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This paper utilizes a 2D laser range finder (LRF) to determine the behavior of a

walking robot. The LRF provides information for 1) obstacle/gap detection as

well as 2) terrain classification. The obstacle/gap detection is based on an edge
detection with increased robustness and accuracy due to customized pre and

post processing. Its output is used to drive obstacle/gap avoidance behavior or

climbing behavior, depending on the height of obstacles or the depth of gaps.
The terrain classification employs terrain roughness to select a proper gait with

respect to the current terrain. As a result, the combination of these methods

enables the robot to decide if obstacles and gaps can be climbed up/down or
have to be avoided while at the same time a terrain specific gait can be chosen.
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1. Introduction

The evaluation of environmental information is the basis to enable au-

tonomous (walking) robots to successfully navigate through complex envi-

ronments. To tackle this problem different approaches have been proposed.

For example, Labecki et al.1 used a laser range finder (LRF) to build a

height map of the environment. Maier et al.2 combined monocular vision

and LRF readings for humanoid robot navigation. Wooden et al.3 utilized

a LRF and stereo vision in combination with complex navigation and per-

ception algorithms. In contrast to these works, here we use a LRF based

simple control algorithm without further sensor modalities for obstacle/gap

detection and terrain classification. In this paper we will show that such a

simple control algorithm is sufficient to enable a hexapod robot to success-

fully traverse difficult terrains. Furthermore this algorithm can serve as a

basis for more complex control structures.
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2. Materials and Methods

2.1. The Hexapod Robot AMOSII

AMOS II is a six-legged walking robot4 (see Fig. 1) used throughout this

work. At the front of the robot, a Hokuyo URG-04LX-UG01 laser range

finder (LRF) is mounted on a small tower-like mounting device (Fig. 1). We

selected this LRF since it is lightweight, independent from light conditions

and needs only little power.5 The LRF is mounted at a height of h =

22.5 cm, its horizontal angle β is set to 25◦ (see Fig. 1) for the work at

hand. We found this to be the optimal trade off between decreasing look

ahead distances for higher angles and reduced accuracy and robustness for

lower angles.5 Besides the LRF, two ultrasonic sensors are attached at the

front part of the robot. These sensors are used for climbing behavior4 which

is triggered by the presented obstacle/gap detection algorithm (described

below).
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Fig. 1. Left: The walking robot AMOS II with the LRF (overall picture and zoom of leg
with three active joints). An illustration of the LRF function is depicted. Right: Sketch

of the LRF setup.

2.2. Obstacle/Gap Detection

In the work at hand, we propose an obstacle/gap detection algorithm con-

sisting of three steps. First the raw laser scan data is preprocessed to remove

measurement artifacts, then edges of objects are detected based on height

differences (see Fig. 1, Left) and in the postprocessing edges are combined

to objects. The details of each step are provided in the following subsections.

Preprocessing: In a first step the LRF readings are transformed from

spherical into cartesian coordinates. Then, in order to increase robustness

of the edge detection, outliers and measurement artifacts such as mixed

pixels5 are removed. A simple exclusion algorithm based on the deviations
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of x and z coordinates (see Fig. 1, Right) between neighboring points is

used (see Algorithm 2.1, Left).

Edge Detection Algorithm: In this work, we use a fixed value thresh-

olding algorithm for edge detection.6 This algorithm is based on the fact

that obstacles/gaps correspond to height differences in the x-z plane of the

2D laser data.6 By applying a threshold to the height difference between

two data points, edges can be detected.

Postprocessing: Here, neighboring edges with a similar mean height are

joined as they have high probability to correspond to only one entity, e.g.,

a rough object. For the remaining edges average (zavg), maximum (zmax)

and minimum (zmin) values are calculated and compared with thresholds

defining obstacles and gaps (see Sec. 2.4).

This algorithm can be applied to detect different types of obstacles

including walls and objects having sufficient height different to the ground.

It has been successfully tested to detect, e.g., different box sizes.

2.3. Terrain Classification based on Roughness Estimation

Obtaining an estimation of the surface roughness enables walking robots to

select a terrain specific gait, thereby performing effective locomotion. We

introduce a criterion for roughness estimation based on the amplitude and

the rate of height changes of the LRF data. These features are represented

in the root-mean-square value Rq =
√

1
n

∑n
i=1 d

2
i . It evaluates the deviation

di of each data point from the average height of the calculated edges. The

roughness estimation value can be used to select a gait depending on terrain

surface roughness. However, to enhance the robustness of the gait selection,

Rq is filtered with a low pass filter.

2.4. Behavior Control for Complex Environments

The processed LRF data provides obstacle/gap and roughness information

about the environment used to decide which action the robot should per-

form. The behavior control based on these data is summarized in Algorithm

2.1, Right. First the minimum and maximum height values are evaluated

to detect non crossable objects/gaps. In case of the average height being

between the positive and negative ground threshold, no climbing is ini-

tiated since this situation is considered as obstacle/gap free. Thus, the

robot continues walking forward. On the other hand, if the average height
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Algorithm 2.1 Left: Pseudo code for preprocessing LRF data. Right:

Pseudo code of behavior control.

for all pi in dataPoints do
transform(pi)
∆x = |pi.x− pi+1.x|
∆z = |pi.z − pi+1.z|
if ∆x > minX AND

∆z < maxZ then
save(pi)

else
remove(pi)

end if
end for

if zmin < minHeight then
turn()

else
if zmax > maxHeight then

startObstacleAvoidance()
else

if zavg > ground then
if dist < distThreshold then

startClimbing()
else

startWalkingForward()
end if

end if
if zavg < −ground then

startClimbing()
else

startWalkingForward()
end if

end if
end if

is above the positive ground threshold (i.e., climbable obstacle) or below

the negative ground threshold (i.e., climbable lower step), climbing behav-

ior is activated. During climbing behavior the front part of the robot is

tilted upwards/downwards. These motions are controlled by the ultrasonic

sensors-driven backbone joint (see Goldschmidt et al.4 for more details).

While climbing, the LRF does not produce reliable measurements and thus

its values are not used. During locomotion the gait can additionally be

changed according to the roughness Rq of the terrain.

3. Experimental Results

3.1. Behavior Control based on Obstacle/Gap Detection

The behavior control using LRF-based obstacle/gap detection was investi-

gated on a track consisting of a ground floor and two elevated platforms.

The robot started walking towards the first platform (stage 1, Fig. 2). It

continued walking until it was near enough to the platform. It then de-

tected the platform as a climbable obstacle since the average height (zavg,

Fig. 2) was above a positive ground threshold. The decreasing distance to

the platform can be seen in the increasing outputs of the ultrasonic sensors
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Fig. 2. From top to bottom: Average height of the LRF data (zavg), minimum height

in LRF data (zmin), maximum height in LRF data (zmax), backbone joint signal (BJO)

and left and right ultrasonic sensors (USL, USR). All height values are given in mm. If the
backbone joint signal is positive, the joint is tilted upwards and downwards for negative
values. The ultrasonic signals represent the distance to an obstacle, where a higher value
is obtained for nearer obstacles (zero represents no obstacle in field of view). Within

the green areas the robot avoided obstacles, while in the blue area a gap was avoided

by turning. Within the red areas, the climbing routine was enabled. In these areas the
output of the LRF was ignored.

(USL, USR, Fig. 2). As these values exceeded a threshold, the robot started

to climb (stage 2). The progress of the climbing routine is represented by

the backbone joint motion. At the beginning the front part of AMOS II

moved up to reach the edge of the obstacle, indicated by an increase in the

backbone joint signal (BJO, Fig. 2). Afterwards the front part bent down

to support the climbing of the main body, hence the backbone joint signal

decreased to negative values until the climbing finished. While walking on
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the first platform the robot detected the wall in front of it. The height of

the wall was correctly classified as too high to climb (zmax, Fig. 2) and

the robot then turned (i.e., obstacle avoidance, stage 3). At some point the

wall vanished from the field of view, the robot thus made some forward

steps until the wall appeared again in its field of view. This can be seen

in the ultrasonic sensor outputs oscillating around the distance threshold

value. After avoiding the wall, the robot climbed onto the second platform

(stage 4), showing a behavior similar to the first climbing procedure. On

top of the second platform only the LRF was able to detect the gap limiting

the platform. Its minimum value zmin decreased below the gap threshold.

The robot turned until facing the first platform again (stage 5). At this

point the robot climbed down, as the average height zavg was between gap

and ground thresholds. Again the climbing routine can be recognized by the

backbone joint signal (stage 6). After climbing down to the first platform

the robot walked forwards, avoided the wall directly in front (stage 7) and

then climbed down to the ground (stage 8).

This experiment shows that the behavior control based on LRF data

proposed in Sec. 2.4 allows the robot to autonomously locomote on the

complex terrain. We recommend readers to also see the supplementary video

of this experiment at http://manoonpong.com/CLAWAR2013/suppl.wmv.

3.2. Behavior Control based on Terrain Classification

To evaluate the terrain classification using LRF data as described in

Sec. 2.3, an experimental track was built, where the robot has to traverse

three areas with significant differences in roughness. The starting point

was on a flat wooden platform (area 1). From there the robot had to con-

tinue to walk over fine (area 2) and coarse-grained gravel (area 3). The gait

of AMOS II can be controlled via one control input.4 In this experiment

this input was determined by the result of the terrain classification (Rq).

Figure 3 shows the sensor data of the robot while traversing the different

terrains. As expected Rq was very small on the wooden platform (area 1),

thus a fast walking pattern was chosen (tripod gait).

When arriving at the second area the filtered Rq increased to values

between 5 and 25. This resulted in a gait change, from a tripod gait to a

wave gait, which is slower and better suited for fine gravel.

In front of the third area the filtered Rq value increased above 25.

This led to a change of the wave gait to a tetrapod gait, which enabled

the robot to perform faster and proper walking on uneven terrain, like

the coarse-grained gravel. The successful completion of this track indi-
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cates that the terrain classification provided by the LRF can be used to

choose gaits according to the terrain the robot approaches. We recom-

mend readers to also see the supplementary video of this experiment at

http://manoonpong.com/CLAWAR2013/suppl.wmv.
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Fig. 3. Signals and pictures of the robot while traversing different terrains. a) The first

two rows show the raw and filtered results of the terrain classification (Rq) followed by

the control input which determines the gait of the robot. b) The gaits used by AMOS II
shown as gait diagrams (black swing phase, white stance phase) and below the places in

the track where these gaits are used.

4. Conclusion

We showed that a 2D LRF can be used for obstacle/gap detection. This

allows the hexapod robot to climb up and down platforms surrounded by

walls and deep gaps. Furthermore, terrain classification based on LRF data

can be used to adapt the gait of the robot to different terrains, like flat

ground and different grained gravels.
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However there are still some aspects which can be improved. Basically,

the LRF can provide position and width information about obstacles in its

field of view. This information could be used to determine the direction

of turning when facing several obstacles with different heights or provide a

basis for more advanced behavior control. With this enhancement the robot

will be able to navigate in more complex environments than the compar-

atively simple setup used in this paper. In particular the robot would be

able to judge if it would be better, e.g. in terms of energy or danger, to

climb or to avoid an obstacle instead of using a decision based on the max-

imal climbable heights only. Furthermore the algorithm can be extended

to measure the length of objects by using memory and simple navigation

techniques. In addition, the thresholds for terrain classification and the

corresponding gaits were set by hand. In real world applications, where the

terrain is usually not known, a more elaborate threshold and gait selection

can be necessary. This could possibly be achieved by learning techniques.7,8
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