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Calculation of the total conductance change induced by multiple synapses
at a given membrane compartment remains one of the most time-con-
suming processes in biophysically realistic neural network simulations.
Here we show that this calculation can be achieved in a highly ef�cient
way even for multiply converging synapses with different delays by
means of the Z-transform. Using the example of an NMDA synapse, we
show that every update of the total conductance is achieved by an itera-
tive process requiring at most three multiplications, which together need
only the history values from the two most recent iterations. A major ad-
vantage is that this small computational load is independent of the num-
ber of synapses simulated. A benchmark comparison to other techniques
demonstrates superior performance of the Z -transform. Nonvoltage-
dependent synaptic channels can be treated similarly (Olshausen, 1990;
Brettle & Niebur, 1994), and the technique can also be generalized to other
synaptic channels.

1 Introduction

In most biophysically realistic network simulations, the conductance
changes at every synapse have to be updated for every simulated time
step. The divergence in the connection structure thereby determines how
many synapses actually exist. Usually, however, this number exceeds the
number of neurons by far. Thus, synaptic conductance update is the most
time-consuming computational process in almost all biophysically realistic
network simulations. This process has to be repeated for every membrane
compartment, which could be a small dendritic cylinder or the total cell,
depending on the network model’s level of complexity. The basic problem
is how to compute the total conductance gtotal most ef�ciently for every
postsynaptic membrane compartment that is given by the convolution of
all input spike trains si with the characteristic synaptic functions gi of the
(possibly different) synapses at the current time tx:
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In continuous time:

gtotal (tx) D
NX

iD0

vi

Z tx

0
si(t )gi(tx ¡ t )dt , (1.1)

where N is the total number of synapses and si denotes the input spike train
consisting of delta pulses at synapse i. The synaptic weight is given by vi.
In discrete time, the integral will be replaced by a second sum. The problem
that hides beneath this equation is the fact that a rather long history of past
incoming spikes has to be saved and used in order to calculate gtotal at the
current time tx. These “history values” have to be stored in an extended
memory queue in order to make them available to the next iteration step,
and every history value enters in the calculation, leading to a rather high
number of numerical operations.

Several algorithms have been proposed to accelerate this process based
on different basic synapse models (Srinivasan & Chiel, 1993; Bernard, Ge,
Stockley, Willis, & Wheal, 1994; Lytton, 1996). Of primary relevance here
are the most commonly used models, based on so-called a functions. These
functions are described by

g(t) D Og
e
t

te¡ t
t , (1.2)

where Og is peak conductance and t is time constant (typically around 1 ms).
They represent the characteristic synaptic function of a regular nonvoltage-
dependent synapse, which can also be inhibitory. In 1990 Olshausen showed
that the Z -transform (Doetsch, 1967; Oppenheim & Schafer, 1975) can be
employed to accelerate tremendously the calculation of the convolution be-
tween exponential functions and impulse inputs. Synaptic computations at
regular nonvoltage-dependent synapses are the immediately obvious ap-
plication of this technique. In a �rst step, all synapses modeled by the same
a function are combined, and all individual inputs si are accumulated into
one weighted input function s for every simulated membrane compartment.
We call this function the accumulated spike train:

s(t) D
NX

iD0
visi(t). (1.3)

Then the convolution is solved in discrete time tn D nT using the Z -
transform, arriving at:

gtotal(nT) D T ¢ OgA ¢ e¡T
t s((n ¡ 1)T) C 2e¡ T

t gtotal((n ¡ 1)T)

¡ e¡2 T
t gtotal((n ¡ 2)T). (1.4)
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This �nal form of the conductance update (Brettle & Niebur, 1994) shows
that only two values of the history of gtotal need to be taken into account
in order to arrive at the exact solution, which is spelled out for regular
exponential functions in Olshausen (1990).1

Here we will use the Z-transform to derive the solution for gtotal of the
voltage-dependent NMDA channel, and we will show that the �nal result
requires only two history values and a few multiplications. It should be
noted that this article summarizes a known technique (Olshausen, 1990;
Brettle & Niebur, 1994), extending it to NMDA channels and comparing it
to other methods.

2 The Algorithm

The NMDA channel is characterized by a nonlinear current-voltage relation-
ship in which the actual conductance g depends on the currently existing
membrane potential Vm. It is modeled by:

g(t) D Og
e¡ t

t1 ¡ e¡ t
t2

1 C g[Mg2C ]e¡(c Vm ) , (2.1)

where Og is peak conductance of NMDA channel, t1 and t2 are the �rst and
second time constants of NMDA channel (t1 D40 ms, t2 D0.33 ms), Mg2C

is magnesium concentration (mM), g is 0.33 mM¡1, c is 0.06/mV, and Vm
is membrane potential in mV.

We will not discuss the validity of this equation which has been used
by several authors (Jahr & Stevens, 1990a, 1990b; Mel, 1992a) to model the
NMDA channel. Instead, we assume that it represents an NMDA channel
with suf�cient accuracy. This equation is split into two parts that can be
treated independently, as shown by Bernard et al. (1994), because c is not
dependent on the time but only on the membrane potential:

g(t) D c ¢ y(t) (2.2)

y(t) D Og ¢ (e¡ t
t1 ¡ e¡ t

t2 ) (2.3)

c D (1 C g[Mg2C ]e¡c Vm )¡1. (2.4)

This method hadalso been used by Bernard et al. (1994), whose experimental
results show that the rise time is independent of the Mg2C concentration
(Lester & Jahr, 1992; Stern, Edwards, & Sakmann, 1992).

1 To our knowledge the derivation for general exponential functions is explicitly
spelled out only in this technical report. This report may be hard to obtain, but we think
that it should be easy to derive equation 1.4 in a similar way as the results shown here.
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Equation 2.3 has to be Z -transformed in discrete time tn=nT:

Y(z) D Zfy(nT)g D Z f Og ¢ (e¡ nT
t1 ¡ e¡ nT

t2 )g, (2.5)

with

Z fe¡ nT
t1 g D

1

1 ¡ e¡ T
t1 ¢ z¡1

I Z fe¡ nT
t2 g D

1

1 ¡ e¡ T
t2 ¢ z¡1

. (2.6)

These terms can be added in the Z-domain just as in the time domain:

Y(z) D Og a1z¡1 ¡ a2z¡1

(1 ¡ a1z¡1)(1 ¡ a2z¡1)
, (2.7)

where we have set a1 D e¡ T
t1 and a2 D e¡ T

t2 .
A convolution of the weighted input function s(nT) with the numerator

of the conductance function y(nT) is equivalent to a multiplication of both
functions in the Z -domain:

h(nT) D y(nT) ? s(nT) , H(z) D Y(z) ¢ S(z). (2.8)

After some conversions we arrive at:

H(z) D Og(a1 ¡ a2)S(z)z¡1 C (a1 C a2)H(z)z¡1 ¡ a1a2H(z)z¡2. (2.9)

To get the inverse transform, we use the following feature of the Z ¡1-
transform,

Z ¡1fF(z) ¢ z¡jg D f [(n ¡ j)T], (2.10)

and get as the �nal solution:

h[nT] D Og(a1¡a2)s[(n ¡1)T]C(a1Ca2)h[(n ¡1)T]¡a1a2h[(n ¡2)T]. (2.11)

Where s[(n ¡ 1)T] is the summed total input at time step (n ¡ 1)T,

s[(n ¡ 1)T] D
X

i
vi si[(n ¡ 1)T]. (2.12)

It should be noted that s[nT] does not contribute to h[nT] because spikes
arriving at the moment nT will affect the conductance only afterward.

h[(n¡1)T] and h[(n¡2)T] represent the last and the last-but-one iteration
of the function h, which are now reutilized to compute the actual value
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of h[nT]. Thus, very little computational effort is required to perform the
ongoing iteration of h, and the �nal conductance is computed as:

gtotal[nT] D c ¢ h[nT]. (2.13)

This shows that the term c does not enter into the iterations. The validity
of this has been demonstrated by Bernard et al. (1994). It should be noted
that the �nal result is not an approximation; it is exact in the sense that the Z-
transform does not alter the accuracy of the computation of the convolution
in discrete time.

Figures 1A and 1B show the behavior of such an NMDA synapse for a
single input spike in comparison to a non-NMDA-synapse modeled with
equations 1.2 and 1.4. In Figures 1C and 1D, the response to a 100 Hz spike
train s for the NMDA synapse is depicted. The resulting curves are in accor-
dance with those found in other simulation studies (Mel, 1992b;Tr Êav Âen et al.,
1993). Curves determined by a conventional calculation of the convolution
with single-precision �oating-point variables are identical up to a numeri-
cal accuracy of 10¡8 if we assume memory queue sizes of about 800 values
in the conventional calculation (iteration time-step 0.05 ms). Note that in
order to cover the complete response for high-frequency input spike trains,
the required memory queue size is particularly large for the slow NMDA
synapse. Thus, the increase in computational speed and the reduction of
memory queue size in this case exceeds two orders of magnitude. Both es-
timates obviously depend on the accuracy (e.g., the size of the time-step)
required for the conventional calculation.

3 Benchmark Comparison to Other Techniques

Several techniques have been described in order to speed up synaptic con-
ductance calculation. Srinivasan and Chiel (1993) showed how multiple a

functions could be consolidated by representing their summation in an it-
erated closed form. Lytton (1996) used a different type of synapse based on
the work of Desthexe, Mainen, and Sejnowski (1994a, 1994b), which can be
seen as a concave rising exponential (1 ¡ e¡t) pieced together with one that
is convex and falling (e¡t). The major advantage of the latter approach lies
in the fact that actual transmitter application durations can be included in
this model. Desthexe et al.’s set of equations is even more compact than that
of Srinivasan and Chiel, and they can, with some additional effort, combine
several synapses into one closed algorithmic form. Bernard et al. (1994) �-
nally found a simpli�ed description of the conductance changes occurring
at an NMDA channel based on differential equations, but their algorithm is
much more complicated than the one proposed here.

Therefore, we have compared our approach with that of Srinivasan and
Chiel as well as with that of Lytton, but not with that of Bernard et al..
The three �ow diagrams in Figure 2 show the algorithmic complexity of
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Figure 1: (A) Time course of the conductance of a simulated NMDA channel
and a simulated non-NMDA channel for one incoming spike. (B) Corresponding
membrane potentials. (C) Time course of the conductance of an NMDA channel
during input of a 100 Hz spike train. (D) Corresponding membrane potential.

the approaches when modeling a single synapse. The Z-transform has the
simplest and Lytton’s algorithm the most complex structure. Since spikes
are rare events, the thin pathways are seldomly followed. The thick arrows,
on the other hand, represent the passive decay case. Therefore, these com-
mand sequences occur much more often and are mainly responsible for the
computational time needed. Table 1 compares how many components and
operations are required to perform the calculations if a single synapse is
modeled. All techniques are fairly similar, and the complexity of Lytton’s
algorithm pays off by reducing the number of operations to a minimum. The
similarity of the three techniques is also re�ected in the actual benchmark
runs (see Figure 3 and, for the simulation parameters, Table 2).

We simulated a single synapse with different input spike frequencies
between 5 and 500 Hz. A total of 50 million time steps was simulated,
and each had a duration of 0.05 ms, leading to a total simulated time of
2500 seconds. All simulations were run on a SUN SPARC 5 client machine
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Figure 2: Flow diagrams of the different algorithms for an AMPA synapse (see
equation 1.2). (A) The algorithm of Srinivasan and Chiel. (B) The Z-transform.
(C) Lytton’s algorithm.

in multiuser mode. No disk access was required during the simulations.
We did not use any unusual computer operation mode (like “single user
mode”) in order to make sure that our benchmarks will also apply to an
everyday laboratory situation. This can, however, lead to tiny differences
when running the same simulation twice due to the differing state of activity
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Table 1: Resources Needed for the Different Techniques in the Case of a Single
Synapse.

Srinivasan and Chiel Lytton Z -Transform

Memory
Flags 0 1 0
Variables 2 3 2
Constants 2 4 3

Operations
Spike 4¤ 4+ 1¤ 2+ 2¤ 2+
No spike 4¤ 2+ 1¤ 2¤ 1+

Note:¤ D multiplication; C D addition, as shown in the�owdiagrams
in Figure 2.

Table 2: Parameters Used for the Benchmark Simulations.

Srinivasan and Chiel Lytton Z -Transform

Non-NMDA
t1 1 ms — 1 ms
a0 — 600 s¡1 —
b — 550 s¡1 —
Cdur — 1 ms —

NMDA
t1 40 ms — 0.33 ms
t2 40 ms — 0.33 ms

Note: The difference between Lytton’s and the other techniques does
not make the parameters immediately comparable.

of the system’s background demons. In the diagrams we plot the CPU time
required for one simulated time step.

As expected from the �ow diagrams, the computational effort remains
constant for Srinivasan and Chiel and also for the Z-transform. Lytton’s
technique shows a linear increase in computational time. It is the fastest up
to an input frequency of about 210 Hz, which looks very promising because
few neurons �re with such a high frequency for an extended period of time.

The problem of computational ef�ciency becomes truly relevant only in
the context of simulating the convergence of multiple inputs onto a sin-
gle cell (or compartment). This is the case with which Lytton and we are
mainly concerned. Thus, the main part of Lytton’s algorithm is the opti-
mization of the calculation for many synapses with a shared time constant
at a given neuron. He was able to simplify the update to two variables only,
and he had to maintain only a single two-valued queue of spike arrival
times and synaptic states (instead of N queues in the case of the regular
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Figure 3: Benchmark comparison of the three techniques for a single AMPA and
a single NMDA synapse. Lytton’s technique (AMPA only) is the fastest for the
single synapse case and reasonable input �ring frequencies, but see Figure 4.

convolution). In addition, he required a few bookkeeping commands in his
algorithm to keep track of the synaptic state changes. Thus, the algorith-
mic complexity increases in Lytton’s algorithm. On the other hand, when
using the Z -transform, only a single one-values queue of the spike arrival
times has to be maintained when more than one synapse is simulated. The
linearity of the transform allows one to de�ne an accumulated spike train
(see equation 1.3), which does not affect the computational effort regardless
of the number of synapses (the value of N in equation 1.3). And this also
holds for synapses with different delays because a synaptic delay Dt can
be implicitly included in the accumulated spike train by reassigning the
time variable for this synapse to tresultant D tarrival C tdelay. Consequentially,
although Lytton had found quite an ingenious way to do the bookkeep-
ing and the update, it is rather obvious that the Z-transform will be faster
since it remained basically unchanged2 (see Figure 4). It can be seen in Fig-
ure 4A that the Z-transform is signi�cantly faster than Lytton’s algorithm
when simulating 50 synapses. The difference between the curves, however,
is largely independent of the number of simulated synapses (see Figure

2 Obviously both algorithms require a queue for the inputs. Thus, the Z -transform
will be slightly slower. But apart from this, the Z -transform does not need any other
algorithmic addition, as opposed to Lytton’s algorithm, which requires bookkeeping.
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4B). As expected, it is due only to the additionally introduced bookkeep-
ing in Lytton’s algorithm and produces a constant computational overhead.
This shifts the curves with respect to each other such that they do not cross
anymore (compare Figure 3, where the bookkeeping was not implemented
because only a single synapse was simulated). Note that in (probably) all
real simulation problems, Lytton’s algorithm can never be implemented
without the bookkeeping because a convergence of more than one synapse
onto any compartment must always be allowed. Thus, the performance ad-
vantage for the single synapse case (see Figure 3) may actually never be
attainable in a real simulation problem where a situation similar to Figure 4
applies. The additional small linear increase in Lytton’s curve results from
the total increase in incoming spikes since all simulated synapses receive
100 Hz input (compare again Figure 3).

Srinivasan and Chiel did not optimize their algorithm for more than one
synapse. Therefore, their algorithm is much slower than the two other ones
(not shown).

4 Discussion

Based on the technical report of Olshausen (1990), Brettle and Niebur (1994)
made use of the Z-transform in order to calculate synaptic conductance
more ef�ciently, but in their article, they did not give a full account of this
technique. It may be for this reason that this technique is still not widely
appreciated. Therefore, we have tried to give an account of how the Z -
transform could be used even in the context of the more complicated NMDA
synapse in order to arrive at a rather simple iterative procedure that reduces
the computational complexity and improves speed by at least two orders
of magnitude as compared to a straightforward calculation of the convo-
lutions. The comparison of the Z-transform with other algorithms shows
that its algorithmic complexity is minimal and that its performance exceeds
that of the other techniques signi�cantly as soon as multiple inputs are
considered. Lytton’s approach, on the other hand, has a more solid phys-
iological foundation because actual transmitter application durations can
also be implemented in his model.

It should be pointed out that—as opposed to many other approaches—
the Z-transform can be applied to more than one type of synapse. The
solutions for a regular non-NMDA synapse and the NMDA synapse were
given here, but it is easy to see that, for example, the equation that describes
the calcium-activated current through the respective synapse in the mollusc
Tritonia and other species can also be reduced by means of the Z-transform.
The original equation is given by Getting (1989):

gc(t) D
td

td ¡ to
(e¡t/td ¡ e¡t/to ), (4.1)

and the Z-transform follows the same steps as above.
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Figure 4: Benchmark for more than one synapse comparing the algorithm of
Lytton with the Z-transform. (A) Number of synapses �xed at 50 and vari-
able average input frequency. (B) Input frequency �xed at 100 Hz and variable
number of synapses.

It is immediately obvious that the Z-transform can be applied to all
synaptic functions that consist of multiplicative or additive combinations
of exponential terms.

The largestgain in computational ef�ciencyof theZ -transform isachieved
when many synapses converge onto a single compartment. But even in a
cell model with a high degree of compartmentation, the Z -transform may
be preferential because any applicable version of Lytton’s algorithm will al-



1650 J. Köhn and F. Wörgötter

ways require the bookkeeping procedure, which reduces its computational
ef�ciency to below that of the Z -transform in almost all situations. Perfor-
mance differences in a model with a high degree of compartmentation may
be marginal, though.

The actual choice of an algorithm for modeling a synapse should there-
fore be guided by several factors:

1. Do I need highly realistic synapses plus multiple voltage-dependent chan-
nels? Then probably none of the discussed algorithms can be used and
the differential equations need to be implemented explicitly.

2. Can I live with less realism and use a fast pooling approach (little compart-
mentation) but still with an explicitly modeled transmitter release? Then
use Lytton’s.

3. Do I need maximal speed and a high degree of pooling? Then use the Z -
transform.

In particular when modeling a large or very large network, the performance
gain factor of about 2 between the Z-transform and Lytton’s algorithm
will certainly be bene�cial, because individual simulations often take more
than 10 hours. In some special cases, even more abstract connections can
be de�ned—for example, by following the approach of Amit and Tsodyks
(1991), which models the membrane potential in a nonstandard way and
is basically con�ned to rates and currents. Due to their intrinsic assump-
tions, however, this approach cannot be directly compared with the other
algorithms studied here.
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