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Abstract A confusingly wide variety of temporally asym-
metric learning rules exists related to reinforcement learning
and/or to spike-timing dependent plasticity, many of which
look exceedingly similar, while displaying strongly different
behavior. These rules often find their use in control tasks, for
example in robotics and for this rigorous convergence and
numerical stability is required. The goal of this article is to
review these rules and compare them to provide a better over-
view over their different properties. Two main classes will
be discussed: temporal difference (TD) rules and correlation
based (differential hebbian) rules and some transition cases.
In general we will focus on neuronal implementations with
changeable synaptic weights and a time-continuous represen-
tation of activity. In a machine learning (non-neuronal) con-
text, for TD-learning a solid mathematical theory has existed
since several years. This can partly be transfered to a neu-
ronal framework, too. On the other hand, only now a more
complete theory has also emerged for differential Hebb rules.
In general rules differ by their convergence conditions and
their numerical stability, which can lead to very undesirable
behavior, when wanting to apply them. For TD, convergence
can be enforced with a certain output condition assuring that
the δ-error drops on average to zero (output control). Cor-
relation based rules, on the other hand, converge when one
input drops to zero (input control). Temporally asymmetric
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learning rules treat situations where incoming stimuli follow
each other in time. Thus, it is necessary to remember the first
stimulus to be able to relate it to the later occurring second
one. To this end different types of so-called eligibility traces
are being used by these two different types of rules. This
aspect leads again to different properties of TD and differ-
ential Hebbian learning as discussed here. Thus, this paper,
while also presenting several novel mathematical results, is
mainly meant to provide a road map through the different
neuronally emulated temporal asymmetrical learning rules
and their behavior to provide some guidance for possible
applications.
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1 Introduction

Control tasks for animals or machines (systems) require sen-
sible actions that follow from the current state of the sys-
tem. As consequence of an action the state of the system
may change and a new action will be elicited, and so on.
This procedure describes a sequence of states and actions,
which follow each other in time. Such control mechanisms
can either be hardwired into the system, but many times it
is more appropriate to design a learning algorithm that tries
to infer the next action from the previous sequence of states.
Especially in animal (or robot-) control the complexity of
the world may prevent hardwiring and learning is required
instead to assure enough flexibility.

In general three mechanisms can be used for learning in
such situations: (1) Unsupervised learning (finding statistical
structure), (2) reinforcement learning (the learner receives
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a fairly unspecific reward-signal about the success of its
actions) and (3) supervised learning (the learner receives
a specific error signal). The distinction between these
algorithmic classes is to some degree fuzzy and we will here
deal with classes one and two only.

Specifically there are: reward-based reinforcement learn-
ing (Kaelbling et al. 1996; Sutton and Barto 1998 abbreviated
with RL) as well as correlation based differential Hebbian
learning (Kosco 1986; Klopf 1986; Porr and Wörgötter 2003),
here abbreviated with CL (correlation-based learning). These
algorithms differ fundamentally in their design and goal.

Most influential up to date is reinforcement learning and
substantial efforts have been undertaken during the last
15 years to develop a highly successful theory of RL (Sutton
1988; Dayan 1992; Dayan and Seynowski 1994; Kaelbling
et al. 1996; Sutton and Barto 1998). Mostly RL methods
had been developed in conjunction with machine learning
(e.g., Q-learning, Watkins 1989; Watkins and Dayan 1992)
and only fewer attempts exist to design architectures which
want to be more compatible with (biological) neural networks
(Montague et al. 1995, 1996; Suri and Schultz 1998, 1999,
2001; Suri et al. 2001; Arleo and Gerstner 2000; Strösslin
et al. 2005). When studying machine learning, it becomes
clear that there is no easy way to adopt the state-action space
structures used for (e.g.) Q-learning to a neural network. Most
often Actor-Critic Architectures (Witten 1977; Sutton and
Barto 1998) are used which emulate some aspects of the
basal ganglia and the prefrontal cortex. Other biologically
relevant approaches have implemented TD-learning in the
context of place field guided navigation models in the hip-
pocampus (Foster et al. 2000; Krichmar et al. 2005).

Correlation based differential Hebbian learning has been
invented around 1985 (Kosco 1986; Klopf 1986, 1988) after
so-called stimulus substitution models of classical (and
instrumental) conditioning had been introduced (Sutton and
Barto, 1981). At that time these models had not been used in
any behaving closed loop system and the early CL-models
had soon been superceded by the highly influential method of
“temporal difference learning” (TD-learning; Sutton 1988)
by which CL-methods essentially died out and became
replaced by RL-approaches to which TD-learning belongs.
Through TD (and related methods) it became possible to
reliably learn the values of states and actions and to control
the learning of an agent through reinforcement signals. Only
much later CL was revived when discovering a method of
how to embed CL into closed-loop control systems guarantee-
ing convergence of the learning process (Porr and Wörgötter
2003; Porr et al. 2003). By this CL became a possible alter-
native to RL. Furthermore, it has been found (Saudargiene
et al. 2004; Roberts 1999) that differential Hebbian learn-
ing is related to spike-timing dependent plasticity (STDP;
Gerstner et al. 1996; Markram et al. 1997).

Hence currently one finds the following situation: TD-
learning is compatible to neuronal circuitry mostly at the
network level, while differential hebbian learning is more
directly compatible to STDP at single neurons. Only very
recently several attempts have been presented in the litera-
ture to show that there is a more direct equivalence exist-
ing between these two worlds and two different proofs have
been presented how RL can be emulated by a CL formalism
(Florian 2007; Santiago et al. 2007; Pfister et al. 2006;
Izhikevich 2007). Alas, both approaches are quite complex
and the relation between RL and CL is not really straight
forward.

Therefore, it may make sense to step back and first provide
some simple circuits by which RL and CL can be emulated at
a single unit in a time-continuous and causal way from where
on it might become easier to address the question to what
degree both approaches are similar. In addition, the growing
number of different learning rules, especially for CL, makes
it useful to provide a comparison, which may help the reader
to better understand these rules when wanting to implement
them.

Note, this paper deals with the different learning rules only
in an open-loop context. Behavioral feedback is not treated.
This would represent a second step and is beyond the scope
of the current paper.

2 Basic approaches

In general we have to deal with situations where information
arrives at an agent spread out over time. Hence all methods
for RL and CL need to provide some kind of memory mech-
anism. This can be explained in the most basic way when
discussing classical conditioning models (Fig. 1). In order
to learn reacting to the earlier stimulus (CS), it has to be
remembered in the system. To this end the concept of eli-
gibility traces had been introduced (Hull 1939, 1943; Klopf

US (reward)

CS

v(t)

x

E-trace
+

X0

X1

Fig. 1 Simple correlative temporal learning mechanism applying an
eligibility trace (E-trace) at input x1 to assure signal overlap at the
moment when x0 occurs; ⊗ denotes correlation. In the terminology of
conditioning: CS conditioned stimulus, US unconditioned stimulus. The
ω depict the synaptic weights
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1972, 1982; Sutton 1988; Singh and Sutton 1996), where the
synapses belonging to the earlier stimulus remain eligible for
modification for some time until this trace fades. In the fol-
lowing we will use x as the signal input and u as the filtered
input (u = x ∗h) with h being an arbitrary filter function (we
will define a particular filter function later). The ∗ denotes a
convolution. Furthermore, v will be the neuronal sum of the
inputs weighted by the weights ω and prime will denote the
derivative with respect to time: v′ = dv

dt .
The first model to make use of this had been designed

by Sutton and Barto (1981). In this model synaptic weights
change according to

dω1(t)

dt
= γ [v(t) − v(t)]u1(t), (1)

where they have introduced two eligibility traces, u1 at the
input and v(t) at the output, given by

u1(t + 1) = ãu1(t) + x1(t) (2)

v(t + 1) = b̃v(t) + (1 − b̃) v(t), (3)

with control parameters ã and b̃. Mainly they discuss the case
of b̃ = 0 where v(t) = v(t − 1), which turns their rule into
(Fig. 2a):

S&B : dω1(t)

dt
= γ [v(t) − v(t − 1)]u1(t), (4)

Before learning this neuron will only respond to the US, while
after learning it will respond to the CS as well.

TD-learning had been developed a few years later (Sut-
ton 1988). One centrally new aspect at that point had been to
introduce a reinforcement signal r , which affects the learning,
but not the output of the system (Fig. 2b). Synaptic weights
change according to

dω1(t)

dt
= [r(t) + γ v(t) − v(t − 1)]u1(t)

≈ [r(t) + v′(t)]u1(t). (5)

We define:

δ(t) = r(t) + γ v(t) − v(t − 1) (6)

the δ-error of TD-learning, which is the mismatch between
predicted (expected) and actual reward. The parameter γ is
called the discount factor, which accounts for the fact that
distant rewards should be valued less. For practical purposes
it makes sense to also introduce a learning rate factor µ << 1
in this equation, which allows controlling the speed of learn-
ing. Hence we have:

TD : dω1(t)

dt
= µδ(t) u1(t) (7)

Figure 2a and b shows the difference between the old
S&B model and TD-learning. Note, in TD the reward does
not enter into the output of the neuron, but only influences
the learning and both diagrams are identical if we remove x0
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Fig. 2 Comparison of basic learning rules. Eligibility traces are
denoted as E , while x0 (or r respectively) represents the unconditioned
input or reward and x1 the conditioned input. The amplifier symbol
denotes the changing synaptic weight. All models use the derivative
of the postsynaptic signal in order to control the weight change. Both
Sutton and Barto models a, b use eligibility traces only in the learning
pathway, whereas ISO Learning c and TD-Rephrased d introduce them
also in the other pathway. The rephrased TD model d is mixture of
models b and c. We introduce a multiplicative factor α to control the
impact of u0 on the δ-value. Setting α → 0 we reobtain ISO Learning,
setting ω0 = 0 we get TD Learning (with a filtered x0 path instead of
an unfiltered)

or r , respectively. Originally these models had been designed
with the time-scale of classical or instrumental conditioning
in mind, which can be seconds between CS and US. If deal-
ing with biological systems, ultimately, however, one must
match all learning models to the time scales of synaptic plas-
ticity. When doing this, it does not make sense to separate
the inputs to a neuron from their eligibility traces. Rather
it seems more reasonable to assume that spikes get trans-
formed at a membrane into several much slower processes,
some of which determine the membrane potential, while oth-
ers may determine plasticity. For simplicity here we might
just assume one slow process at the input to a neuron which
equally affects the neuron’s output and its learning. When
doing this we arrive at diagram Fig. 2c, which is called ISO-
learning (Porr and Wörgötter 2003). The ISO-learning rule
is given by

ISO : dω1(t)

dt
= µv′(t) u1(t) (8)

Hence, ISO-learning is a form of differential Hebbian learn-
ing. While the main difference between the S&B and ISO
rule is only that both x1 and x0 are filtered before they enter
the neuronal summation, the ISO-learning rule behaves much
different from the S&B model.

If we give up the notion of an independent reward input
and, like in the old S&B model, use x0 also as a reward, we
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obtain Fig. 2d for rephrased TD-learning, where the learning
rule takes the following shape:

TD-r : dω1(t)

dt
= µ[u0(t) + v′(t)]u1 (9)

Two observations can be made for this rule:

1. At the beginning of learning the output v is dominated
by x0. Hence, in this formalism, rephrased TD-learning
shines up as a combination of Hebbian learning with the
term u0(t)u1 ≈ v(t)u1 and differential-Hebbian learn-
ing with the term v′(t)u1.

2. Also we find that this rule is (apart from a minus sign)
identical to the ISO-learning rule when we set x0 = 0,
a case which is of great importance in the discussion on
the different convergence conditions below.

3 Stability analysis for x0, r = 0

In the following simulations sequences of two delta-pulses
have been repetitively presented to the different systems,
where x1 is earlier than x0 (or than r , respectively) with a
constant interval T = 30 steps between them. The interval
between pulse pairs was 300. The step by step weight change
∆ω is calculated by integrating the respective learning rule:
∆ω = ∫ ∞

0
dω(t)

dt dt . From this the development of the weights
can be plotted. Learning rates µ have often been adjusted to
yield similarly strong weight growth for the different systems
when wanting to compare rules.

In addition we will show the different weight change
curves plotting the weight change against the interval
between inputs T . Note, strictly these curves reflect weight
changes only for t → 0, hence when w1 is still approxi-
mate zero. For negative T the temporal order of the pulses is
inverted.

The next figures (up to Fig. 7) always show how the dif-
ferent learning rules behave when maximally two eligibil-
ity traces are being used. This case applies only if one has
good knowledge about the temporal difference T between
the two incoming stimuli. Often, however, knowledge about
T is limited, then one needs to use a set of eligibility traces
for spreading out the earlier stimulus across time to make
sure that at least some of these signals can be related to the
later occurring x0 or r signal. This situation is discussed later
(see filter bank approach in Fig. 8).

As eligibility traces E we use in all cases a band-pass filter
response defined by

h(t) = 1

σ
(e−at − e−bt )�(t) (10)

with �(t) being the Heaviside (step) function. Actual param-
eters are given in the figure legends.

We are especially interested in the stability of the learning
rules. All rules learn by cross-correlating two signals with
each other (x1 with x0 or with r ), correlations of x1 with
itself (auto-correlations) are normally unwanted. Hence it
is of interest to subdivide the contributions of the learning
rule into a cross- and an auto-correlation term by: ∆w =
∆ωac + ∆ωcc, the latter term drives the weight change of
ω1 during the occurrence of x0 (or r ), whereas the auto-
correlation term also changes the weight in the absence of
the x0 signal. Hence, the pure auto-correlation contribution
becomes visible when switching x0 (or r ) off.

This is what we do in the following diagrams by setting
x0 = 0 at time-step t = 6000 to show if the weight change
for a given rule will then indeed stop. This is an important
case in a closed-loop system which, for instance, has to avoid
a reflex triggered by the x0 signal (Porr and Wörgötter 2003;
Porr et al. 2003; Krichmar et al. 2005).

Let us now calculate the auto- and cross-correlation con-
tributions for the rules introduced in the previous section.

Equation 4, from the S&B 1981 model, leads to:

∆ω1 =
∞∫

0

v′(t) u1(t) dt

=
∞∫

0

(ω0x0(t) + ω1x1(t))
′ u1(t) dt

=
∞∫

0

ω0δ
′(t − T ) h(t) dt +

∞∫

0

ω1δ
′(t) h(t) dt

= −ω0h′(T ) − ω1h′(0) (11)

where we have assumed and will assume for all upcoming
calculations a quasi-static1 approach (ω′ << 1), exchanged
u1(t) with h(t) and x1(t) and x0(t) with δ(t) and δ(t − T ),
respectively. Additionally we used

∫ ∞
0 δ′(t − t0) f (t) =

− f ′(t0) (Boykina 2003).
Thus, we get:

S&B : ∆ωcc
1 = −ω0h′(T ) ∆ωac

1 = −ω1h′(0) (12)

The TD-learning rule (Eq. 7) leads to similar results:

TD : ∆ωcc
1 = +ω0h(T ) ∆ωac

1 = −ω1h′(0) (13)

The only difference is a changed sign and the derivative of
the filter h associated with the x0 or rather r input (which is
set to ω0 δ(T ) for comparison).

In general one finds that in all cases synapses ω1 will
grow (left panels) until the later pulse is switched off. In

1 A quasi-static approach is commonly assumed for such calculations
(Dayan and Abbott 2003) and is justified as long as µ is small. It is
needed for neglecting the derivative of the weight w1 on the right hand
side of the equation and for neglecting the variability of the homoge-
neous solution for the calculation of the inhomogeneous part.

123



Biol Cybern (2008) 98:259–272 263

Sutton & Barto, 1981

Sutton & Barto, 1988 “TD-learning”

ISO-Learning

1
=0.001

=0.002

time [step]

0 2000 6000 10000
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14
C

T

-200 -100 0 100 200
0

1

2

3

4

5

6
x 10-3

D

0 2000 6000 10000
0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

=0.001

=0.002

time [step]

1

A

T

-200 -100 0 100 200
-10

-8

-6

-4

-2

0

2
x 10-4

B

T
-200 -100 0 100 200

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
=1
=0.25
=0.1
=0.01
=0

K

I

1 =0.001

=0.002

time [step]
0 2000 6000 10000

0

0.2

0.4

0.6

0.8

1

TD (Rephrased)

E

1 =0.001

=0.002

time [step]

0 2000 6000 10000
0

0.02

0.04

0.06

0.08

0.10

0.12

T

-200 -100 0 100 200

-0.02

0

0.02

F G

H

1 AC+CCAC

AC mag.

10x
1x

Fig. 3 Quantitative results from the architectures shown in Fig. 2. The
left panels show weight growth of ω1 during learning with two different
learning rates µ = 0.001 and µ = 0.002. The parameters of the band-
pass were a = 0.3, b = 0.33 and σ = 0.03. The right panels show
the relative weight change when learning starts (ω1 = 0) for different
temporal intervals T between x0 and x1. A positive value of T stands
for tx1 < tx0 and vice versa. a, b Model of Sutton and Barto (1981),
c, d TD-learning (Sutton 1988). e–h ISO-learning (Porr and Wörgötter
2003). f, g show the temporal development of the weight change for a
single input pulse pair. f Comparison of the AC and the combined AC
+ CC term. g Comparison of the AC term on a magnified scale for two
different sampling rates (1x, 10x) to show the numerical accuracy. i, k
TD-Rephrased, where k is plotted for different values of α and the inset
shows an enlargement around the origin

the S&B model (Fig. 3a) one sees that the unfiltered input x0

and its derivative lead to strong, needle-like excursions of the
weight growth for every step, which let the line in the diagram
appear broad. These disappear as soon as x0 is switched off.
In TD-learning (Fig. 3c) according to Sutton 1988, weights

grow about ten times faster, which is due to the fact that
the reward brings in only positive contributions. When we
switch x0 (or r ) off, then we find in both cases that ω1 drops
slightly. Note, this is not what ought to be done in a TD-rule.
Switching off δ would be the correct condition and obviously
weights will be—by construction—stable then. Still, we want
to look at the r = 0 case, because it directly corresponds to
the x0 = 0 condition of the CL-rules and shows the behavior
of the pure auto-correlation contribution.

Weight drop of the S&B- and TD-rule is due to the fact that
the remaining total influence on the weight growth, which
now comes only from the auto-correlation term is nega-
tive. As mentioned above, for x0 = r = 0, both diagrams
(Fig. 2a,c) are identical (see Eqs. 12, 13) and the remaining
differences in weight drop come from the different values of
ω1, reached at switch-off time.

The weight change of a single signal pair for the ISO-rule
(Eq. 8) can be written as:

∆ωcc
1 = ω0

∞∫

0
h(t)h′(t − T ) dt

= sign(T ) ω0
b − a

a + b

1

2σ 2 h(|T |)
ISO :

∆ωac
1 = ω1

⎛

⎝e

∞∫
0

h(t)h′(t)dt
− 1

⎞

⎠

= ω1(e
1
2 h2(∞) − 1) = 0

(14)

where the auto-correlation term converges to zero for t → ∞
as the filter function h(t) possesses only one maximum and
eventually decays to zero.

Additionally, we calculate the time development of the
cross-correlation part to give an insight into the exact weight-
change:

wcc
1 (t) = ω0

σ 2

(

sign(T )
b − a

a + b
h(|T |)

+1

2

(
e(−2t+T )b + e(−2t+T )a

)

− e−t (a+b) aeaT + bebT

a + b

)

. (15)

Panels f and g of Fig. 3 show the relaxation behavior of
∆ω for a single input pulse pair. In Fig. 3f a small early
auto-correlation component (AC) is followed by a big, cross-
correlation dominated hump (AC + CC) as soon as x0 occurs.
The curve relaxes to the final weight value only after some
time depending on the filter characteristic of h. In Fig. 3g
we magnify the auto-correlation component for a situation
where we have switched x0 off (auto-correlation only!). The
dashed curve shows that, following Eq. 14, the auto-correla-
tion indeed drops to zero after a short time. This curve was
numerically calculated with a ten-fold increased sampling
rate as compared to the solid-line curve shown next to it.
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This represents the auto-correlation contribution, when using
coarser sampling and here we see a potentially very strong
source of error: The auto-correlation contribution does not
vanish anymore. This is a pure numerical artifact of the inte-
gration procedure, but—as high sampling rates are often too
costly (for example in real-time applications)—this artifact
can strongly interfere with the convergence of ISO. Hence,
we are facing two potential sources of error: (1) The tardy
relaxation behavior of (essentially) the cross-correlation term
(Fig. 3f). This error becomes relevant when pulse pairs fol-
low each other in time too quickly. And (2) the non-negligible
numerical error that renders the auto-correlation non zero
even for long relaxation times. The other CL-rules discussed
below have been invented to solve these problems.

Figure 3e shows the step-by-step behavior of ISO-
learning. Weight growth is similar to that of the TD-rule.
Here we find that, after switching off x0, weights will drift
upwards. This effect comes from the afore discussed numer-
ical error and vanishes for very small integration step sizes
∆t and large relaxation times t as shown by the dashed lines.

The rephrased TD-rule (Fig. 3i, Eq. 9) shows a ten-fold
increase of the weight growth. This is due to the additional
influence of u0, which now also enters the learning rule. The
contributions are as follows:

∆ωcc
1 = ω0

b−a
a+b

sign(T )

2σ 2 h(|T |)
+α

∞∫

0
h(t)h(t − T )dt

TD-r :
= b−a

a+b
sign(T )

2σ 2 (ω0 h(|T |) + α H(|T |))
∆ωac

1 = 0

(16)

The auto-correlation term vanishes due to the same argu-
ments as for ISO-learning. The cross-correlation term is
extended by a Hebbian contribution, which causes the 10-fold
increase. The antiderivative of the filter function h(t) is
depicted as H(t). Otherwise, its behavior is very similar to
that of the ISO-rule. As noted above, switching x0 off, trans-
forms TD-Rephrased into ISO-learning.

When looking at the weight-change curves (Fig. 3b,d,h,k),
we observe that the S&B model produces strong negative
weights for values of T ≈ 0 (Fig. 3b). This effect had
already been reported in their original papers (Sutton and
Barto 1990).

TD-learning produces an asymmetrical weight change
curve (Fig. 3d). This is a consequence of the missing E-trace
in the reward pathway. If being early, the reward has already
vanished before x1 occurs and the correlation result remains
zero.

The weight change curve of ISO-learning is anti-
symmetrical (Porr and Wörgötter 2003). As long as both
E-traces are the same, this curve will have identical lobes
on both sides (Fig. 3h). This is interesting, because with this

rule a completely isotropic setup can be designed, in which
both synapses are allowed to change as will be discussed in
Fig. 6.

The rephrased TD-rule can produce mixed properties
(Fig. 3k). As such it will early during learning, as long as
ω ≈ 0, produce essentially plain heterosynaptic Hebbian
learning. This is due to the fact that the term u0, which
enters the rule, has a much stronger influence than the deriv-
ative (as discussed above), which can be neglected. Only if
we introduce an artificial attenuation factor α, by which we
weaken the u0-input, we will receive a transition towards
differential Hebbian learning, which will become identical
to ISO-learning for α = 0. The inset shows magnifications
of the curves. This also confirms that the plain, filtered input
has a much stronger influence on the learning amplitude than
the derivative.

3.1 Conditions of convergence

When do all these different algorithms converge? Trivially,
weight growth at ω1 will stop as soon as x1 = 0 in all cases.
Also we find that for the CL-rules weights will converge if
T = 0. Hence these systems will be essentially stable if small
positive values of T are followed by small negative ones (or
vice versa). Other possible convergence conditions, however,
are less obvious.

For the old S&B model at that time convergence proper-
ties had not been investigated. Clearly Fig. 2 shows that for
v′ = 0 this model will converge. But this condition is not
useful as it requires the output to be constant. Hence, strictly
for the old S&B model convergence cannot be guaranteed.
On the other hand, ISO-learning is strictly convergent for
x0 = 0 and weight ω1will then stop to change. When switch-
ing x0 off (Fig. 3e), one can see that ω1 is (almost) stable for
small learning rates (µ = 0.001). For a higher learning rate,
weights drift upwards. This is the above mentioned conse-
quence of the high numerical sensitivity of ISO learning to
the integration step size.

For TD-learning there exist two different types of conver-
gence. The first one holds for constant learning rates µ and
was proven by Sutton (Sutton 1988; Dayan 1992). Here, only
the expected value of the output 〈v(t)〉t≥tc (where tc denotes
the time convergence has been achieved) converges to an
optimal value. In order to ensure convergence of the output v
itself, the learning rate has to decrease over time µ(t) ∼ f (t)
with the condition

∑∞
t=0 f (t) = ∞ and

∑∞
t=0 f 2(t) < ∞

[e.g. f (t) = 1/t); Dayan 1992]. Since we use time inde-
pendent learning rates in this article, only the mean of the
output should be constant at the end of learning. Thus both
types of convergence do not need a vanishing delta error δ,
instead just its average over time has to be zero: 〈δ〉t≥tc =
0. The delta error δ itself oscillates without any reward r
around zero. Simply due to the shape of the band-pass the
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weight is decreasing over time and does not stabilize as men-
tioned before. Consequently the convergence condition for
TD-learning with a constant learning rate µ is

0 = 〈δ(t)〉t≥tc = 〈
r(t) + v′(t)

〉
t≥tc

or (17)
〈
v′(t)

〉
t≥tc

= −〈r(t)〉t≥tc (18)

Note, for this condition, the output v, or rather its deriv-
ative, needs to take on a certain value as opposed to ISO-
learning, where the input x0 needs to become zero. Hence,
we have one algorithm (TD-learning) where convergence is
guaranteed by output-control as opposed to one other algo-
rithm (ISO-learning), which uses input-control to guarantee
convergence. Looking back at Fig. 2b, it becomes clear that
setting r = 0 does not enforce convergence. This had been
only done for auto-correlation term evaluation (comparison
to the ISO-approaches).

As discussed earlier, the rephrased TD-rule shown in
Fig. 2d carries properties of both algorithmic classes, con-
vergence can be achieved for 〈δ〉 = 0 but also with x0 = 0,
because in this case the learning circuit is identical to the
ISO-learning circuit, as already mentioned above.

Furthermore, we note that there is no generic way to
rephrase the TD-specific convergence criterion 〈δ〉 = 0 into
an input condition. In order to attempt this, we need to use
input terms only. Let us again use TD-Rephrased to show this
and define x0 as the reward signal (Fig. 2d). Then we have
v = ω0u0+ω1u1. Using this in Eq. 18 we get as convergence
condition for the synapse ω1:

0 = u0 + ω0u′
0 + ω1u′

1 (19)

Here we note that the synapse ω1, which we are supposed to
stabilize, shines up on the right side. Hence, phrased in this
way as an input condition, it cannot be fulfilled.

4 Features and problems of the basic architectures

Several problems exist with the above described basic
approaches, most notably:

1. CL-rules are theoretically stable for x0 = 0, but ISO
learning is highly sensitive to numerical errors which
can easily destroy convergence.

2. Input x0 is connected to the output v in the CL-rules.
Thus, CL-rules will always produce a (motor) output
which can be used to generate actions.

3. By construction, TD-learning is stable for 〈δ〉 = 0.
4. As we are dealing with a single neuron with only two

inputs one finds that, without additional assumptions,
TD-learning cannot produce actions: The original TD-
learning as depicted in Fig. 2b does not produce any out-
put at all if starting with ω1 = 0. Also, setting ω1 �= 0 is

nonsense from a conceptional point of view. This would
assume that Pawlov’s dog has already some knowledge
about the meaning of the bell even before the first learning
experience. This, however, can be a desired aspect of TD
learning as it has led to the situation that TD-learning,
when considered neuronally, has only been used to judge
the quality of but not to actually generate actions. Actor
and Critic generically remain separate in architectures
that use TD-learning to implement RL (Barto 1995).
Other approaches are using additional inputs to produce
a (motor) output signal (Strösslin et al. 2005). While this
works, we are here concerned with a more puristic view
of only using two inputs unequivocally separating Actor
and Critic.

5 Modified approaches

In order to address the above stated problems it is possible
to modify the existing approaches.

First we ask, can we enforce stability in CL for x0 = 0
without this unwanted numerical instability? For this we need
to design a learning rule for which the auto-correlation term
truly vanishes.

Figure 4a shows an architecture, where we have replaced
the derivative of the output in ISO-learning, with the deriv-
ative of the (later) input x0. Hence we are only correlating
inputs with each other, thus, the name of this rule: Input corre-
lation learning (ICO, Porr and Wörgötter 2006). The learning
rule is given by

ICO : dω1(t)

dt
= µ u0(t)

′ u1(t) (20)

The overall weight change is similar to the ISO-rule and
yields:

ICO : ∆ωcc
1 = ω0

b − a

a + b

sign(T )

2σ 2 h(|T |) ∆ωac
1 ≡ 0 (21)

Here, the auto-correlation term is by definition equal to zero.
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Fig. 4 Comparison of two modified learning algorithms. a ICO-
learning. b Acting-TD. While Acting-TD and all architectures shown in
Fig. 2 use the derivative of the postsynaptic signal, ICO-learning a uses
the derivative of the unconditioned signal in order to control weight
change. Note, x0 in Acting-TD is identical to the delta error δ
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Fig. 5 Comparing the architectures shown in Fig. 4. a,b ICO-learning
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The corresponding results are shown in Fig. 5a and b. The
learning window is identical to that of the ISO-rule (Fig. 3c),
but now weights are stable for x0 = 0. The inset in Fig. 5a
shows the relaxation behavior for a single pulse-pair. In com-
parison to ISO learning (inset in Fig 3c) the shallow initial
rising phase in missing here as there is no auto-correlation
contribution. For the same reason also the “hump” is a little
bit smaller. This effect, however, is barely visible even when
overlaying the curves. Incidentally, ICO is identical to ISO
in the limit of µ → 0. The ICO-rule has proven to be very
useful in difficult learning tasks (Porr and Wörgötter 2006).
In fact this rule reliably works even with very high learning
rates and will always converge if one manages to bring x0

down to zero. One should, however, notice that ICO-learning
is a form of non-Hebbian (heterosynaptic) plasticity, which
may be less realistic from a biological point of view.

The second question concerns the problem to design a
TD-learner that will also produce some motor output when
learning starts (hence, when ω1 is still zero).

The rephrased TD-rule in Fig. 2d will indeed do this. The
output will be driven by x0 early during learning and this

could be used to induce behavior. Remember, this rule has
two ways to enforce stability: Either 〈δ〉 = 0 or x0 = 0, which
makes this rule a strange chimera between TD and ISO, also
rendering it sensitive to the numerical auto-correlation prob-
lems. The question, thus, is can we find a rule that needs to
enforce 〈δ〉 = 0 only and still can produce some output at the
start of learning? Figure 4b shows one novel possible such
architecture called Acting-TD. Here we feed the δ-error into
the x0 input line. Note, this system achieves stability only for
〈δ〉 = 0 and will always produce some output v.

The learning rule reads as follows:

TD-a : dω1(t)

dt
= µ

(
α r(t) + β v(t)′

)
u1(t) (22)

where v is recursively defined as

v(t) = u1(t) ω1(t) + (α r(t) + β v(t)′) ω0 (23)

Therefore the overall weight change can only be written as
an integro-differential equation (not shown), which cannot
be solved.

Figure 5c–f show how this system behaves in the open-
loop condition. As expected Acting-TD is stable for 〈δ〉 = 0
(panel c). Pure Hebbian learning is implemented by this rule
(panel e), even when attenuating the reward input with factor
α. The feedback of δ into the input of the neuron, however,
leads to a potential destabilization. To show this we have
introduced the amplification factor β into the derivative of
the output v′. If this pathway enters the neuron with β larger
than one (β > 1), destabilization occurs as shown in Figs. 5d.
For values of β ≤ 1, the circuit, however, remains stable.
Figure. 5f shows what happens when we invert the x0 path-
way, by setting its synaptic weight ω0 to negative values. This
leads to an unstable situation during weight growth and to a
strong drop as soon as 〈δ〉 = 0.

Does this circuit produce reasonable behavioral output?
At least we can make some statements about the shape of the
output at the start and the end of learning. At the start we
have ω1 = 0 and we receive v = ω0r , which makes sense.
When the system has converged (〈δ〉 = 0) we get v = ω1u1,
which essentially amounts to a process of stimulus substitu-
tion as required from such models. The 〈δ〉 = 0 condition
can also be written (though disregarding the averaging 〈〉) as
0 = r −ω1u′

1. Hence we find that, if converged, r = −ω1u′
1

or, more specifically, 〈r〉t≥tc = − 〈
ω1u′

1

〉
t≥tc

should be ful-
filled.

6 Symmetrical learning rules

So far we were able to address the problem of divergence,
which was present in the basic CL-rules (Fig. 2) having
achieved stable temporal sequence learning when employ-
ing the ICO-rule. Next we would like to ask if it is possible
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shows the oscillating development of both weights in ISO learning start-
ing with ω0 = ω1 = 0.01 and a temporal difference of T = 18. The
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and d (T = 5) depict how the choice of T influences symmetry. In
contrast to ISO learning, weights in ICO Learning e are symmetrical
independent of the parameters used f

to implement learning (LTP) at one synapse and unlearning
(LTD) at the other synapse at the same time. In principle
this should be possible because one synapse experiences +T
while the other experiences −T for any given input pair.
Thus, causality is inverted for the two synapses and with
the right design the one should grow, while the other would
shrink.

Clearly TD-learning is designed in an asymmetrical way
and cannot easily be symmetrized. This is different for the
CL rules.

Figure. 6a and e show two isotropic setups. The one
(Fig. 6a) for ISO-learning (which gave this rule its name)
and the other for ICO-learning.

The learning rule for the coupled ISO-learning case is

dω1(t)
dt

= u1(t) u1(t)′ ω1(t)
+u1(t) u0(t)′ ω0(t)

ISO-sym :
dω0(t)

dt
= u0(t) u1(t)′ ω1(t)

+u0(t) u0(t)′ ω0(t)

(24)

Unfortunately, this system of differential equations cannot
be solved analytically.

In the case of ICO-learning the rules write as follows:

dω1(t)
dt

= u1(t) u0(t)′ ω0(t)
ICO-sym :

dω0(t)
dt

= u0(t) u1(t)′ ω1(t)

(25)

Here we can solve the weight change analytically to

∆ω1 = b−a
a+b

sign(T )

2σ 2 h(|T |)
ICO-sym :

∆ω0 = − b−a
a+b

sign(T )

2σ 2 h(|T |)
(26)

For ISO-learning, naively one would expect that with the
same starting weights (ω0 = ω1) one should get exactly anti-
symmetrical learning, because the positive influence of +T
at one synapse should find its exact counterpart at the other
synapse which experiences −T . At least the learning curve in
Fig. 3c, seems to suggest this. However, this is in general not
the case due to the fact that the overlap of the filter function
is not symmetrical relative to the pulse pair. Hence, one does
indeed find that one synapse grows while the other shrinks,
but not in an anti-symmetrical way. This is shown in Fig. 6b,
where we ran the analysis for very many time-steps. Both
weights behave anti-cyclically and the observed oscillation
grows as a consequence of the increasingly more influen-
tial auto-correlation term. Phase relationship between both
synapses, however, remains the same (see inset in Fig. 6b).
The result in Fig. 6b was obtained with an optimal choice of
parameters ω0, ω1 and T leading to an almost ideal anti-sym-
metrical learning, shown in Fig. 6c, which depicts the first
learning steps. As mentioned, this situation is not generic.
More often much more asymmetrical situations like in Fig. 6d
are observed, which was obtained with the same setup only
using a different value for T .

Symmetrical ICO-learning (Fig. 6e) produces a linear
phase-relation, which is not shown here, but Fig. 6f shows
instead that both weights develop in an accurate anti-
symmetrical way. Weight development will exactly follow
the weight change curve in Fig. 5b. There is however a prob-
lem. Symmetrical ICO-learning does not anymore have one
shared control parameter for the weight change, which for
symmetrical ISO-learning was the derivative of the output.
For symmetrical ICO-learning, two totally independent con-
trol parameters exist (the derivatives of the inputs). This can
possibly lead to problems when wanting to control behavior
with such a symmetrized ICO-rule.

7 Stabilizing ISO-learning with a third factor

ICO-learning is very stable but, as mentioned above, it is
a form of non-Hebbian learning, where the output does not
influence the learning. This may be undesirable in certain
cases. Therefore, we undertook the effort to stabilize our
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(Hebbian) ISO-learning rule (Porr and Wörgötter 2007). This
can be achieved using a third factor, which we call the “rele-
vance signal” R (Fig. 7a). For practical purposes most of the
time we set it equal to x0, but one should realize that—like the
reward line in TD-learning—R is indeed an independent sig-
nal. The signal R is meant to arise when for the animal/agent
a behaviorally relevant event occurs.

The learning rule is similar to the ISO-rule (Eq. 8):

ISO3 : dω1(t)

dt
= µv′(t) u1(t)R(t)′ (27)

And therefore the weight change is

∆ωcc
1 = ω0

∞∫

0
h(t)h′(t − T )h′

aR ,bR
(t − TR)dt

ISO3 :
∆ωac

1 = ω1

∞∫

0
h(t)h′(t)h′

aR ,bR
(t − TR)dt

(28)

where we introduced a new time interval TR , which regu-
lates the timing of the third factor, and a very narrow filter
signal with appropriate values of aR and bR (here we use
a = 0.6, b = 0.66) to define the third factor. It is interesting
that the auto-correlation term for ISO3 is in general unequal
zero when using two filters pointing to a possible instability.

Figure 7b shows the signal structure. Let us assume that
u1 reaches its maximum exactly at T . As v′(t) = u′

1(t),
t < T , we have lim

t→T−
v(t)′ = u′

1(T ) = 0. This is the situa-

tion depicted in panel (b). If we furthermore assume that the
R signal is very short (e.g., using a delta-pulse for R) and that
it also happens at T , then also the learning only takes place at
this moment in time. Under these conditions, it is easy to see
that we have totally eliminated the auto-correlation contribu-
tion. The outcome of panel c is obtained under these condi-
tion and ISO3 is stable (compare ISO and ISO3 in Fig. 7c).
The inset shows again the relaxation behavior of ISO3 (step)
for a single pulse-pair in comparison to ISO (curved), which
demonstrates instantaneous relaxation of ISO3. Clearly this
example is constructed as T is usually unknown such that
lim

t→T−
v(t)′ = 0 cannot be generally assured. Hence, it seems

we have not gained anything so far by introducing ISO3.
However, the situation changes when using a filter bank to
spread signal x1 out in time (see also section on filter banks
below). Then one can prove that the condition lim

t→T−
v(t)′ = 0

will self-emerge as a consequence of the learning when using
enough filters (Porr and Wörgötter 2007). Thus, when using a
filter bank ISO3 becomes a very stable method, indeed. For
ISO3 we receive the learning curve in Fig. 7d, which now
only carries an LTP component. This behavior compares to
TD-learning (see Fig. 3d).

8 Results when using a filter bank

The usefulness of all these rules as presented so far remains
limited as most of the time the interval T between incoming
inputs is not good enough known and might, in a behaving
agent, even vary to quite some degree. Hence it is required
to use a set of different eligibility traces E1,...,N

1 to make
sure that the earlier input is spread out over a long enough
time such that the later input (x0 or r ) can be correlated to it.
Figure 8a depicts such a filter bank architecture for the ISO
rule and panel b shows how the signals u1,...,N

1 look like for
a set of filters h.

Interestingly, convergence properties for the CL-rules are
theoretically not affected when using a filter bank. It can be
shown that for the ISO rule a set of filters h exist that ful-
fills a certain orthogonality criteria and ISO will then still
converge for x0 = 0 (Porr and Wörgötter 2003; Porr et al.
2003). The problem is that this is only an existence proof and
nothing is currently known of how to actually construct this
filter bank. Hence, when wanting to use ISO one has to fall
back onto heuristic assumptions for the filter bank. Generally,
however, this leads to the situation that the error-sensitivity of
ISO can become larger, rendering this rule instable. The con-
clusion is that, while it has been the first differential Hebbian
learning rule to be used in closed loop behavioral control
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(Porr and Wörgötter 2003), ISO should only be used with
great care anymore.

The properties of ICO and ISO3 are better. Both rules
are stable and stability for x0 = 0 can be mathematically
proved for both rules even when using filter banks (Porr
and Wörgötter 2006, 2007). These rules have now been
successfully tested in a variety of different applications
(Porr and Wörgötter 2006; Kolodziejski et al. 2006, 2007;
Manoonpong et al. 2007) and even chains of learning neu-
rons can be constructed in a convergent way (Kulvicius et al.
2007).

Neuronal implementations of TD-learning generally solve
the problem of unknown T by using a so called serial com-
pound representation (Suri and Schultz 1998, 2001; Suri et al.
2001; Suri 2002). This is depicted in Fig. 8c. Essentially it
represents a tapped delay line by which the earlier stimu-
lus is spread out across several input lines u1,...,N

1 and for
which one can even graphically show that TD will converge
(Fig. 8d, e). This approach has been discussed in greater
detail in Wörgötter and Porr (2005). Such a rigid pulse pro-
tocol is not biologically realistic, though, and approaches
exist which replace this by “smoother functions”, similar to
the filter bank approach discussed above (Suri and Schultz
1998). These signals do not affect the δ-error, and conver-
gence can still be assured for 〈δ〉 = 0. As the filter response
enter the learning via v′, it remains unclear of how to con-
struct more realistic filter banks for TD-learning which in a
behaving system will still allow approaching 〈δ〉 = 0 in a
reliable way. So far there is no theory existing for this.

9 Discussion

The main goal of this paper was to provide a road map through
the different basic as well as extended RL and CL learning
rules showing their fundamental mathematical properties in
an open loop situation (hence without behavioral feedback).
Table. 1 summarizes these observations. To this end, in the
previous sections we have gone through a variety a temporal
sequence learning rules first introducing their basic version
and later some more advanced modifications. Three aspects
were in the fore-front of the discussion: (a) convergence
properties, (b) symmetry (hence, learning versus unlearning)
and (c) the behavior of these rules when using a filter bank.

Concerning (a) we have found that all TD-rules are stable
if one can assure δ = 0 or leastwise 〈δ〉t≥tc = 0. From the
other rules the ICO and ISO3 rules are stable for x0 = 0. ISO
is only theoretically stable but strongly affected by numerical
artifacts.

Concerning (b) we can state that only the ICO-rule is truly
symmetrical. Hence, with this rule it would be possible to
implement learning at one input (the one that experiences
+T ) and unlearning at the other input (the one that experi-
ences −T ) at the same time. With ISO this is to some degree
possible but growth and shrinkage are not the same, while all
TD-rules are by construction not symmetrical.

Concerning (c) we observe that ICO and ISO3 will main-
tain their convergence properties for x0 = 0. TD-learning
will converge when using a serial compound representation
(see Fig. 8c). This sitation is very similar to a state-space
tiling performed in machine learning version of TD. On the
other hand, no clear theoretical results exist for TD, when
using different, more neuron-compatible filters for the eligi-
bility traces.

An additional consideration concerns the difference
between input- and output-control. The CL-rules enforce
convergence via x0 = 0, which represents an input condition.
TD learning converges via output control (〈δ〉t≥tc = 0). This
difference may lead also to differences for control applica-
tions as discussed elsewhere (Wörgötter and Porr 2005).

9.1 Biological relevance

To what degree are the above discussed models related to
temporal sequence learning mechanisms in the brain. At first
we notice that certainly all of them are at a much higher
level of abstraction as compared to the biophysics of syn-
apses. But, for example, we note that the learning curve of
ISO or ICO learning resembles curves measured for spike
timing-dependent plasticity (Markram et al. 1997; Magee
and Johnston 1997; Bi and Poo 2001). Hence it is possible
to model STDP with such a formalism (Saudargiene et al.
2004; Roberts 1999).
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Table 1 Overview over all learning rules discussed in this paper

Class Two Inputs

Type Name Output: v Rule: dw1
dt

Convergence Comment

CL S&B w0x0 + w1x1 u1v
′ divergent stimulus substitution

ISO w0u0 + w1u1* u1v
′ x0 = 0, unstable! symmetric, diff. Hebb

ICO w0u0 + w1u1* u′
0u1 x0 = 0 diff. Heterosyn.

ISO3 w0u0 + w1u1* u1v
′ R′

x0 = 0, (R = 0) 3-factor diff. Hebb

RL TD w1x1 δr u1 = r u1 + u1v
′ 〈δ〉 = 0 critic only, no actions

TD-r w0u0 + w1u1* δu0 u1 = u0u1 + u1v
′ 〈δ〉 = 0, x0 = 0 mixed Hebb + diff. Hebb

TD-a w0δ
′
r + w1u1 δr u1 = r u1 + u1v

′ 〈δ〉 = 0 recursive rule

Class Filter Bank Summary

Type Name Output: v Convergence General Comment Use

CL S&B not applicable not applicable only of historical relevance −
ISO w0u0 + ∑

i wi
1ui

1* x0 = 0 for certain unstable! As optimal hi are unknown, −
unknown hi convergence cannot be guaranteed, input control

ICO w0u0 + ∑
i wi

1ui
1* x0 = 0 robust, heterosynaptic, input control +

ISO3 w0u0 + ∑
i wi

1ui
1* x0 = 0, (R = 0) robust, input control +

RL TD serial compound rep. 〈δ〉 = 0 robust, output control +

TD-r not tested so far 〈δ〉 = 0, x0 = 0 undesirable mix of Hebb & diff. Hebb −
TD-a not tested so far 〈δ〉 = 0 not tested so far ?

The asterisk * depicts identical equations within one column

Furthermore, it has long been discussed that TD-
learning could be related to dopaminergic responses in the
brain. Especially the behavior of some cells in the substan-
tia nigra and ventral tegmental area (VTA) suggest that they
represent the δ-error of TD-learning. Models, which behave
in a similar way have been made by Suri and co-workers
(Montague et al. 1996; Suri and Schultz 1998, 1999, 2001;
Suri et al. 2001) and we direct the reader to this literature
for an in-depth discussion. The problem, with these models,
however, is that it is difficult to find appropriate biophysical
equivalents for the implementation of the TD-rule.

Concerning the CL-rules, there are different degrees of
realism. For the ICO-rule we find that it represents a special
case. This is due to the fact that ICO-learning implements
plain heterosynaptic plasticity and this is found only at a few
specialized synapses (Humeau et al. 2003; Tsukamoto et al.
2003). Heterosynaptic plasticity is usually associated with
modulatory processes and not directly with Hebbian learn-
ing. This is different for the ISO-rule, which uses the deriva-
tive of the output to control learning and therefore represents
conventional (differential) Hebbian learning.

The instability of the ISO-rule, however was the reason
for us to design ISO3, which is a form of (differential) Heb-
bian learning using a three-factor learning rule (Miller et al.
1981). Such three-factor rules have recently also been dis-
cussed in conjunction with the Dopaminergic system of the

brain (Schultz 1998). Also, since it is a Hebb-rule, it is bet-
ter suited to be matched to our knowledge concerning LTP
and LTD. Furthermore, we found, quite unexpectedly, that
for weight stabilization ISO3 can use one interesting aspect
of the behavior of dopamine cells in the substantia nigra
and VTA (Schultz et al. 1997): These cells appear to learn
anticipating a reward, whereby the temporal occurrence of
their response shifts from (first) tx0 to (later) tx1 . When doing
this with our relevance signal, we found that learning stops
and that weights become essentially stable even without set-
ting x0 = 0 (data not shown). Bringing the average TD-
error 〈δ〉t≥tc = 0 down to zero does require the dopamine
responses to take a very specific shape whereas for stabiliz-
ing weights in ISO3 it is enough to get a somewhat sharp
response at x1 while loosing the R-signal at x0. This seems
to be better in conjunction with the properties of dopaminer-
gic responses which do not appear to fulfill high accuracy
requirements.

Thus, an experimental question now arises: Do the dopa-
mine cells in the substantia nigra and/or VTA represent the
δ-error in TD-learning or do they reflect a relevance signal
to be used as a third factor in the learning?
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