sequence of lower-level OACs mod-
elling actions like: approach the door, grasp the door knob, twist the door
knob, pull on the door knob, etc. In order to execute such a higher-level
OAC, each of these actions must be successfully executed in the specified
sequence. Furthermore, a formal definition of this kind of one-to-many exe-
cution specification requires ordering constraints and success criteria for each
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of the sub-OACs.
This document will not provide a detailed example of such complex one-

to-many OACs. We leave their learning and specification as an area for
future work. However, we note that the correct understanding of the exe-
cution specification for such OACs must, like the one-to-one cases, rest on
recursively calling the execute function and continually monitoring the con-
gruency between the attribute spaces of the underlying OACs. It may also
be necessary for an OAC to interrupt execution and replan its activities in
order to restore congruency lost through error and non-determinism (see,
e.g., [13]). It is the abstraction provided by execute and the congruency re-
lation between attribute spaces that makes OACs a powerful reasoning tool
in these situations.

6. Examples of OACs

In this section we give a number of concrete examples of OACs. These
OACs will be situated within a three-level architecture, as illustrated in Fig-
ure 4 [16]. In this architecture, the lower sensorimotor level provides mul-
tisensory percepts and motor and sensing actions. The mid level stores the
robot’s sensorimotor experiences, makes them available to various learning
processes, and serves as a link between raw sensorimotor and abstract sym-
bolic processing. The high level is responsible for symbolic reasoning, such as
planning. Each level defines its own set of OACs. We also assume there is an
object memory component MO that stores object knowledge, as generated
by the update functions and required by various execute functions.

The OACs discussed in the following sections include low-level actions
for object-agnostic grasping (Section 6.1), mid-level actions for grasping an
object based on previously-learned object models (Section 6.2), and high-level
actions supporting planning (Section 6.4). To demonstrate that object-action
associations beyond grasping can be formalized, we also give an example of
object pushing (Section 6.3).

In each case we provide an informal description of the OAC, followed by
a formal definition and an example of how the OAC can be embedded within
a procedural structure to produce more complex behavioural patterns. In
Section 7 we give examples of how grounding and planning can be realised
by a set of interacting OACs.
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High Level
Reasoning, Planning

Recognition, Abstraction, Action Synthesis

Mid Level

Low Level
Online Sensorimotor Processing

abstract symbols

sensor data motor commands

processed data behaviors

abstract symbols

Figure 4: The three-level architecture supporting the example OACs in Section 6.

6.1. Grasping without Object Knowledge: oacGenGrasp

6.1.1. Description

In the first example we consider an OAC oacGenGrasp (“GenGrasp” stands
for “grasp generic”) that associates grasping hypotheses to co-planar con-
tour pairs (see Figure 5). This OAC can be applied to any visual structure
containing (1) 3D contours and (2) a co-planarity relation.

oacGenGrasp is a low-level OAC constituting a visual feature/grasp asso-
ciation that can trigger a grasping action on an unknown “something” (see
Figure 5b). Within the Early Cognitive Vision (ECV) system [17], whch pro-
vides ECV features in terms of local multi-modal symbolic visual descriptors,
this OAC can be applied to scenes as well as learned visual object representa-
tions (see [12, 18] for details). It associates to any pair of co-planar contours
(Ci, Cj) ∈ C × C (where C is the space of 3D contours) certain grasping
hypotheses GH(Ci, Cj) which can then be executed by the system.

6.1.2. Definition

The symbolic description of oacGenGrasp is formally defined by the triple

(GenGrasp, T,M)

where the relevant aspects of T are characterized by domain(T ) and range(T ).
The domain of the predication function, domain(T ), is defined by:

{Ω 6= ∅, status(gripper) = empty, C × C} (8)
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Figure 5: (a) The image of the scene captured by the left camera. (b) A possible grasping
action type defined by using the two coplanar contours C1 and C2 shown in red. (c) A
successful grasping hypothesis. The 3D contours from which the grasp was calculated are
shown. Note that the information displayed is the core of an experiment “experiment”.
(d) Features used in learning process (e.g., distance from the camera, distance between
fingers, etc.). (e) Change of performance as a result of the learning process.

which contains two preconditions and placeholders for two specifically chosen
3D contours. In particular, it requires that (1) there are co-planar contours
Ci, Cj in the scene or object representation, i.e., the set of co-planar contours

Ω = {(Ci, Cj) ∈ C × C | cop(Ci, Cj) > s}

is not empty, (2) the gripper is empty, and (3) a pair of contours Ci, Cj is
concretely chosen with cop(Ci, Cj) being a coplanarity relation defined on
two 3D contours Ci, Cj (see, e.g., [19] for details).

The range of the prediction function, range(T ), is characterized by specific
values of a state attribute status(grasp):

range(T ) =

{
status(grasp) ∈

{
noplan, collision,
void, unstable, stable

}}
. (9)

Before the execution of oacGenGrasp, a large number of grasping hypotheses
are computed, since in general there are many co-planar contours in a typical
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scene. After selecting a specific grasping hypothesis, a motion planner tries
to find a collision-free path that allows the arm to reach the pregrasping
pose associated to the grasping hypothesis, which may result in a number
of possible outcomes. If the planner fails to find a suitable trajectory or
decides there is none, execution stops, and the result is noplan. If the hand
unexpectedly enters into a collision, execution stops at that point, and the
result is collision. If the closed gripper is determined to be empty, the
result is void. If the gripper closes further while lifting the object, the result
is unstable. Otherwise, the grasp is deemed successful, and the result is
stable. Thus, the prediction function T for the OAC is simply the attribute
status(grasp) = stable.

During execution, grasping hypotheses from co-planar contour pairs are
computed.1 Thus, the arguments of the OAC’s execute function are given
by

(|Ω| > 0, status(gripper) = empty, (C1, C2)),

where |Ω| is the number of elements in the set Ω, and (C1, C2) is the concrete
pair of extracted contours that was picked earlier.

The computed grasping hypothesis is then performed and the grasp sta-
tus status(grasp)t+1 is sensed after picking up the object, resulting in an
experiment (see Figure 5c):

experiment = {(1, 1, (C1, C2)), GenGrasp, status(grasp)t+1 = stable, status(grasp)t+1}.

Each experiment can either be used directly for on-line learning, as in the
learning cycle in Section 6.1.3, or stored in an episodic memory for off-line
learning at a later stage (see [20] for details).

Learning affects the execution of the control program through updateCP,
and the updating of long-term statistics via updateM (see Figure 5e). The
OAC’s prediction function always remains constant. Learning is applied in
the selecting the most promising grasping hypothes. The optimal choice of
grasps depends on certain parameters (e.g., contour distance, object position
in working space, see Figure 5d). Based on an RBF network (see [20] for de-
tails), a function that estimates the success likelihood for a certain grasp has
been learned in a cycle of experimentation and learning (see Section 6.1.3).

1In practice, multiple hypotheses are computed from each co-planar pair of contours
and one is chosen according to a ranking criterion (see [18, 20] for further details).
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(In practice, we showed an increase in the success rate from 42% to 51% by
such learning; see [20] for details).2

6.1.3. Simple exploration behaviour

Finally, oacGenGrasp can be applied multiple times to different contour
pairs. Using this OAC, we can easily demonstrate explorative behaviour by
the following loop which realises a simple learning cycle:

while true do
choose pair of contours C1, C2

experiment=execute(GenGrasp);
updateCP(experiment);
updateM(experiment);
drop object

end

This loop also demonstrates how OACs can be embedded in procedural struc-
tures. We will see more examples of such structures in the following sections.

6.2. Grasping Based on Object Knowledge: oacgraspObjo

6.2.1. Description

In this example we consider an OAC oacgraspObjo (“graspObj” stands for
“grasp Object”) which represents a specific object or class of objects o to-
gether with a set of associated grasp affordances specified with respect to the
robot (see figure 7). Object models oi are stored in object memoryMO. (See
Section 7.1 for more information about learning such models.) An object
model includes a learned, structural object model that represents geomet-
ric relations between 3D visual patches (ECV features [21, 22]) as Markov
networks [23]. In addition, it contains a continuous representation of object-
relative gripper positions that lead to successful grasps (grasp densities [24]).
Object detection, pose estimation and the determination of useful gripper
positions for grasping the object are all done simultaneously using proba-
bilistic inference within the Markov network, given a scene reconstruction in
terms of ECV features.

2Note that since oacGenGrasp uses very little prior knowledge, a high performance cannot
be expected except in trivial scenarios.
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Figure 6: Visualization of grasp densities as used in Figure 7. A (continuous) grasp den-
sity is represented nonparametrically by particles. Each particle represents a 6D gripper
pose (top left). The set of particles is interpreted as a continuous density via kernel den-
sity estimation, using a combination of a 3D isotropic Gaussian kernel for position and
a toroidal isotropic Dimroth-Watson kernel for orientation (bottom left, showing unit-
variance isosurfaces for both kernels). For visualization of grasp densities, gripper poses
are represented as “spatulas” (top left) to reduce clutter (right).

6.2.2. Definition

The symbolic description of oacgraspObjo is formally defined by the triple

(graspObj, T,M)

where the relevant aspects of T are characterized by domain(T ) and range(T ).
oacgraspObjo is potentially applicable whenever the gripper is empty and an
instance of object o is present in the scene. Thus, domain(T ) is defined as a
set of assertions on the attribute space S:

domain(T ) = {status(gripper) = empty, targetObj = o, o ∈MO}. (10)

Here, the state description includes an attribute targetObj that specifies
which object model o is to be applied by the execute function.

The execute function performs the following steps (Fig. 7):

1. Access or request a reconstruction of the current scene in terms of ECV
features.

2. Retrieve the object model o from MO, and use it to locate the object
and determine a gripper position.
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Figure 7: oacgraspObjo and its interaction with the environment (cf. Figure 2). The pre-
condition (gripper empty) and predicted result (gripper holding an object) are mapped
onto corresponding sensor states. The OAC refers to a specific object model (stored in the
object memoryMO). The execute function instantiates this model within an ECV scene
reconstruction, chooses a grasp according to the object-aligned grasp density (Figure 6),
and triggers its execution.

3. Ask a path planner to generate a plan for maneuvering the gripper to
the intended position.

4. If such a plan is found, execute the computed trajectory, and close the
gripper to grasp the object.

This procedure yields a new state that is characterized by an attribute
status(grasp) that can be assigned specific values similar to those in the
state space of the OAC oacGenGrasp:

range(T ) =

{
status(grasp) ∈

{
nopose, noplan, collision,
void, unstable, stable

}}
. (11)

The only addition with respect to oacGenGrasp is the value nopose, which
represents the case where no object instance can be reliably located.
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Figure 8: Evolving statistics of status(grasp) = stable for the OACs oacgraspObjPan ,
oacgraspObjKnife , and oacgraspObjBasket over cumulative rounds of grasping trials [25].

The execute function is defined in such a way as to return an experiment

experiment = (so, gObj, sp, sa),

where sp typically contains status(grasp) = stable, and in sa, status(grasp)
takes one of the values listed in Eqn. (11). In addition, the data structures
representing so, sp and sa include further state information such as the ob-
ject model o as well as object and gripper poses. Such information is used,
in particular, by updateCP to update the grasp density by integrating new
experiments, which lead to increasingly reliable performance (Figure 9).

Objects are always located within the currently-sensed part of the scene.
Thus, it is up to other parts of the system to make sure that the scene
reconstruction available to execute contains one and only one instance of
the object o, e.g., by directing sensors accordingly.

As in the previous example, the prediction function T always returns
status(grasp) = stable. M is defined in such a way as to maintain cumula-
tive outcome statistics of executions of this OAC, updated via updateM (see
Figure 8).

6.2.3. Usage Example

The following procedure outlines how a higher-level process might acquire
and refine grasping skills on a variety of objects. In this scenario, the scene
contains up to one instance of each object of interest. The robot “plays”
with the object by repeatingly grasping and dropping the object. This leads
to a learning cycle similar to the one in Section 6.1.3, in which the system
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Figure 9: The principal learning capability of oacgraspObjo (cf. Figure 3). A grasp density
used for execution can be updated by incorporating new experiments.

generates knowledge about the grasp affordances associated to the object:

while true do
experiment = execute(gObj);
updateCP(experiment);
updateM(experiment);
drop object

end

6.3. Acquiring Pushing Behaviours Based on Simple Motor Primitives: oacGenPush

6.3.1. Description

In this example we define an OAC oacGenPush which encodes how to push
objects in different directions on a planar surface without grasping. Pushing
as a nonprehensile action cannot be learned with sufficient accuracy to ensure
that a given object moves to the desired target in one step, i.e., by applying
one pushing movement. If a planner specifies that an object o should be
pushed to a certain target, oacGenPush needs to be applied iteratively in a
feedback loop until the target location is eventually reached. To achieve this,
the system needs to know how objects move when short pushing actions
are applied (such actions are also called poking). To apply such actions, the
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object to be pushed needs to be localisable within the workspace of the robot.
Besides the object location, the resulting motion depends on properties such
as shape, mass distribution and friction. (We will focus here on shape.)

Some prior motor knowledge needs to be available before this OAC can
be learned. In particular, we assume that the robot knows how to move the
pusher, e.g., the robot hand or a tool held in its hand, along a straight line
in Cartesian space. The central issue for learning oacGenPush is to acquire a
prediction function that can estimate the object movement in response to
the pusher movement. The resulting control policy encoded by oacGenPush

is neither object nor target dependent. A detailed description of technical
aspects of an earlier realization of the pushing OAC can be found in [26].

6.3.2. Definition

The symbolic description of oacGenPush is formally defined by the triple

(GenPush, T,M).

The prediction function T associated with oacGenPush should say how an
object moves in response to the applied pushing movement. To this end, the
system must have at its disposal information about the object’s shape, its
current location on the planar surface, the duration of the pushing movement,
and its direction. We represent the shape by 2D binarized object images, such
as those shown in Figure 10. Such images are sufficient as shape models (as
opposed to full 3D shape models) because this OAC only encodes the pushing
behavior for objects that do not roll on planar surfaces. We can then predict
the next object location using the transformation

T (bin(o), loc(o), τ, a) = T ′(bin(o), loc(o), a)τ + loc(o). (12)

Here, loc(o) denotes the location of the object o before the application of
the pushing movement, bin(o) is the shape model in the form of a binary
image of the object to be pushed, a denotes the parameters describing the
direction of the movement of the pusher (as realized by the control policy), τ
is the duration of the push, and T ′ is the function predicting the outcome of
the push in terms of the object’s linear and angular velocity. The prediction
function T is thus defined as

T : {bin(o), loc(o), τ, a} −→ {loc(o)}, (13)

where domain(T ) = {bin(o), loc(o), τ, a} and range(T ) = {loc(o)}.
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Figure 10: Samples of low resolution object images used as input to the neural network.

Figure 11: Pushing behaviour realized by oacGenPush after learning prediction function T .

The prediction function T returns the expected position and orientation
of the object after being pushed at a given point and angle on the boundary
with constant velocity for a certain amount of time. The angle of push is
defined with respect to the boundary tangent. These two parameters are
fully determined by the object’s binary image and the pusher’s Cartesian
motion, which must therefore be included in domain(T ).

An impulse to push an object in a certain direction must be provided by
a higher level cognitive process. The appropriate robot control policy can be
determined based on the available prediction function T . Two possibilities
will be discussed in Section 6.3.3. The execution process execute works in
the following steps: 1) extract the binary image of the object bin(o) and its
location loc(o), 2) acquire the pushing movement parameters a, 3) predict
the outcome of the pushing action by calculating T (bin(o), loc(o), a, τ), 4)
execute the pushing movement by calling the pushing movement primitive
initialized by (a, τ), and 5) localise the object after the push. The result of
a call to the execute function is therefore an experiment of the form

experiment = ((loc(o), bin(o)); push; T (bin(o), loc(o), a, τ); loca(o)).

Here loca(o) is the location of the object after the push. When the task is
to push an object towards a given target location, the robot can solve it by
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successively applying execute in a feedback loop until the goal is reached.
Note that lower-level motor primitives that realize straight-line motion of
the pusher in Cartesian space are constant and do not need to change while
learning oacGenPush.

The statistical evaluation M measures how close the predicted object
movement is to the real object movement. Here and in what follows we use
loc(o) = (u, θ), loca(o) = (ua, θa), locp(o) = (up, θp) = T (bin(o), loc(o), a, τ)
to respectively denote the current object position and orientation, the posi-
tion and orientation after the push, and the predicted object position and
orientation. We define the following metrics to measure the difference be-
tween the expected and actual object movement on the planar surface

d(loca(o), locp(o)) = w1 ‖ua − up‖+ w2 |θa − θp| , (14)

where w1, w2 > 0. The expectation of the oacGenPush performance after N
experiments is thus given by

M =
1

N

N∑
i=1

d(loca(o)i, locp(o)i). (15)

The learning in oacGenPush affects the prediction function through updateT,
and the long-term statistics via updateM. This learning is realized using a
feedforward neural network with backpropagation. This network represents
a forward model for object movements that have been recorded with each
pushing action. To ensure that oacGenPush can be applied to different objects,
the shape parameters specified in the form of a low resolution binary image
are used as input to the neural network. Function T is updated incremen-
tally based on the observed object movements. Statistical evaluation is also
done incrementally as experiments are performed. Note, however, that since
the prediction function T changes during learning, the statistical evaluation
updateM only converges to the true accuracy of the behaviour once T becomes
stable (see Figure 12).

6.3.3. Incremental learning by exploration

There are two modes of operation in which we consider oacGenPush:

A. Initial learning of the prediction function T , where the pushing direc-
tions encoded by a are randomly selected, and
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Figure 12: Mean error of robot pushing. The left figure shows the mean error calculated
using Eqn. (14) and all measurements. The right figure shows the incremental statistical
evaluation as realized by updateM. Four different objects were used in the experiment.

B. Pushing the object towards a given target, where the current pusher
movement a is determined based on the previously learned prediction
function and the given target location.

As described above, the prediction function T is essentially encoded by a
neural network with the binary image of an object and the direction of the
pusher movement a used as input values, and the predicted final position
and orientation of the pushed object as output. In mode B, we calculate
the optimal pusher movement a by first determining the desired Cartesian
movement of o from its current location towards the target location and then
inverting the neural network using nonlinear optimisation. The resulting
behaviour is presented in Figure 11.

The learning process has been implemented using the following explo-
ration behavior:

while true do
a = SelectRandomMotion; bin(o); loc(o);
experiment = execute(push);
if d(loc(o), loca(o)) > ε then

updateM(experiment);
updateT(experiment);

end

end

where constant ε > 0 is used to determine whether the object has moved or
not. In this context, updateT estimates the weights of the neural network.
Note that updateM is always applied to data before it has been used for
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Properties
clear(X) A predicate indicating no object is stacked in X.
focusOfAttn(X) A predicate indicating that object X is the agent’s focus of

attention.
gripperEmpty A predicate describing whether the robot’s gripper is empty

or not.
inGripper(X) A predicate indicating that the robot is holding object X

in its gripper.
inStack(X,Y) A predicate indicating that object X is in a stack with object Y

at its base.
isIn(X,Y) A predicate indicating that object X is stacked in object Y.
onShelf(X) A predicate indicating that object X is on the shelf.
onTable(X) A predicate indicating that object X is on the table.
open(X) A predicate indicating that object X is open.
pushable(X) A predicate indicating that object X is pushable by the robot.
radius(X) = Y A function indicating that the radius of object X is Y.
reachable(X) A predicate indicating that object X is reachable for grasping

by the gripper.
shelfSpace = X A function indicating that there are X empty shelf spaces.

Table 1: Attribute space for planning-level OACs

learning.

6.4. Planning with OACs

6.4.1. Description

We now turn our attention to high-level OACs usable for planning, and
consider an OAC oacgraspObjPlan that models a grasping action [27]. At an
abstract level, oacgraspObjPlan can be thought of as an action that attempts to
pick up an object from a table. This OAC operates on a discrete attribute
space defined in terms of a set of logical predicate and function symbols that
denote certain properties of the world. Such representations are standard in
AI planning systems and we will structure our OAC so that we can it for
building and executing plans.

6.4.2. Definition

The symbolic descrition of oacgraspObjPlan is formally defined by the triple

(graspObjPlan, T,M).

Table 1 shows the attribute space S for our OAC, defined as a set of logical
symbols. Given this attribute space, we can define the prediction function T
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Name Initial Conditions Prediction
oacgraspObjPlan focusOfAttn(X) inGripper(X)

reachable(X) not(gripperEmpty)
clear(X) not(onTable(X))
gripperEmpty
onTable(X)

oacpushObjPlan focusOfAttn(X) reachable(X)
not(reachable(X))
pushable(X)
clear(X)
gripperEmpty
onTable(X)

Table 2: Prediction function T for planning-level grasping and pushing OACs.

as the STRIPS-style rule [7, 28] given at the top of Table 2. Such rules require
a description of the initial conditions that must hold for the action to be
applied, and the predicted conditions that result from performing the action.
In this case, both the initial conditions and the predictions are assumed to
be conjunctions of specific attributes, i.e., all of the initial conditions must
be true in the world for the prediction function to be defined, and all of
the predictions are expected to be true in any state that results from the
execution of the OAC. In terms of oacgraspObjPlan, this means that if an object
is the focus of attention, is on the table, is clear, is reachable, and the agent’s
gripper is empty, then after executing this OAC we predict the object will be
in the gripper and not on the table, and the gripper will no longer be empty.
In any other case, the prediction function is undefined.

We must also provide a statistical measure M of the reliability of T . Tak-
ing the simplest possible approach, we define M as the long term probability
of T correctly predicting the resulting state, assuming the OAC’s execution
began from a state for which the OAC was defined. We note that in classical
AI planning systems, the reliability measure for all OACs would be fixed at 1.
Such planners assume a deterministic and totally observable world, thereby
removing all uncertainty from their prediction functions.

More recent work in AI planning has moved beyond these assumptions
(see, e.g., [29]). For instance, there are now a number of planning algorithms
that use probabilistic statements about an action’s long term success to build
plans with probabilistic bounds on the likelihood of achieving their goals. Our
definition of M makes our OACs suitable for use by such planners.

In related work, we have also focused on the problem of implementing
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an updateT function for learning such representations. To do so we use a
training set of example actions in the world, and corresponding observations
of the world before and after each action. For each example, a reduced world
state consisting of a subset of the propositional features that make up the
entire state is computed and considered by the learning model. The reduced
state is provided as input to the learning model in the form of a vector
where each bit corresponds to the value of a single feature in the world. The
learning problem is then treated as a set of binary classification problems,
with one classifier for each feature, and the model learning the changes to
each feature in the reduced state. Our particular approach uses a kernelised
voted perceptron classifier [30, 31], which is computationally efficient and
can handle noise and partial observability. We refer the reader to [32] for
a detailed account of how this kind of OAC (both the symbolic prediction
function and the associated reliability measure M) can be learned.

The execution specification for oacgraspObjPlan is straightforward. Given
the previous examples in this section, we simply define the execution of
oacgraspObjPlan in terms of the execution of oacgraspObj. In other words, invok-
ing the execution function execute(oacgraspObjPlan) invokes execute(oacgraspObj).

Table 2 also shows an example of a second planning level OAC, oacpushObjPlan.
In this case, oacpushObjPlan models an action that pushes an object into a po-
sition so that it can be grasped using oacgraspObjPlan. oacpushObjPlan operates
over the same attribute space S as oacgraspObjPlan, and is defined in a similar
way. The OAC’s execution specification is also defined in a likewise manner:
execute(oacpushObjPlan) is defined as execute(oacGenPush). In the next section
we will use these two planning level OACs together in a single architecture.

7. Interacting OACs

In this section, we describe two examples of OACs interacting in a sin-
gle architecture. The first example, described in Section 7.1, addresses the
grounding of objects and object-related grasp affordances. The second ex-
ample, in Section 7.2, describes how such grounded representations can be
used to execute plans.

7.1. Grounding Grasping OACs

The grounding of objects and object-related grasping affordances is based
on two learning cycles involving the OACs oacGenGrasp and oacgraspObjo (see
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Figure 13). This process has been previously described in [14], however, we
give a brief description of it here in a procedural OAC notation:

First learning cycle
while status(grasp) 6= stable do

experiment = execute(GenGrasp);
updateCP(experiment);
updateM(experiment);
open gripper

end
Accumulate object representation oi

if accumulation successful then
transfer oi into object memory MO

initialise oacgraspObjoi
in MOAC

Second learning cycle
while instance of object oi in scene do

state.targetObj = oi

experiment = execute(graspObjoi
);

updateCP(experiment);
updateM(experiment);
open gripper

end

end

In this process, object knowledge and grasp knowledge is built up and
stored as part of the internal representation (i.e., the object and grasp mem-
ory). Furthermore, certain characteristics of our OACs play an important
role in this process:

• Although the purpose of the first learning cycle is not to learn the OAC
oacGenGrasp (the aim is to attain physical control over an object), learn-
ing is nevertheless taking place by calls to the updateCP(experiment)
and updateM(experiment) functions, as a process parallel to those pro-
cesses steered by, e.g., intentions or automised behaviours.

• OACs can be chained to create complex behaviours that are not nec-
essarily driven by planning. For instance, innate processes such as
those used for tasks like bootstrapping a system can also modelled by
interacting OACs.
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Figure 13: Grounding the OAC oacgraspObjo in two learning cycles. Within the first learn-
ing cycle, physical control over a potential object is obtained by the use of oacGenGrasp.
Once control over the object is achieved and the visual structure changes according to
the movement of the robot arm, a 3D object representation is extracted and stored in the
memory. In the second learning cycle oacgraspObjo is established and refined. First, the
object representation extracted in the first learning cycle is used to determine the pose of
the object in case it is present in the scene. Random samples of these are then tested indi-
vidually. Successful grasps are turned into a probability density function that represents
the grasp affordances associated to the object, in the form of the success likelihood of the
grasp parameters.

• The interaction of multiple OACs, as demonstrated in the two learn-
ing cycles, can result in the grounding of symbolic entities usable for
planning (see Section 7.2).

7.2. Performing Plans

We now demonstrate how higher-level OACs can be executed by calling
lower-level OACs, in the context of performing a plan. To do this, we consider
an agent that is given the high-level goal of achieving inGripper(o) in a
world initially described by the predicate set:

{focusOfAttn(o), gripperEmpty,¬reachable(o),
pushable(o), onTable(o), clear(o)}.
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Given the fact that o is not reachable in the initial state, a high-level planner
might build a plan that first involves pushing o in order to make it reachable,
followed by an action that picks o up. This results in the following plan
consisting of two high-level OACs:3

oacpushObjPlan

oacgraspObjPlan.

Recall from Section 6.4 that the execution of our higher-level OACs rests
on the execution of lower-level OACs, with one OAC effectively calling an-
other OAC as a subroutine, i.e.,

execute(oacgraspObjPlan) −→ execute(oacgraspObj),
execute(oacpushObjPlan) −→ execute(oacGenPush).

To understand the execution of the above plan, we must consider the ordering
relation of the respective execution calls and returns of the component OACs
in the plan. If we assume that the world and the agent act as predicted and
planned, without plan or execution failures, then the following is an example
of what a hypothetical “call stack” of an OAC-based agent would look like
when executing this plan:4

experimenttopLev=execute(oacpushObjPlan)

experimentmidLev=execute(oacGenPush)

updateT(experimentmidLev)
updateM(experimentmidLev)

updateT(experimenttopLev)
updateM(experimenttopLev)
experimenttopLev=execute(oacgraspObjPlan)

experimentmidLev=execute(oacgraspObjo )

updateCP(experimentmidLev)
updateM(experimentmidLev)

updateT(experimenttopLev)
updateM(experimenttopLev)

This simple procedure hides many of the processes actually required for

3We refer the reader to [27, 29] for more details on how such a plan is built.
4We refer the reader to [28] for an initial discussion of plan execution in the face of

plan failure, which is beyond the scope of this paper.
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plan execution. For instance, many additional steps are performed during
the execution of the above plan:

1. The execution of oacpushObjPlan is defined in terms of the execution of
oacGenPush. Thus, information must be translated from the high-level
representation into oacGenPush’s model. Based on focusOfAttn(o), a
process must be invoked to acquire bin(o) and extract loc(o) from the
environment. Second, a process must identify τ and a for the desired
push operation.

2. As we described in Section 6.3, executing oacGenPush invokes a low-level
control program that performs the actual pushing of o, making use of
the agent’s end effector.

3. Executing oacGenPush returns the experiment experimentmidLev:

({(loc(o), bin(o))}, push, {T (bin(o), loc(o), a, τ)}, {loc(o)′})

(see Section 6.3). loc(o)′ can then be translated to determine the truth
value of the high-level predicate reachable(o) which is used in the ex-
periment returned by oacpushObjPlan. In addition, updateT(experimentmidLev)
and updateM(experimentmidLev) use experimentmidLev to update the
prediction function and long-term statistics M of oacGenPush.

4. Executing oacpushObjPlan returns the experiment experimenttopLev:

( {¬reachable(o), pushable(o), clear(o), gripperEmpty, onTable(o)},
oacpushObjPlan,
{reachable(o)},
{reachable(o)}? )

indicating that reachable(o) is now true in the actual world, and
the agent can update its model with this information. Additional
learning is performed by the procedures updateT(experimenttopLev) and
updateM(experimenttopLev).

5. A plan execution monitor of the kind described in [27] can now verify
at the high level that pushing the object has in fact resulted in a state
where it can now be grasped, i.e., reachable(o) is now true. This is
indicated by ’?’ in the expression ’{reachable(o)}?’.

6. The execution of oacgraspObjPlan is defined in terms of the execution of
oacgraspObjo . However, as with oacpushObjPlan, information must be trans-
lated from the high-level representation into oacGenPush’s model. Since
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focusOfAttn(o) is true in the world, the translation process ensures
that targetObj = o.

7. As we described in Section 6.2, executing oacgraspObjo invokes a low-level
control program that performs the actual grasping of o, making use of
the agent’s end effector.

8. Executing oacgraspObjo returns the experiment experimentmidLev:

( {status(gripper) = empty, targetObj = o},
gObj,
{status(grasp) = stable},
{status(grasp) = stable}? )

(see Section 6.2). status(grasp) = stable can then be translated to
determine the truth value of the high-level predicate inGripper(o),
which is used in the experiment returned by oacgraspObjPlan. In addi-
tion, learning based on experimentmidLev is performed for oacgraspObjo :
updateM revises the long-term statistics M , and updateCP updates the
control program associated with oacgraspObjo .

9. Executing oacgraspObjPlan returns the experiment experimenttopLev:

( {reachable(o), clear(o), gripperEmpty, onTable(o)},
oacgraspObjPlan,
{inGripper(o),¬gripperEmpty,¬onTable(o)},
{inGripper(o),¬gripperEmpty,¬onTable(o)}? )

indicating that inGripper(o) is now true in the world and, as before,
the agent can update its high-level model to reflect this fact. Again,
learning based on experimenttopLev takes place at the high level.

10. The plan execution monitor can now verify that inGripper(o) is now
true, and end plan execution.

Thus, as illustrated in the above example, the successful execution of a
plan may typically require invoking OACs at multiple levels of abstraction,
translating the calls between different models, and monitoring the results to
confirm the success of the actions involved.

8. Relation to Other Approaches

In this section we briefly discuss the relationship between OACs and other
existing representations in the literature. In particular, OACs combine sev-
eral known and novel concepts into one conjoint formalism.
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Attributes and Expected Change: The representation of world states
in terms of discrete attribute spaces, and the representation of actions as
expected changes to the values of these attributes, can be directly linked to
STRIPS [7] and other classical formalisms, including [33, 34, 35]. However,
OACs go beyond such classical representations in permitting both continuous
and discrete attribute spaces, making it possible to use OACs at different
levels of a processing hierarchy: from low-level sensory-motor processes for
robot perception and control, to high-level symbolic units for planning and
language. Thus, OACs can be viewed as containers enabling sub-symbolic as
well as symbolic representations, and models of both symbolic cognition and
emergent cognition can be formalized using OACs (see [36]). For example,
the Birth of the Object process [12, 37]—whereby a rich object description
and a representation of grasping affordances emerges through interaction
with the world—can be understood as the concatenation of several low-level
perception-action interactions that are formulated in terms of OACs (see
section 7.1), leading to processes in which symbolic entities emerge on the
planning level.

Grounding and Situatedness: OACs reflect a growing consensus concern-
ing the importance of grounding behavior in sensory-motor experience. Such
grounding has been stressed in the context of embodied cognition research
(see, e.g., [38, 39, 40, 41]). To build a truly cognitive system, it is neces-
sary to have the system’s representations grounded by interacting with the
physical world in a closed perception-action loop [40]. OACs are necessarily
grounded by their execution functions (Section 5), and are learned from the
sensory-motor experiences of the robot (Section 4).

Modularity: The principle of modularity is widespread in cognitive process
modelling (e.g., vision [42] and motor control [43, 44, 45]). As we demon-
strated in Section 6, this concept is also inherent in the structure of OACs:
OACs often operate at increasing levels of abstraction, each with a particular
representation of situations and contexts. For instance, consider our three
examples of OACs for grasping objects. On the lowest level, continuous
grasp affordance densities code individual end-effectors poses for grasping
completely unknown objects. At the mid level, these affordance densities are
used to hypothesize possible grasps when the agent has some object knowl-
edge. Finally, the highest level plans effective grasps to move objects.

Learning is also modularised through the OAC concept, and in our ex-
ample OACs: the lowest level learns the difference between successful and
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unsuccessful grasps, the mid level learns alternative object-specific ways of
posing the hand, and the highest level learns the abstract preconditions and
effects of grasping. Maintaining representational congruency between the
attribute spaces of the different OACs allows systems to benefit from the
modularity of the information learned for each OAC.

Predictivity: Predictability of cause and effect (or the lack of it) is impor-
tant for cognitive agents and has been treated in a large body of work [46,
47, 48, 49, 50, 6]. OACs go beyond existing action representations by de-
scribing a common predictive formalism for cognitive processes, usable at
multiple levels of abstraction. The prediction function itself can be seen as
a dynamic entity, changing under the influence of ongoing learning processes
in the cognitive system.

Learning, Evaluation, and Memorization: Cognitive agents must learn
from past experiences in order to improve their own development, a task that
typically requires a form of memory as a means of tracking prior interactions.
While memory itself is not often a problem, such processes must ensure effi-
cient representation, with properties like associative completion and content
addressability, to enable machine learning from stored instances presented
over a period of time.

We have seen numerous examples of OAC learning throughout this paper.
Since our OAC definition allows various types of learning algorithms to be
applied, individual OACs can tailor such learning to their specific needs.
Most notably, OACs can learn their prediction functions, an idea which is
closely related to statistical structure learning as discussed in [51, 52, 53, 54,
55, 32, 48].

OACs can also learn how successful their executions are over particular
time windows. In particular in early development, when actions are likely to
be unsuccessful, it is important to ensure that such execution uncertainties
can be reasoned about. The storage of statistical data concerning execu-
tion reliability also has important applications to probabilistic planning [56],
where an OAC’s probability of success can be utilized to compute optimal
plans. Consistently successful plans can then be memorized for future refer-
ence.

9. Conclusion

OACs are a dynamic, learnable, refinable, and grounded representation
that binds objects, actions, and attributes in a causal model. OACs have
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the ability to carry low-level (sensory-motor) as well as high-level (symbolic)
information and can therefore be used to join the perception-action space
of an agent with its planning-reasoning space. In addition, OACs can be
combined to produce more complex behaviours, and sequenced as part of a
plan generation process. As a consequence, the OAC concept can be used
to bridge the gap between low-level sensory-motor representations, required
for robot perception and control, and high-level representations supporting
abstract reasoning and planning.
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Slovenia. His research focuses on imitation and action learning, percep-
tion of human activity, humanoid robot vision, and humanoid cognition.

44



Tamim Asfour received his diploma degree in electrical engineer-
ing and his Ph.D. degree in computer science from the Univer-
sity of Karlsruhe, Germany in 1994 and 2003, respectively. He is
leader of the humanoid robotics research group at the institute for
Anthromopmatics at the Karlsruhe Institute of Technology (KIT).
His research interests include humanoid robotics, grasping and ma-

nipulation, imitation learning, system integration and mechatronics.

Dirk Kraft obtained a diploma degree in computer science from
the University of Karlsruhe (TH), Germany in 2006 and a Ph.D.
degree from the University of Southern Denmark in 2009. He
is currently a research assistant in the Mærsk McKinney Møller
Institute, University of Southern Denmark where he is work-
ing within the EU-project PACO-PLUS. His research interests
include cognitive systems, robotics and computer vision.
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in Electronic Engineering from the National University of Cat-
alonia (UPC), Spain. He is currently a senior Ph.D. student in
Artificial Intelligence at the UPC, and is working at the Insti-
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