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Abstract

In this theoretical contribution we provide mathematical proof that two of the
most important classes of network learning - correlation-based differential Heb-
bian learning and reward-based temporal difference learning - are asymptotically
equivalent when timing the learning with a local modulatorysignal. This opens the
opportunity to consistently reformulate most of the abstract reinforcement learn-
ing framework from a correlation based perspective that is more closely related to
the biophysics of neurons.

1 Introduction

The goal of this study is to prove that the most influential form of reinforcement learning (RL)
[1], which relies on the temporal difference (TD) learning rule [2], is equivalent to correlation based
learning (Hebb, CL) which is convergent over wide parameterranges when using a local third factor,
as a gating signal, together with a differential Hebbian emulation of CL.

Recently there have been several contributions towards solving the question of equivalence of dif-
ferent rules [3, 4, 5], which presented specific solutions tobe discussed later (see section 4). Thus,
there is more and more evidence emerging that Hebbian learning and reinforcement learning can
be brought together under a more unifying framework. Such anequivalence would have substan-
tial influence on our understanding of network learning as these two types of learning could be
interchanged under these conditions.

The idea of differential Hebbian learning was first used by Klopf [6] to describe classical condi-
tioning relating to the stimulus substitution model of Sutton [7]. One of its most important features
is the implicit introduction of negative weight changes (LTD), which leads to intrinsic stabilization
properties in networks. Earlier approaches had to explicitly introduce negative weight changes into
the learning rule, e.g. by ways of a threshold [8].

One drawback of reinforcement learning algorithms, like temporal difference learning, is their use
of discrete time and discrete non-overlapping states. In real neural systems, time is continuous and
the state space can only be represented by the activity of neurons, many of which will be active at
the same time and for the same "space". This creates a rather continuous state space representation
in real systems. In order to allow for overlapping states or for generalizing over a wider range of
input regions, RL algorihtms are usually extended by value function approximation methods [1].
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However, while biologically more realistic [9], this makesinitially elegant RL algorithms often
quite opaque and convergence can many times not be guaranteed anymore [10]. Here we are not
concerned with function approximation, but instead address the question of how to transform an RL
algorithm (TD-learning) to continuous time using differential Hebbian learning with a local third
factor and remaining fully compatible with neuronally plausible operations.

Biophysical considerations about how such a third factor might be implemented in real neural tissue
are of secondary importance for this study. At this stage we are concerned with a formal proof only.

1.1 Emulating RL by Temporal Difference Learning

Reinforcement learning maximizes the rewardsr(s) an agent will receive in the future when fol-
lowing a policyπ traveling along statess. The returnR is defined as the sum of the future rewards:
R(si) =

∑
k γkr(si+k+1), where future rewards are discounted by a factor0 < γ ≤ 1. One cen-

tral goal of RL is to determine the valuesV (s) for each state given by the average expected return
Eπ{R}, that can be obtained when following policyπ. Many algorithms exist to determine the
values, almost all of which rely on the temporal difference (TD) learning rule (Eq. 1) [2].

Every time the agent encounters a statesi, it updates the valueV (si) with the discounted value
V (si+1) and the rewardr(si+1) of the next state that is associated with the consecutive statesi+1:

V (si) → (1 − α)V (si) + α(r(si+1) + γV (si+1)) (1)

whereα is the learning rate. This rule is called TD(λ = 0), short TD(0), as it only evaluates adjacent
states. For values ofλ 6= 0 more of the recently visited states are used for value-function update.
TD(0) is by far the most influential RL learning rule as it is the simplest way to assure optimality of
learning [11, 1].

1.2 Differential Hebbian learning with a local third factor

In traditional Hebbian learning, the change of a weightρ relies on the correlation between inputu(t)
and outputv(t) of a neuron:ρ′(t) = α̃ ·u(t) ·v(t), whereα̃ is the learning rate and prime denotes the
temporal derivative. If we consider thechange of the post-synaptic signal and, therefore, replacev(t)
with v′(t), we will arrive at differential Hebbian learning. Then, also negative weight changes are
possible and this yields properties similar to experimental neurophysiological observations (spike-
timing dependent plasticity, [12]).

In order to achieve the equivalence (see section 4 for a discussion) we additionally introduce a local
third modulatory factorMk(t) responsible for controlling the learning [13]. Here local means that
each inputuk(t) controls a separate third factorMk(t) which in turn modulates only the weight
change of the corresponding weightρk(t). The local three-factor differential-Hebbian learning rule
is then:

ρ′k(t) = α̃ · uk(t) · v′(t) · Mk(t) (2)
whereuk(t) is the considered pre-synaptic signal and

v(t) =
∑

n

ρn(t)un(t) (3)

the post-synaptic activity of a model neuron with weightsρn(t). We will assume in the following
that our modulatory signalMk(t) is either1 or 0, thus represented by a step function.

2 Analytical derivation

We are going to analyze the weight change of weightρi(t) when considering two consecutive signals
ui(t) andui+1(t) with the indexi representing a temporal (and not e.g. a spatial) ordering. The
local third factorMi(t) opens a time window for its corresponding weightρi(t) in which changes
can occur. Although this time window could be located anywhere depending on the inputui(t) it
should be placed at the end of the statesi(t) as it makes only sense if states correlate with their
successor.

The relation between states(t) and inputu(t) is determined by a convolution:u(t) =
∫ ∞

0
s(z)h(t−

z)dz with filter functionh(t) which are identical for all states. As we are using only states that are
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either on or off during a visiting durationS, the input functionsu(t) do not differ between states.
Therefore we will useui(t) (with indexi) having a particular state in mind andu(t) (without index
i) when pointing to functional development.

Furthermore we define the time period between the end of a statesi(t) and the beginning of the next
statesi+1(t) asT (T < 0 in case of overlapping states). Concerning the modulatory third factor
Mi(t) we define its length asL, and the time period between beginning ofMi(t) and the end of the
corresponding statesi(t) asO. These four parameters (L, O, T , andS) are constant over states and
are displayed in detail in fig. 1 B.

2.1 Analysis of the differential equation

For the following analysis we need to substitute Eq. 3 in Eq. 2and solve this differential equation
which consists of a homogeneous and an inhomogeneous part:

ρ′i(t) = α̃ · Mi(t) · ui(t)[ui(t) · ρi(t)]
′ + α̃ · Mi(t) · ui(t)[

∑
j 6=i

uj(t) · ρj(t)]
′ (4)

where the modulatorMi(t) is defining the integration boundaries. The first summand leads us to the
homogeneous solution which we will define as auto-correlationρac(t). The second summand(s) on
the other hand will lead to the inhomogeneous solution and this we will define as cross-correlation
ρcc(t). Together we haveρ(t) = ρac(t) + ρcc(t).

In general the overall change of the weightρi(t) after integrating over the visiting duration ofsi(t)
andsi+1(t) and using the modulatory signalMi(t) is: ∆ρi =: ∆i = ∆ac

i + ∆cc
i

Without restrictions, we can now limit further analysis of Eq. 4, in particular of the cross-correlation
term, to the case ofj = i+ 1 as the modulatory factor only effects the weight of the following state.

Since weight changes are in general slow, we can assume a quasi-static process (ρ
′

i

ρi

≪
u′

i

ui

, α → 0).
As a consequence, the derivatives ofρ on the right hand side of Eq. 4 can be neglected.

The solution of the auto-correlationρac
i (t) is then in general:

ρac
i (t) = ρac

i (t0)e
α̃·Mi(t)·

1

2
[u2

i
(t)−u2

i
(t0)] (5)

and the overall weight change with the third factor being present betweent = O + S and t =
O + S + L (fig. 1 B) is therefore:

∆ac
i = ρi(e

α̃ 1

2
[u2

i
(O+S+L)−u2

i
(O+S)] − 1) (6)

Using again the argument of a quasi-static process (α̃ → 0), we can expand the exponential function
to the first order:

∆ac
i : = −α̃ρi

1

2
[u2

i (O + S) − u2
i (O + S + L) + o(α̃)] (7)

= −α̃ρiκ (8)

where we have definedκ in the following way:

κ(L,O, S) =
1

2
[u2(O + S) − u2(O + S + L) + o(α̃)] (9)

which is independent ofi since we assume all state signals as identical.

Next we investigate the cross-correlationρcc(t) again under the assumption of a quasi-static process.
This leads us to:

ρcc
i (t) = ρcc

i (t0) + α̃ρi+1

∫ t

0

Mi(z) · ui(z)u′
i+1(z)dz (10)

which yields assuming a time shift between signalsui andui+1 of S+T , i.e.ui(t−S−T ) = ui+1(t)
an overall weight change of

∆cc
i = α̃ρi+1

∫ O+S+L

O+S

ui(z)u′
i(z − S − T )dz := α̃ρi+1τ (11)
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whereas the third factor was being present betweent = O + S and t = O + S + L (fig. 1 B).
Additionally we definedτ as follows:

τ(L,O, T, S) =

∫ O+L−T

O−T

u(z + S + T )u′(z)dz (12)

which, too, is independent ofi.

Both τ andκ depend on the actually used signal shapeu(t) and the values for the parametersL, O,
T andS.

2.2 Analysis of the network

After the analysis of the auto- and cross-correlation of Eq.4 we are going to discuss the weight
changes in a network context with a reward only at the terminal state (non-terminal reward states
will be discussed in section 4). Without restrictions, we can limit this discussion to the situation in
Fig. 1 A where we have one intermediate state transition (from si to si+1) and a final one (fromsi+1

to sR) which yields a reward. The weight associated with the reward statesR is set to a constant
value unequal to zero.

Therefore three-factor differential Hebbian will influence two synaptic connectionsρi andρi+1 of
statessi andsi+1 respectively, which directly project onto neuronv.

Fig. 1 B shows a realistic situation of state transitions leaving the old statesi−1 and entering the new
statesi and so on. The signals as such could be considered as membranevoltages or firing rates of
neurons.
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Figure 1: The setup is shown in panel A and the signal structure in panel B. (A) Three states,
including the rewarded state, converge on the neuron which learns according to Eq. 2. Each state
si controls the occurrence of the modulatory factorMi which in turn will influence learning at
synapseρi. The statess will be active according to the direction arrow. (B) The lower part shows
the statessi which have a duration of lengthS. We assume that the duration for the transition
between two states isT . In the middle the outputv and the signalsu are depicted. Hereu is given
by u(t) =

∫ S

0
(e−a (t−z) − e−b (t−z)) dz. The third factorMi is released for the durationL after

a time delay ofO and is shown in the upper part. For each state the weight change separated into
auto-correlation∆ac and cross-correlation∆cc and their dependence on the weights according to
Eq. 7 and 11 are indicated.

We will start our considerations with the weight change ofρi which is only influenced by the visiting
statesi itself and by the transition betweensi andsi+1. The weight change∆ac

i caused by the auto-
correlation (si with itself) is governed by the weightρi of statesi (see Eq. 8) and is negative as the
signalui at the the end of the state decays (κ is positive, though, because we factorized a minus
sign from Eq. 6 to Eq 7). The cross-correlation (∆cc

i ), however, is proportional to the weightρi+1

of the following statesi+1 (see Eq. 11) and is positive because the positive derivativeof the next
state signalui+1 correlates with the signalui of statesi. According to these considerations the
contributions for the∆i+1-values can be discussed in an identical way for the following sequence
(si+1, sR).
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In general the weight after a single trial is the sum of the oldweightρi with the two∆-values:

ρi → ρi + ∆ac
i + ∆cc

i (13)

Using Eq. 8 and Eq. 11 we can reformulate Eq. 13 into

ρi → ρi − α̃ · κ · ρi + α̃ · τ · ρi+1 (14)

Substitutingα = α̃ · κ andγ = τ/κ we get

ρi → (1 − α) · ρi + α · γ · ρi+1 (15)

At this point we can make the transition from weightsρi (differential Hebbian learning) to states
V (si) (temporal difference learning). Additionally we note thatsequences only terminate ati + 1,
thus this index will capture the reward statesR and its valuer(si+1), while this is not the case for all
other indices (see section 4 for a detail discussion of rewards at non-terminal states). Consequently
this gives us an equation almost identical to Eq 1:

V (si) → (1 − α)V (si) + α · γ[r(si+1) + V (si+1)] (16)

where one small difference arises as in Eq. 16 the reward is scaled byγ. However, this has no
influence as numerical reward values are arbitrary. Thus, iflearning follows this third factor dif-
ferential Hebbian rule, weights will converge to the optimal estimated TD-values. This proves that,
under some conditions forκ andτ (see below), TD(0) and the here proposed three factor differential
Hebbian learning are indeed asymptotically equivalent.

2.3 Analysis ofκ and γ

Here we will take a closer look at the signal shape and the parameters (L, O, T and S) which
influence the values ofκ (Eq. 9) andτ (Eq. 12) and thereforeγ = τ/κ. For guaranteed convergence
these values are constraint by two conditions,τ ≥ 0 andκ > 0 (whereκ = 0 is allowed in case of
τ = 0), which come from Eq. 14. A non-positive value ofκ would lead to divergent weightsρ and a
negative value ofτ to oscillating weight pairs (ρi, ρi+1). However even if fulfilled, these conditions
will not always lead to meaningful weight developments. Aτ -value of 0 leaves all weights at
their initial weight value and discount factors, which are represented byγ-values exceeding 1, are
usually not considered in reinforcement learning [1]. Thusit makes sense to introduce more rigorous
conditions and demand that0 < γ ≤ 1 andκ > 0.
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Figure 2: Shown areγ-values dependent on the ratioO/P andT/P for three different values of
L/P (1/3, 2/3, and4/3). HereP is the length of the rising as well as the falling phase. The
shape of the signalu is given byu(t) =

∫ S

0
(e−a (t−z) − e−b (t−z)) dz with parametersa = 0.006

andb = 0.066. The individual figures are subdivided into a patterned areawhere the weights will
diverge (κ = 0, see Eq.7), a striped area where no overlap between both signals and the third factor
exists and into a white area that consists ofγ-values which, however, are beyond a meaningful range
(γ > 1). The detailed gray shading representγ-values (0 < γ ≤ 1) for which convergence is
fulfilled.

5



Furthermore, as these conditions depend on the signal shape, the following theoretical considerations
need to be guided by biophysics. Hence, we will discuss neuronally plausible signals that can arise
at a synapse. This constrainsu to functions that posses only one maximum and divide the signal
into a rising and a falling phase.

One quite general possibility for the shape of the signalu is the function used in Fig. 1 for which we
investigate the area of convergence. As we have three (we do not have to consider the parameterS
if we take this value to be large compared to|T |, L or O) parameters to be varied, Fig. 2 shows the
γ-value in 3 different panels. In each panel we varied the parametersO andT from minus to plus
2P whereP is the time the signalu needs to reach the maximum. In each of the panels we plot
γ-values for a particular value ofL.

Regardingκ the condition formed by Eq. 9 for the shape of the signalu(t) is in general already
fulfilled by using neuronally plausible signals and the third factor at the end of each state. As the
signals start to decay after the end of a state visit,u(O + S) is always larger thanu(O + S + L)
and thereforeκ > 0. Only if the third factor is shifted (due to the parameterO, see fig. 1 B for
more details) to regions of the signalu where the decay has not yet started (O < −L) or has already
ended (O > P ) the difference ofu(O +S) andu(O +S +L) is 0 which leads using Eq. 9 toκ = 0.
This is indicated by the patterned area in fig. 2.

A gray shading displays in detail theγ-values for which the condition is fulfilled, whereas white rep-
resents those areas for which we receiveγ > 1. The striped area indicates parameter configurations
for which no overlap between two consecutive signals and thethird factor exist (τ = 0).

The different frames show clearly that the area of convergence changes only gradually and the
area as such is increasing with increasing duration of the third factor. Altogether it shows that
for a general neuronally plausible signal shapeu the condition for asymptotic equivalence between
temporal difference learning and differential Hebbian learning with a local third factor is fulfilled
for a wide parameter range.

3 Simulation of a small network

In this section we show that we can reproduce the behavior of TD-learning in a small linear network
with two terminal states. This is done with a network of neurons designed according to our algorithm
with a local third factor. Obtained weights of the differential Hebbian learning neuron represent
the corresponding TD-value (see fig. 3 A). It is known that in alinear TD-learning system with
two terminal states (one is rewarded, the other not) and aγ-value close to1, values at the end of
learning will represent the probability of reaching the reward state starting at the corresponding state
(compare [1]). This is shown, including the weight development, in panel (B).
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Figure 3: The linear state arrangement and the network architecture is shown in panel A. The cor-
responding weights after a typical experiment are depictedin panel B. The lines represent the mean
of the last2000 weight-values of each state and are distributed uniformly (compare [1]). The signal
shape is given byu(t) =

∫ S

0
(e−a (t−z) − eb (t−z)) dz with parametersa = 0.006 andb = 0.066.

Furthermore isO = 1/20P , L = P , T = 0 (which yieldsγ ≃ 1), N = 9, andα̃ = 0.01.
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4 Discussion

The TD-rule has become the most influential algorithm in reinforcement learning, because of its
tremendous simplicity and proven convergence to the optimal value function [1]. It had been suc-
cessfully transferred to control problems, too, in the formof Q- or SARSA learning [14, 15], which
use the same algorithmic structure, while maintaining similar advantageous mathematical properties
[14].

In this study we have shown that TD(0)-learning and differential Hebbian learning modulated by
a local third factor are equivalent under certain conditions. This proof relies only on commonly
applicable, fairly general assumptions, thus rendering a generic result not constraining the design of
larger networks. However, in which way the timing of the third factor is implemented in networks
will be an important issue when constructing such networks.

Several earlier results have pointed to the possibility of an equivalence between RL and CL. Izhike-
vich [3] solved the distal reward problem using a spiking neural network, yet with fixed exponential
functions [16] to emulate differential Hebbian characteristics. His approach is related to neurophys-
iologically findings on spike-timing dependent plasticity(STDP, [12]). Each synapse learned the
correlation between conditioned stimuli and unconditioned stimuli (e.g. a reward) through STDP
and a third signal. Furthermore Roberts [4] showed that thatasymmetrical STDP and temporal
difference learning are related. In our differential Hebbian learning model, in contrast to the work
described above, STDP emerges automatically because of theuse of the derivative in the postsy-
naptic potential (Eq. 2). Rao and Sejnowski [17] showed thatusing the temporal difference will
directly lead to STDP, but they could not provide a rigorous proof for the equivalence. Recently, it
has been shown that the online policy-gradient RL-algorithm (OLPOMDP, [18]) can be emulated
by spike timing dependent plasticity [5], however, in a complex way using a global reward signal.
On the other hand, the observations reported here provide a rather simple, equivalent correlation
based implementation of TD and support the importance of three factor learning for providing a link
between conventional Hebbian approaches and reinforcement learning.

In most physiological experiments [19, 20, 21] the reward isgiven at the end of the stimulus se-
quence. Our assumption that the reward state is a terminating state and is therefore only at the end
of the learning sequence conforms, thus, to this paradigm. However, for TD in general we cannot
assume that the reward is only provided at the end. Differential Hebbian learning will then lead to
a slightly different solution compared to TD-learning. This solution has already been discussed in a
another context [22]. Specifically, the difference in our case is the final result for the state-value after
convergence for states that provide a reward: We getV (s) → γV (si+1)+r(si+1)−r(si) compared
to TD learning:V (s) → γV (si+1) + r(si+1). It would be interesting to assess with physiological
and or behavioral experiments, which of the two equations does more closely represent experimental
reality.

Our results rely in a fundamental way on the third factorMi, and the analysis performed in this study
indicates that the third factor is necessary for the emulation of TD-learning by a differential Hebb
rule. To explain the reason for this requires a closer look atthe temporal difference learning rule.
We find that the TD-rule requires a leakage term−α ·V (s). If this term does not exist, values would
diverge. It has been shown [23] that in differential Hebbianlearning without a third factor, however,
the auto-correlation part, which is the source of the leakage needed, (see Eq. 13 and Eq. 7) is non
existing. This shows that just through a well-timed third factor the ratio between cross-correlation
and auto-correlation term is correctly adjusted. This ratio is at the end responsible for theγ-value
we will get using differential Hebbian learning to emulate TD-learning.
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