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In this theoretical contribution, we provide mathematical proof that two
of the most important classes of network learning—correlation-based
differential Hebbian learning and reward-based temporal difference
learning—are asymptotically equivalent when timing the learning with
a modulatory signal. This opens the opportunity to consistently refor-
mulate most of the abstract reinforcement learning framework from a
correlation-based perspective more closely related to the biophysics of
neurons.

1 Introduction

Network learning subdivides into supervised (SL), reinforcement (RL), and
correlation based (Hebbian, CL) according to the existence and role of an
error signal for controlling the learning (Doya, 2000). In SL, explicit error
signals exist, in RL networks learn from unspecific reinforcement signals
(rewards), whereas in CL, learning takes place as a self-organization process
relying on multiplicative signal correlations only, hence without an error
signal. Convergence proofs exist for some generic cases of these learning
mechanisms (Widrow & Hoff, 1960; Oja, 1982; Hopfield, 1982; Linsker, 1988;
Dayan & Sejnowski, 1994). The equivalence of the different rules, however,
remains a pressing question as it would allow extending conclusions on
convergence across different mechanisms.
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Recently there have been several contributions toward solving this ques-
tion (Izhikevich, 2007; Roberts, Santiago, & Lafferriere, 2008; Florian, 2007;
Potjans, Morrison, & Diesmann, 2009), which presented specific solutions
to be discussed later (see section 4). Thus, there is more and more evidence
emerging that Hebbian learning and reinforcement learning can be brought
together under a more unifying framework. Such an equivalence would
have substantial influence on our understanding of network learning, as
these two types of learning could be interchanged under these conditions.

Thus, the goal of this study is to prove that the most influential form
of RL, which relies on the temporal difference (TD) learning rule (Sutton,
1988), is asymptotically equivalent to CL and convergent over wide param-
eter ranges when using a third factor as a gating signal, together with a
differential Hebbian emulation of CL.

The idea of differential Hebbian learning was first used by Klopf (1988) to
describe classical conditioning relating to the stimulus substitution model
of Sutton and Barto (1981). Around the same time, Kosco (1986) used dif-
ferential Hebbian learning in a machine learning context and examined its
features. One of its most important features is the implicit introduction of
negative weight changes (LTD), which leads to intrinsic stabilization prop-
erties in networks. Earlier approaches had to explicitly introduce negative
weight changes into the learning rule, for example, by way of a thresh-
old (Oja, 1982). Negative weight changes (LTD) had first been discovered
physiologically by Dudek and Bear (1992) and later in conjunction with the
timing of pre- and postsynaptic activity by Markram, Lübke, Frotscher, &
Sakmann (1997) (spike-timing-dependent plasticity).

One drawback of reinforcement learning algorithms, like temporal dif-
ference learning, is their use of discrete time and discrete nonoverlapping
states. In real neural systems, time is continuous, and the state space can be
represented only by the activity of neurons, many of which will be active at
the same time and for the same space. This creates a rather continuous state-
space representation in real systems. In order to allow overlapping states
or for generalizing over a wider range of input regions, RL algorithms
are usually extended by value function approximation methods (Sutton &
Barto, 1998). However, while biologically more realistic (Tamosiunaite et al.,
2008), this makes initially elegant RL algorithms often quite opaque, and
convergence cannot be guaranteed (Tsitsiklis & Van Roy, 1997; Wiering,
2004). Here we are not concerned with function approximation, but instead
address the question of how to transform an RL algorithm (TD-learning)
to continuous time using differential Hebbian learning with a third fac-
tor and remaining fully compatible with neuronally plausible operations.
Only a few other approaches to formulate RL in continuous time and space
exist (Baird, 1993; Doya, 1996, 2000). The differences to our approach are
discussed in section 4.

Biophysical considerations about how such a third factor might be im-
plemented in real neural tissue are of secondary importance for this study.
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At this stage, we are concerned with a formal proof only. Some biophysical
aspects are treated in section 4, though.

This letter proceeds as follows. First, we describe the basics of TD and
differential Hebbian learning. This will lead us to a general signal (= “state”)
structure that is necessary to put both frameworks together. Next, we take
a close look at the differential Hebbian learning rule and its differential
equation. This gives us definitions that we will use for the formal analysis
of the equivalence. A simulated network will then be investigated, and
some technical constraints will be evaluated before we finish with a general
discussion. Details of analytical calculations used in the main text are given
in the appendix.

1.1 Emulating RL by Temporal Difference Learning. Reinforcement
learning maximizes the rewards r (s) an agent will receive in the future when
following a policy π traveling along states s. The return R is defined as the
sum of the future rewards: R(si ) = ∑

k γ kr (si+k+1), where future rewards
are discounted by a factor 0 < γ < 1. One central goal of RL is to determine
the values V(s) for each state given by the average expected return Eπ {R},
which can be obtained when following policy π . Many algorithms exist to
determine the values, almost all of which rely on the temporal difference
(TD) learning rule, equation 1.1 (Sutton, 1988).

Every time the agent encounters a state si , it updates the value V(si ) with
the discounted value V(si+1) and the reward r (si+1) of the next state that is
associated with the consecutive state si+1:

V(si ) → (1 − α)V(si ) + α(r (si+1) + γ V(si+1)), (1.1)

where α is the learning rate. This rule is called TD(λ = 0), shortened as
TD(0), as it only evaluates adjacent states. For values of λ �= 0, more of the
recently visited states are used for value-function update. TD(0) is by far
the most influential RL learning rule as it is the simplest way to ensure
optimality of learning (Dayan & Sejnowski, 1994; Sutton & Barto, 1998).

1.2 Differential Hebbian Learning with a Third Factor. In traditional
Hebbian learning, the change of a weight ρ relies on the correlation
between input u(t) and output v(t) of a neuron: ρ ′(t) = α̃ · u(t) · v(t), where
α̃ is the learning rate and prime denotes the temporal derivative. If we
consider the change of the postsynaptic signal and therefore replace v(t)
with v′(t), we will arrive at differential Hebbian learning. Then, negative
weight changes are also possible, and this yields properties similar to
experimental neurophysiological observations (spike-timing-dependent
plasticity; Markram et al., 1997).

In order to achieve the equivalence (see section 4 for a discussion), we
introduce a local third modulatory factor M(t) responsible for controlling
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the learning (Porr & Wörgötter, 2007). The three-factor differential Hebbian
learning rule is then

ρ ′
k(t) = α̃ · uk(t) · v′(t) · M(t), (1.2)

where uk(t) is the considered presynaptic signal and

v(t) =
∑

k

ρk(t)uk(t), (1.3)

the postsynaptic activity of a model neuron with weights ρk(t). We will
assume in the following that our modulatory signal M(t) is either 1 or 0,
thus represented by a step function. By means of the learning rate α̃, we
can set the ratio between the weight change over the weight ρ ′/ρ to be
significantly smaller than the state change over the state value u′/u.

2 Analytical Derivation

We are going to analyze the weight change of weight ρi (t) when considering
three consecutive signals ui−1(t), ui (t), and ui+1(t), with the index i repre-
senting a temporal (and not, e.g., a spatial) ordering. The third factor M(t)
opens a time window for the considered weight ρi (t) in which changes can
occur. Although this time window could be located anywhere depending
on the output v(t), it should be placed at times where a state change occurs,
and thus at the beginning or end of the state si (t), as it makes sense only if
states correlate with temporally neighboring states.

The relation between state s(t) and input u(t) is determined by a convo-
lution: u(t) = ∫ ∞

0 s(z)h(t − z)dz with filter function h(t), which is identical
for all states. As we are using only states that are either on or off during
visiting duration S, the input functions u(t) do not differ between states.
Therefore, we will use ui (t) (with index i) having a particular state in mind
and u(t) (without index i) when pointing to functional development.

Furthermore, we define the time period between the end of a state si (t)
and the beginning of the next state si+1(t) as T (T < 0 in case of overlapping
states). Concerning the modulatory third factor M(t), we define its length
as L and the time period between the beginning of M(t) and the end of the
state si (t) as O. These four parameters (L , O, T , and S) are constant over
states and are displayed in detail in Figure 1B.

2.1 Differential Equation. For the following analysis, we need to sub-
stitute equation 1.3 in equation 1.2 and solve this differential equation,
which consists of a homogeneous and an inhomogeneous part:

ρ ′
i (t) = α̃ · M(t) · ui (t)[ui (t) · ρi (t)]′

+ α̃ · M(t) · ui (t)


∑

j �=i

u j (t) · ρ j (t)


′

, (2.1)
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Figure 1: (A) The setup. Three states, including the rewarded state, converge
on the neuron, which learns according to equation 1.2. The modulatory factor
M will influence learning at synapse ρi . The states s will be active according to
the direction arrow. (B) The signal structure. The lower part shows the states
si , which have a duration of length S. We assume that the duration for the
transition between two states is T . In the middle, the output v and the signals
u are depicted. Here u is given by u(t) = ∫ S

0 (e−a (t−z) − eb(t−z)) dz. The third factor
M is released for the duration L after a time delay of O and is shown in the
upper part. For each state, the weight change separated into autocorrelation
�ac±

and cross-correlation �cc±
and their dependence on the weights according

to equations 2.4 and 2.8 are indicated.

where the modulator M(t) is defining the integration boundaries (see
equations 2.7 and A.2). The first summand leads to the homogeneous
solution, which we will define as autocorrelation ρac(t). The second
summand(s) will lead to the inhomogeneous solution, and this we will
define as cross-correlation ρcc(t). Together we have ρ(t) = ρac(t) + ρcc(t).

In general, the overall change of the weight ρi (t) after integrating over
the visiting duration of si (t) and si+1(t) and using the modulatory signal
M(t) is �ρi =: �i = �ac

i + �cc
i

Without restrictions, we can now limit further analysis of equation 2.1,
in particular of the cross-correlation term, to the case of j = i ± 1 as the
modulatory factor affects only the weights of the last and the following
state.

Weight changes in general are slow, and we can assume a quasi-static
process ( u′

i
ui

� ρ ′
i

ρi
, α̃ → 0). As a consequence, the derivatives of ρ on the

right-hand side of equation 2.1 can be neglected.
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The solution of the autocorrelation ρac
i (t) is then in general (see

section A.1)

ρac
i (t) = ρac

i (t0)e α̃·M(t)· 1
2 [u2

i (t)−u2
i (t0)], (2.2)

and the overall weight change with the third factor being present
between t = O and t = O + L as well as between t = O + S + T and
t = O + S + T + L (see Figure 1B) is therefore

�ac
i = ρi

(
e α̃ 1

2 [u2
i (O+L)−u2

i (O)+u2
i (O+S+T+L)−u2

i (O+S+T)] − 1
)
. (2.3)

Using again the argument of a quasi-static process (α̃ → 0), we can expand
the exponential function to the first order:

�ac
i :=−α̃ρiκ − o(α̃2)

= −α̃ρi
1
2

[
u2

i (O) − u2
i (O + L)

+ u2
i (O + S + T) − u2

i (O + S + T + L)
] + o(α̃2), (2.4)

where we have defined κ to be positive:

κ(L , O, T, S) = 1
2

( u2(O) − u2(O + L) )

+1
2

( u2(O + S + T) + −u2(O + S + T + L))

= −( κ+(L , O) + κ−(L , O, T, S)). (2.5)

Here we have left out the index i as all states are identical and split κ into
κ+ and κ− representing the first (positive slope of signal u; see Figure 1B)
and the second (negative slope of signal u; see Figure 1B) occurrence of the
third factor. To this end, we also have to split �ac

i into �ac+
i = α̃ρiκ

+ and
�ac+

i = α̃ρiκ
−.

Next we investigate the cross-correlation ρcc(t) again under the assump-
tion of a quasi-static process. This leads us to

ρcc
i (t) = ρcc

i (t0) + α̃

[
ρi−1

∫ t

0
M(z) · ui (z)u′

i−1(z) dz

+ ρi+1

∫ t

0
M(z) · ui (z)u′

i+1(z) dz
]

, (2.6)
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where we can use the third factor M(t) to define the integration bound-
aries. The third factor is present between t = O and t = O + L for the first
summand and t = O + S + T and t = O + S + T + L for the second sum-
mand (see Figure 1B). Furthermore, as all signals are identical, we can shift
between signals by t = S + T . In detail, this is ui−1(t) = ui (t + S + T) and
ui+1(t) = ui (t − S − T). The overall weight change can then be split into
�cc−

i and �cc+
i :

�cc
i = α̃ · ρi−1

∫ O+L

O
ui (z)u′

i (z + S + T) dz

+ α̃ · ρi+1

∫ O+S+T+L

O+S+T
ui (z)u′

i (z − S − T) dz (2.7)

:= α̃ · ρi−1 · (− τ−)︸ ︷︷ ︸
�cc−

i

+ α̃ · ρi+1 · τ+︸ ︷︷ ︸
�cc+

i

. (2.8)

Here we defined τ± as being positive:

τ−(L , O, T, S) =−
∫ O+L

O
u(z)u′(z + S + T) dz (2.9)

τ+(L , O, T, S) =
∫ O+L

O
u(z + T + S)u′(z) dz, (2.10)

which also is independent of i .
Both τ± and κ depend on the actual signal shape u(t) used and the values

for the parameters L , O, T , and S.

2.2 Asymptotic Equivalence. Without restrictions, we can now limit the
discussion to the situation in Figure 1A, where we have one intermediate
state transition (from si to si+1) and a final one (from si+1 to sR), which leads
to the reward. It represents the fact that rewards are usually associated with
unconditioned stimuli, which will lead to strong, insuppressible responses.
This indicates that a strong prewired connection from the receptor of the
unconditioned stimulus onto the target neurons exists. For simplicity, this
structure here is incorporated in the network as state sR. Thus, three-factor
differential Hebbian will influence two synaptic connections ρi and ρi+1 of
states si and si+1 respectively, which directly project onto neuron v.

Figure 1B shows a realistic situation of state transitions leaving the old
state si−1 and entering the new state si and so on. The signals as such could
be considered as membrane voltages or firing rates of neurons.

The lower part of the signal traces indicates the times when the states
s are visited and the upper part when the third factor M is either on or
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off. The part above the signal traces highlights the different contributions
(�-values) to the overall weight change defined in the previous section.

First, we consider the weight change of ρi . This results from the transition
between si−1 and si from the visiting state si itself and from the transition
between si and si+1. The short learning period at the beginning of the sig-
nal ui will cause a negative weight change �cc−

i because of the correlation
between the negative derivative of ui−1 and the positive value of ui . Addi-
tionally, there is a weight change �ac+

i caused by the signal itself. Due to the
positive slope of the signal ui at the beginning of the state, the contribution
will be positive. The next learning interval occurs when the state si has been
left, and the signal ui already decays. Thus, having a negative slope, the
autocorrelation causes a weight change �ac−

i < 0. The fourth contribution
yields a positive weight change �cc+

i because the positive derivative of the
next state signal ui+1 correlates with the positive value of signal ui of state
si . The same sequence exists when the next state transition occurs, yielding
contributions for the �i+1-values. During the first trial (where all weights
are zero), only the cross-correlation �cc

i+1 yields a contribution due to the
finding of the reward.

In general the weight after a single trial is the sum of the old weight ρi

and the four �i -values:

ρi → ρi + �ac−
i + �ac+

i + �cc−
i + �cc+

i . (2.11)

Using equations 2.4 and 2.8, we can reformulate equation 2.11 into

ρi → ρi + α̃ · (κ+ + κ−) · ρi − α̃ · τ− · ρi−1 + α̃ · τ+ · ρi+1. (2.12)

Substituting κ = −(κ− + κ+), α = α̃ · κ and γ ± = τ±/κ , we get

ρi → (1 − α) · ρi − α · γ − · ρi−1 + α · γ + · ρi+1. (2.13)

The convergence on ρi = γρi+1 is a property of these kinds of equations
(see section A.2). Therefore, we can use equation A.15 in the appendix with
µ = γ , ε1 = τ+/κ = γ +, and ε2 = τ−/κ = γ −, although only if the values,
namely κ and τ±, are strictly positive (will be discussed in section 2.3). This
gives us

1
γ

= 1
2 γ + +

√
1

(2 γ +)2 + γ −

γ + , (2.14)

and our weight development can be simplified to

ρi → (1 − α) · ρi + α · γ · ρi+1. (2.15)
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At this point, we can make the transition from weights ρi (differential Heb-
bian learning) to states V(si ) (temporal difference learning). Additionally,
we note that sequences terminate only at i + 1; thus, this index will capture
the reward state sR and its value r (si+1), while this is not the case for all
other indices (see section 4 for a detailed discussion of rewards at nonter-
minal states). Consequently this gives us an equation almost identical to
equation 1.1:

V(si ) → (1 − α)V(si ) + α · γ [r (si+1) + V(si+1)], (2.16)

where one small difference arises, as in equation 2.16, the reward is scaled by
γ . However, this has no influence, as numerical reward values are arbitrary.
Thus, if learning follows this third-factor differential Hebbian rule, weights
will converge to the optimal estimated TD values. This proves that under
some conditions for the signal shape and the parameters S, L , O, and T
(which influence whether κ > 0 and τ± > 0), TD(0) and the proposed three-
factor differential Hebbian learning are indeed asymptotically equivalent.

2.3 Analysis of γ (as Well as κ and τ±). Here we will take a closer look
at the signal shape and the parameters (L , O, T , and S) which influence
the values of κ (see equation 2.5) and τ± (see equations 2.9 and 2.10),
and therefore γ (see equation 2.14). For guaranteed convergence, these
values are constrained by two conditions (see section A.2): τ± ≥ 0 and
κ > 0 (where κ = 0 is allowed in case of τ± = 0). A nonpositive value of κ

would lead to divergent weights ρ and negative values of τ± to oscillating
weight pairs (ρi , ρi+1). However, even if fulfilled, these conditions will not
always lead to meaningful weight developments. In particular, τ±-values
of 0 leave all weights at their initial weight value, and discount factors,
which are represented by γ -values exceeding 1, are usually not considered
in reinforcement learning (Sutton & Barto, 1998). Thus, it makes sense to
introduce more rigorous conditions and demand that 0 < γ ≤ 1 and κ > 0.

Furthermore, as these conditions depend on the signal shape, the follow-
ing theoretical considerations need to be guided by biophysics. Hence, we
will discuss neuronally plausible signals that can arise at a synapse. This
constrains u to functions that possess only one maximum and divide the
signal into a rising and a falling phase.

One quite general possibility for the shape of the signal u is the function
used in Figure 1, for which we investigate the area of convergence. We
have three parameters to be varied, as we do not have to consider the
parameter S if we take this value to be large compared to |T |, L , or O. For
this, Figure 2 shows the γ -value in 3 different panels. In each panel, we
varied the parameters O and T from minus to plus 2 P , where P is the time
the signal u needs to reach the maximum. In each of the panels, we plot
γ -values for a particular fraction of L/P .
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Figure 2: Shown are γ -values dependent on the ratio O/P and T/P for different
values of L/P (1/3, 2/3, and 4/3). Here, P is the length of the rising as well
as the falling phase. The shape of the signal u is identical to the one used in
Figure 1 and is given by u(t) = ∫ S

0 (e−a (t−z) − eb(t−z)) dz with parameters a = 0.006
and b = 0.066. The individual figures are subdivided into a patterned area
where the weights will diverge (κ ≤ 0; see equation 2.4), a striped area where
no overlap between both signals and the third factor exists, and into a white
area that consists of γ -values, which, however, are beyond a meaningful range
(γ > 1). The detailed gray shading represents γ -values (0 < γ ≤ 1) for which
convergence is fulfilled.

The gray shading displays in detail the γ -values for which the condition
is fulfilled, whereas white represents those areas for which we receive γ > 1.
The striped area indicates parameter configurations for which no overlap
between two consecutive signals and the third factor exists (τ = 0), and for
the patterned regions, κ is smaller than zero.

If the L-value is greater than P−O−T , the area of convergence does not
depend on L anymore, as the third factor then reaches a plateau as well as
covers the whole falling phase of the signal u. On the contrary, if the L-value
reaches the rising phase of the consecutive state, the area of convergence
decreases again (not shown).

For positive O-values, there exist γ -values that are independent of (neg-
ative) T-values. Hence, if states overlap (T < 0), the γ -value is invariant
with respect to the degree of overlap. This is an important aspect, as value
function approximation methods often use overlapping kernels to represent
features. In a biological context, this corresponds to overlapping receptive
fields providing the input to the system. We find that in these cases, γ re-
mains unaffected by the degree of (receptive field) overlap, which in general
is different for any two input units.

To extend these considerations to more general but smoother shapes, we
can therefore Taylor expand both the rising and the falling phases to the
second order. With these constraints, γ can be calculated analytically (see
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Figure 3: Shown are γ -values for different shapes of the signal u dependent on
the ratio O/P and T/P for three different values of L/P . The upper left panel is
for L/P = 1/3, the upper right for L/P = 2/3, and the lower left panel for L/P =
4/3, where P is the length of the rising as well as the falling phase. The different
shapes are shown in the lower right, and the relevant equation (equation A.16),
is given in section A.3. The rows represent different η-values (top to bottom:
0, 1, and 2) and the columns different ξ -values (left to right: 0, 1, and 2). The
individual figures are subdivided into a patterned area where the weights will
diverge (κ ≤ 0; see equation 2.4), a striped area where no overlap between both
signals and the third factor exists, and into a white area that consists of γ -
values, which, however, are beyond a meaningful range (γ > 1). The detailed
gray shading represents γ -values (0 < γ ≤ 1) for which convergence is fulfilled.

section A.3) and is then plotted against O and T in Figure 3 for nine input
functions, shown in the lower right. On the upper left, the ratio between
the duration of the third factor and P was set to one-third, in the upper
right to two-thirds, and on the lower left to four-thirds. Analogous to the
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exponential function, the area of convergence increases with increasing L-
values.

If comparing the results of Figure 3 with Figure 9 (in section A.3), both
figures match each other, as we have used the same derivations as for
Figure 3 in the appendix. However, even if more general filter functions are
used, like the exponential one used for Figure 2, both figures still match
quite well, especially in the regions where the system diverges and where
it stays constant.

In summary, Figures 2, 3, and 9 show clearly that the area of convergence
changes only gradually and the area as such is increasing with increasing
duration of the third factor. Altogether, it shows that for a general neuronally
plausible signal shape u, the condition for asymptotic equivalence between
temporal difference learning and differential Hebbian learning with a third
factor is fulfilled for a wide parameter range and thus all realistic relative
timing intervals between state activations and third factor.

3 Simulation of a Small Network

In this section, we show that we can reproduce the behavior of TD-learning
in a small, linear network of neurons designed according to our algorithm.
Obtained weights of the differential Hebbian learning neuron represent the
corresponding TD-value (see Figure 4A, inset). It is known that in a linear
TD-learning system, values at the end of learning will follow an exponential
function with a decay rate given by the discount factor γ . This is shown in
Figure 4A. In Figure 4B, we also investigate the assumption of a quasi-static
process.

Details of this simulation are as follows. The network consists of N
states s, which are connected to a neuron v, which uses differential Hebbian
learning. The modulatory signal is added by an additional neuron M. The
network is shown in the inset of Figure 4A. The states are indexed such
that the state closest to the reward has index 1 (hence, the reward has
the index 0). At the beginning of learning, all weights are initialized to 0
except the weight connected with the reward. Each trial begins with state
N approaching the reward at which a trial is terminated; thus, each state
becomes active once.

The weights of the states connected to the differential Hebbian learning
neuron are shown in Figure 4A for three different γ -values after learning.
States indexed with higher numbers (hence, farther away from the reward)
have smaller weights, and the relation ρi+1 = γρi where i indicates the
distance to the reward holds for each γ -value. This is indicated by an
exponential fit. It also should be noted that the weights at states far away
from the reward deviate from the exponential fit, but only for the highest
γ -value. This is an effect caused by the finite number of states and at the
same time by a γ +-value that is higher than 1 (see section 4.1 for details).
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Figure 4: Weights of a differential Hebbian learning neuron. (A) The inset shows
the arrangement of the states (top) and the network used for the simulations
(bottom). We used N = 30 for our simulations. The weights of the network
and their exponential fit for three γ -values are plotted. (B) The dependence
of the weights to the learning rate. The difference of the weight closest to the
reward (ρ1 = γ · ρ0 = γ · 1) and the calculated γ -value are plotted here and can
be fitted by a logarithmic function [ f (x) ∝ log(1 − x)]. The γ -values used are
(∗, dotted) γ = 0.835697 [S = 3000, T = 330, L = 650, O = −220], (x, dashed)
γ = 0.710166 [S = 3000, T = 300, L = 650, O = −220], (+, solid) γ = 0.507729
[S = 3000, T = 300, L = 550, O = −220]. The shape of the filter used here is
identical to the shape used in Figure 2, and the learning rate used in A is 0.12.
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In these systems, learning rates are usually in the range of 10−5 to 10−2

(Porr & Wörgötter, 2003, 2007). The question arises whether in this range, the
assumption of a quasi-static process will hold. If it holds, we would expect
that the weight closest to the reward (ρ1) will exactly reach the value of γ af-
ter learning. In Figure 4B, the deviation from this expectation given by ρ1 −
γ is plotted against the learning rate. As indicated by equation 2.5, the devi-
ation increases with increasing learning rates, but remains small up to a rate
of 10−1, which is well in the range of useful learning rates. The actual shape
of the curves is a consequence of different interacting processes depending,
for example, on the total number of states (see section 4.1) and others.

Looking at higher γ -values, it is apparent that the effect of a finite number
of states behaves antagonistically to the deviation caused by the increased
learning rate—the weight after learning is shifted to higher values (inde-
pendent of the learning rate). Therefore, if higher γ -values (or a smaller
number of states) are used, the simulated weight ρ1 may be modified such
that it will be identical to the calculated γ -value even if finite learning
rates larger than 0 are used. However, this will not correct the simulated
γ -value as such since the weights are then no longer arranged exponentially
(indicated by Figure 4A).

4 Discussion

4.1 Technical Discussion. Most realistic learning examples are not af-
fected by these constraints. Thus, readers who are not interested in these
special aspects may choose to skip this section.

4.1.1 Quasi-Static Process, α � 1. In this proof, the assumption of a quasi-
static process has been used three times. First, we used this assumption for
solving the differential equation, equation 2.1, of the weight change. More
precisely, we neglected the derivative of the weight on the right side of
that equation. If we considered this term as well, we would get an inverse
square root function 1/

√
1 − α ν instead of the exponential function eα 1

2 ν (see
equation 2.2), which we assumed during our proof, where the parameter ν

is defined here as

ν := u2
i (O + L) − u2

i (O) + u2
i (O + S + T + L) − u2

i (O + S + T). (4.1)

The inverse square root function, however, has similar properties and ex-
pands equally with respect to the first order around small values of α

compared to the exponential function, justifying constraint α � 1 here.
Second, we truncated the expansion of equation 2.3 after the first order,

which is allowed only for α � 1. Would the necessary condition κ > 0 be
affected if we had not truncated the expansion? Considering ν as defined
in equation 4.1 and equation 2.5, we observe that a positive value of κ
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corresponds to a negative value of ν and will lead to a negative weight
change of �ac

i . Hence, given a negative value of ν (a necessary condition
for κ > 0 if taking only the first-order terms of the expansion into account),
this leads directly to a negative weight change of �ac

i in equation 2.3. This
is due to the properties of the exponential function (ex − 1 < 0 ∀ x < 1)
or of the inverse square root function (1/

√
1 − x − 1 < 0 ∀ x < 1), and,

as a consequence, constraining to α � 1 is allowed here as well.
Third, we neglected, due to α � 1, the variability of the homogeneous

solution (ρac ; see equation 2.2) in order to calculate the inhomogeneous so-
lution (ρcc ; see equation 2.6) of the weight ρ. However, taking the variability
into consideration will not affect the linearity with respect to ρ. This is be-
cause equation 2.8 can be directly split into τ± and ρ, and the additional
homogeneous solution will change only the integral (see equations 2.10
and 2.9), which leads to τ± and, as the solution does not rely on ρ, will not
complicate the linear decomposition.

4.1.2 Reward Only at the End of a Sequence. In most physiological exper-
iments (Schultz, Apicella, Scarnati, & Ljungberg, 1992; Montague, Dayan,
& Sejnowski, 1996; Morris, Nevet, Arkadir, Vaadia, & Bergman, 2006) the
reward is given at the end of the stimulus sequence. Our assumption that
the reward state is a terminating state and is therefore only at the end
of the learning sequence conforms to this paradigm. However, for TD in
general, we cannot assume that the reward is provided only at the end.
Differential Hebbian learning will then lead to a slightly different solution
compared to TD-learning. This solution has already been discussed in a
another context (Dayan, 2002). Specifically, the difference in our case is the
final result for the state-value after convergence for states that provide a
reward. We get V(s) → γ V(si+1) + r (si+1) − r (si ) compared to TD-learning:
V(s) → γ V(si+1) + r (si+1)). It would be interesting to assess with physio-
logical and or behavioral experiments which of the two equations more
closely represents experimental reality. To do so, one has to guarantee that
the reward given at the end is worth the costs of the animal incurred until
reaching it (Hassani, Cromwell, & Schultz, 2001).

4.1.3 Finite Number of States. If we consider just a finite number of states
without periodic boundary conditions and assume that the same state neu-
ron s0 always starts the whole sequence, the corresponding weight will not
converge to ρ0 = γ ρ1 but to ρ0 = γ + ρ1 due to the missing ρ−1 weight (see
equations 2.15 and A.11). However, in this case, the gradual order of the
weight values is disturbed only if the γ +-value is larger than 1.

4.1.4 Stochastically Uncertain Environments. It is known that in stochas-
tically uncertain environments, the TD-values converge with probability
one only when the learning rate decreases (Kushner & Clark, 1978; Dayan
& Sejnowski, 1994). In our implementation, the signal M(t) is constant. If
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it were instead implemented to diminish during repeated encounters with
the same state, it would immediately incorporate the property of decreasing
learning rates too.

4.1.5 Non-Markov. In the algorithm presented, each TD-value arises from
the interaction of three states. Hence, for a considered state, it is of relevance
from where it had been reached. Thus, strictly speaking, the algorithm is his-
tory dependent and violates the Markov property required for TD-learning
(Sutton & Barto, 1998). This has no deeper consequence, as the standard
trick for non-Markovian systems, which often are also encountered in con-
ventional RL problems, can be applied here in the same way. It is possible,
without much effort, to design a network where in a higher network layer,
states are being concatenated into new larger states, which now obey the
Markov property. In many practical applications, this is not even required
as the value-gradient field will build up toward the reward regardless of the
non-Markovian algorithm presented here. An implementation of SARSA
(Singh, Jaakkola, Littman, & Szepesvári, 2000) using our algorithm behaves
in this way (data not shown).

4.2 General Discussion. The TD-rule has become the most influential
algorithm in reinforcement learning because of its tremendous simplicity
and proven convergence to the optimal value function (Sutton & Barto,
1998). It had been successfully transferred to control problems too in the
form of Q- or SARSA learning (Watkins & Dayan, 1992; Singh et al., 2000),
which uses the same algorithmic structure while maintaining similar ad-
vantageous mathematical properties (Watkins & Dayan, 1992).

In this study, we have shown that TD(0)-learning and differential Heb-
bian learning modulated by a third factor are asymptotically equivalent
under certain conditions. This proof relies on commonly applicable, fairly
general assumptions, thus rendering a generic result that does not constrain
the design of larger networks. It has long been suspected that RL in neu-
ronal tissue would have to rely on the use of a third factor in a Hebb rule
(Schultz, 1998), and several earlier results have pointed to the possibility
of an equivalence between RL and CL. Izhikevich (2007) solved the distal
reward problem using a spiking neural network, yet with fixed exponential
functions (Gerstner, Kempter, van Hemmen, & Wagner, 1996) to emulate
differential Hebbian characteristics. His approach is related to neurophys-
iological findings on spike-timing-dependent plasticity (STDP; Markram
et al., 1997). Each synapse learned the correlation between conditioned stim-
uli and unconditioned stimuli (e.g., a reward) through STDP and a third
signal. Furthermore Roberts, Santiago, and Lafferriere (2008) showed that
asymmetrical STDP and TD-learning are related. In our differential Heb-
bian learning model, in contrast to the work described above, STDP emerges
automatically because of the use of the derivative in the postsynaptic poten-
tial (see equation 1.2). The relation between STDP and differential Hebbian
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learning and its asymptotic equivalence when using serial states was dis-
cussed in Roberts (1999). Rao and Sejnowski (2001) showed that using the
temporal difference will directly lead to STDP, but they could not provide
a rigorous proof for the equivalence. Recently it has been shown that the
online policy-gradient RL algorithm (OLPOMDP) developed by Baxter,
Bartlett, and Weaver (2001) can be emulated by spike-timing-dependent
plasticity (Florian, 2007), however, in a complex way using a global re-
ward signal. On the other hand, the observations reported here provide a
rather simple, equivalent correlation-based implementation of TD and sup-
port the importance of three-factor learning for providing a link between
conventional Hebbian approaches and reinforcement learning.

Additionally, our approach is intrinsically based on continuous states as
well as on continuous time. Several attempts to shape RL algorithms, which
usually have discrete states and time, into continuous systems exist but lack
biological motivation. In particular, Baird (1993) extended Q-learning by the
“advantage updating” method, and Doya (2000) performed the transforma-
tion from a discrete sum to a continuous integral for the calculation of the
return R. In his case, every value function V consists of a state represen-
tation and a corresponding weight. These weights need to be adjusted in
order to let the delta error converge to zero. This is done by a gradient
descent algorithm, which results in an update rule that demands a weight
derivative, which is difficult to emulate in a biologically realistic way.

Our results rely in a fundamental way on the third factor M, and the
analysis performed in this study indicates that the third factor is necessary
for the emulation of TD-learning by a differential Hebb rule. To explain
the reason requires a closer look at the TD-learning rule. We find that
the TD-rule requires a leakage term −α · V(s). If this term does not exist,
values would diverge. It can be shown that in differential Hebbian learning
without a third factor, the autocorrelation part, the source of the leakage
needed (see equations 2.11 and 2.4), is nonexistent (Kolodziejski, Porr, &
Wörgötter, 2008). This shows that only through a well-timed third factor is
the ratio between the cross-correlation and autocorrelation term correctly
adjusted. This ratio is at the end responsible for the γ -value we will get
using differential Hebbian learning to emulate TD-learning.

This study is mainly concerned with showing the formal equivalence
between TD and differential Hebbian learning. Possible links to biophys-
ical mechanisms play a minor role here. Nonetheless, one could consider
neuromodulators for the role of the third factor M. The required reliability
of timing, however, makes it unlikely that dopamine could take on this role,
as the timing of these signals does not seems reliable enough (Redgrave &
Gurney, 2006), although Pawlak and Kerr (2008) could show that LTP in the
striatum emerges only in the presence of dopamine. The attributed, albeit
still much discussed, role of the dopaminergic responses from neurons in
the substatia nigra (pars compacta) or the ventral tegmental Area (VTA)
as possibly representing the δ-error of TD learning (Schultz et al., 1992;
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Montague et al., 1996) is thus neither questioned nor supported in our
study. A very good alternative for the role of a well-timed third factor,
however, seems to be the response characteristic of the cholinergic tonically
active neurons (TAN). Their response, which is a reduction of activity,
is exceedingly well timed and occurs together with conditioned stimuli
(Graybiel, 1998; Morris, Arkadir, Nevet, Vaadia, & Bergman, 2004). The fact
that TANs cease to fire would require an additional inversion to make this
compatible with our M factor, but when considering possible disinhibitory
effects, this should not pose a fundamental problem.

Thus, it is also important that we were able to show that our algorithm
is stable across a wider range of possible biological signals as different
temporal profiles exist, for example, for synapse and channel activation
(compare AMPA versus NMDA characteristics). This is required, as it is not
yet clear which signals are involved in any three-factor learning, and this
might also depend on the considered cell type and brain structure.

Appendix: Derivations and Analytical Calculations

A.1 Solving the Homogeneous Part. We start by taking the homoge-
neous part of the differential equation 2.1 where we neglect the index i :

ρ ′(t) = dρ(t)
dt

= α · u(t) u′(t) ρ(t) M(t). (A.1)

Next we separate the variables and integrate both sides from zero to infinity:

∫ ρ

ρ0

dρ

ρ
= α ·

∫ ∞

0
u(t) u′(t) M(t) dt. (A.2)

We mentioned in the beginning that M(t) is either 1 or 0; thus, we can model
this function as a sum of Heaviside functions �(t):

M(t) =
∑

m

�
(
t − blower

m

)
�

(
bupper

m − t
)
. (A.3)

As the Heaviside functions determine the integration boundaries of the
right-hand side of equation A.2, this can be simplified to

∫ t

t0
u(t) u′(t)

∑
m

�
(
t − blower

m

)
�

(
bupper

m − t
)

dt

=
∑

m

∫ bupper
m

blower
m

u(t) u′(t) dt. (A.4)
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The left side of equation A.2 solves to a logarithmic function, and for its
right side, we use following derivative:

du2(t)
dt

= 2 u(t) u′(t). (A.5)

All in all, this leads to

ln
ρ

ρ0
= α

2

∑
m

[
u2(bupper

m

) − u2(blower
m

)]
, (A.6)

where we have to invert the logarithmic function,

ρ = α

2
· ρ0 · exp

∑
m

[
u2(bupper

m

) − u2(blower
m

)]
, (A.7)

and we get the weight ρ after integrating over a pulse pair if having weight
ρ0 before.

A.2 Solving the Difference Equation. First, we need to show to which
value equation 2.15 converges, and then we can solve the resulting differ-
ence equation. The equation for which convergence needs to be calculated
can be simplified to

xn+1 = (1 − α) xn + α y. (A.8)

This difference equation can be solved in a simpler way as a differential
equation:

dx(t)
dt

= −α x(t) + α y. (A.9)

The homogeneous part solves to an exponential function with exponent
−αt, and the inhomogeneous solution can be found by the method of
variation of parameters:

xinhom(t) = xhom(t)
∫ ∞

0
x−1

hom(z) α y dz

xinhom(t) = exp(−α t)
∫ t

0
exp(α z) α y dz

xinhom(t) = exp(−α t) α y
[

1
α

exp(α z)
]t

0
= y (1 − exp(−α t)). (A.10)
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This gives us for the convergence,

x(t) = (C − y) exp(−α t) + y

lim
t→∞ x(t) = y, (A.11)

where C is a constant. This shows that difference equations like equa-
tion A.8 or differential equations like equation A.9 always converge to y.
Additionally, Kushner and Clark (1978) showed that this holds also for a
stochastic variable with mean y.

Using this result, we can directly set x∞ = y, and we then have the
following difference equation, which needs to be solved:

ρn = ε1 ρn+1 − ε2 ρn−1. (A.12)

We get the solution using the ansatz ρn = µn:

µn = ε1 µn µ − ε2 µn µ−1. (A.13)

Assuming µ �= 0, we can divide equation A.13 by µn−1 and solve the fol-
lowing quadratic equation:

0 = µ2 − 1
ε1

µ − ε2

ε1

µ1/2 = 1
2 ε1

±
√

1
(2 ε1)2 + ε2

ε1
.

(A.14)

A negative solution, however, would lead to an oscillation; therefore, we
consider only the positive sign, which leads to a positive solution,

µ = 1
2 ε1

+
√

1
(2 ε1)2 + ε2

ε1
, (A.15)

that, potentiated by n, gives us the value to which ρn will converge. There-
fore, we can set ρn = µ−1 ρn+1, and equation A.12 is simplified.
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Figure 5: The filter functions with all possible regions for both the rising and
the falling phases. The relevant intervals are defined by I to VI and A to F.

A.3 Analytical Calculation of γ Using First- and Second-Order Terms.

A.3.1 Taylor Expansion of the Filter Function. The Taylor expansion to the
second order of an arbitrary filter function with a plateau is described as

u(t)=U ·




0 if t < 0

(1 − η)
(

t
Pr

)2

+ η
t

Pr
if t ≥ 0 ∩ t ≤ Pr

1 if t > Pr ∩ t ≤ S

1 − (1 − ξ )
(

t − S
P f

)2

− ξ
t − S

P f
if t > S ∩ t ≤ S + P f

0 if t > S + P f ,

(A.16)

where U is the height of the plateau, Pr and P f the length of the rising and
the falling phase, respectively, S the length of a state, and η and ξ the degree
of the second-order term for the rising and the falling phase, respectively.
Here, η = 1 or ξ = 1 leads to a linear slope, η = 0 or ξ = 2 to a convex, and
η = 2 or ξ = 0 to a concave slope.

A.3.2 Intervals. Having defined the actual shape of the filter function,
we now have to distinguish between different occurrence times of the third
factor. Figure 5 shows the six essential regions of both the rising and the
falling phase. For this, we defined intervals I to VI for the rising phase and
A to F for the falling phase (see Table 1).

Additionally we need to define another four intervals used for the cor-
relation of the signals when calculating τ± (see Table 2).

A.3.3 Analytical Calculation of κ . Next we calculate κ using the filter
function, equation A.16. For the following, we assume that O + L < S and
O + S + T > Pr which holds if S is sufficiently larger than O, L , and |T |.
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Table 1: Intervals Used to Discriminate Between the Different Occurrences of
the Third Factor.

I O < 0 ∩ O + L < 0 A O + T < S ∩ O + L + T < S
II O < 0 ∩ O + L ≥ 0 ∩ O + L < Pr B O + T < S ∩ O + L + T ≥ S ∩ O + L + T < Pf
III O < 0 ∩ O + L ≥ Pr C O + T < S ∩ O + L + T ≥ Pf
IV O ≥ 0 ∩ O < Pr ∩ O + L < Pr D O + T ≥ S ∩ O + T < Pf ∩ O + L + T < Pf
V O ≥ 0 ∩ O < Pr ∩ O + L ≥ Pr E O + T ≥ S ∩ O + T < Pf ∩ O + L + T ≥ Pf
VI O ≥ Pr ∩ O + L ≥ Pr F O + T ≥ Pf ∩ O + L + T ≥ Pf

Note: See Figure 5 for a more intuitive representation.

Table 2: Intervals Needed for the Correlation of Two consecutive Signals with
a Time Delay of T .

a −T < 0
b −T + Pf < 0
c −T < Pr
d −T + Pf < Pr

These assumptions prevent cases where the third factor would affect the
signal after the next signal, which is nonsensical. To simplify the cases, we
split κ into κ+ and κ−, as done in the main text: κ = −(κ+ + κ−). In Table 3
the analytical results for κ± are stated using equations A.17 and A.18. These
equations result from equation 2.5, where we included the filter function,
equation A.16. In detail, equation A.17 represents the squared rising phase,
and equation A.18 the squared falling phase. It is important to mention that
both functions �(t) and �(t) are bounded between 0 and 1:

�(t) =
(

t
Pr

)2

·
(

η + (1 − η)
t
Pr

)2

(A.17)

0 ≤ � ≤ 1 ∀η : 0 ≤ η ≤ 2 ∩ ∀t : 0 ≤ t ≤ Pr

�(t) =
(

1 − t − S
Pf

)2

·
(

1 + (1 − ξ )
t − S

Pf

)2

(A.18)

0 ≤ � ≤ 1 ∀ξ : 0 ≤ ξ ≤ 2 ∩ ∀t : S ≤ t ≤ S + Pf .

The results can be summarized by plotting the areas, which represent defini-
tive divergent areas where we simplify the rising and falling time to identi-
cal values: P = Pr = Pf . These areas are composed of intervals in which the
sum of κ+ and κ− is always positive. For instance, for interval A conjoined
with either of the intervals I to VI, the sum of κ+ and κ− is always greater
than zero and thus divergent. The same holds for interval F. Both areas are
indicated in Figure 6 with different shades of gray. There is an additional
divergent area III that is there only if the value of L is greater than P .



Three-Factor Learning Emulates the TD Rule 1195

Table 3: Analytical Result of κ±.

Interval κ+/( U2

2 ) Interval κ−/( U2

2 )

I 0 A 0
II �(O + L) B �(O + S + T + L) − 1
III 1 C −1
IV �(O + L) − �(O) D �(O + S + T + L) − �(O + S + T)
V 1 − �(O) E −�(O + S + T)
VI 0 F 0

Figure 6: The divergent regions for different values of L . The intervals indicated
by the gray can be found in Table 1. Dark gray represents regions independent
of L , whereas the gray regions depend on L . The light gray region also depends
on L ; however, this area is there only for L > P .

There would also be an interval C (not shown) for which the sum of κ+

and κ− is always less than zero if conjoined with interval I to VI except III.
However, this shows up only if L is greater than P , but then interval III
becomes valid. This can be resolved by using different values for Pr and Pf

where Pf < Pr .
Only in the white area can there be convergence; however, the shape of

the actual filter function u(t) determines whether a certain area converges.
Additionally, it is important to include the values for τ± into the consider-
ations as these values in different areas can be 0, which means that there is
no overlap between two consecutive signals and the third factor. This will
be investigated next.

A.3.4 Analytical Calculation of τ+ and τ−. Here we calculate the values for
τ± using the filter function, equation A.16. We likewise assume that there
is no overlap of the signal with the signal after its next state. In Table 4,
the analytical results for τ± are stated using equations A.19 to A.22. These
equations result from equations 2.9 and 2.10, where we included the filter
function, equation A.16. It is important to mention that these functions, ζ (t),
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ā

∩
c

ζ
(−

T
)−

ζ
(0

)+
ψ

(P
r)

−
ψ

(−
T

)
ϕ

(P
r)

−
ϕ

(−
T

)+
χ

(O
+

L
)−

χ
(P

r)
∞

II
I∩

B
∩

c̄
ζ

(P
r)

−
ζ

(0
)

χ
(O

+
L

)−
χ

(P
r)

∞
II

I∩
C

∩
b

0
0

0
II

I∩
C

∩
a

∩
b̄

∩
d

ψ
(−

T
+

P
f)

−
ψ

(0
)

ϕ
(−

T
+

P
f)

−
ϕ

(0
)

∞
II

I∩
C

∩
a

∩
d̄

ψ
(P

r)
−

ψ
(0

)
ϕ

(P
r)

−
ϕ

(0
)+

χ
(−

T
+

P
f)

−
χ

(P
r)

∞
II

I∩
C

∩
ā
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ψ(t), χ(t), and ϕ(t) are always greater than 0.

ζ (t) = 2
U2

∫
U u′(t) dt = 2

(
(1 − η)

(
t

Pr

)2

+ η
t

Pr

)
(A.19)

ζ ≥ 0 ∀η : 0 ≤ η ≤ 2

ψ(t) = 2
U2

∫
u′(t) u(t + S + T) dt

= 2

(
(1 − η)

(
t
Pr

)2

+ η
t
Pr

)
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3
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)2 t
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(
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3
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(
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Pr

)2
)

−η ξ

(
t
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t
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T
Pr

)
(A.20)

ψ ≥ 0 ∀η : 0 ≤ η ≤ 2 ∩ ∀ξ : 0 ≤ ξ ≤ 2.

χ(t) = 2
U2

∫
U u′(t + S + T) dt

=−2

(
(1 − ξ )

((
t

Pf

)2

+ 2
t

Pf

T
Pf

)
+ ξ

t
Pf

)
(A.21)

χ ≤ 0 ∀ξ : 0 ≤ ξ ≤ 2

ϕ(t) = 2
U2

∫
u(t) u′(t + S + T) dt
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)
(A.22)

ϕ ≤ 0 ∀η : 0 ≤ η ≤ 2 ∩ ∀ξ : 0 ≤ ξ ≤ 2.
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Figure 7: The regions of zero τ+ values for different values of L . The intervals
indicated by gray shading can be found in Table 1. See Figure 6 for explanations
of the shades of gray.

Figure 8: The regions that result in zero τ− values for different values of L . The
intervals indicated by gray shading can be found in Table 1. See Figure 6 for
explanations of the shades of gray.

For these calculations, we also simplify the rising and falling time to have
identical values: P = Pr = Pf . The results can be summarized by plotting
the areas for which τ± are zero (see Figures 7 and 8). For instance, similar to
κ , interval F conjoined with intervals I to VI results in both τ+ and τ− being
equal to zero. In case of τ−, this observation can also be made for interval
A, and in case of τ+, the interval VI gives zero. There are two additional
intervals, I and b, which result in a value of zero for both τ measures. These
areas are indicated with different shades of gray in Figure 7 for τ+ and in
Figure 8 for τ−.

As τ± will not affect convergence, all areas would yield convergence.
However, only for the white area would γ result in a value unequal to zero.

A.3.5 Analytical Calculation of γ . Finally we can calculate the value of γ

using equation 2.14. This is not done explicitly here; however, we indicate
in the last column of Table 4 whether γ is zero (no overlap between two
consecutive signals and the third factor), greater than zero, or infinite.
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Figure 9: The regions of meaningless γ values where there is either no overlap
between two consecutive signals and the third factor (τ± = 0), or γ diverges
(κ < 0). The areas are shown for different values of L . The intervals indicated
by gray shading can be found in Table 1. See Figure 6 for explanations of the
shades of gray. It is now possible to compare this figure with Figures 2 and 3.

Furthermore we can combine the considerations made for κ and τ±,
which are illustrated in Figures 6 to 8 into Figure 9. If we compare Figure 9
with Figures 2 and 3, we find that the areas of divergence map exactly,
and only in the white areas convergence can be found. Therefore the
considerations about convergence and nonzero τ± values can be transfered
from the filter function, equation A.16, to all possible functions that possess
only one plateau.
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