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Visual Abstract

Synaptic connections between neurons in the brain are dynamic because of continuously ongoing spine
dynamics, axonal sprouting, and other processes. In fact, it was recently shown that the spontaneous synapse-
autonomous component of spine dynamics is at least as large as the component that depends on the history of
pre- and postsynaptic neural activity. These data are inconsistent with common models for network plasticity and
raise the following questions: how can neural circuits maintain a stable computational function in spite of these
continuously ongoing processes, and what could be functional uses of these ongoing processes? Here, we
present a rigorous theoretical framework for these seemingly stochastic spine dynamics and rewiring processes
in the context of reward-based learning tasks. We show that spontaneous synapse-autonomous processes, in
combination with reward signals such as dopamine, can explain the capability of networks of neurons in the brain

Significance Statement

Networks of neurons in the brain do not have a fixed connectivity. We address the question how stable
computational performance can be achieved by continuously changing neural circuits, and how these
networks could even benefit from these changes. We show that the stationary distribution of network
configurations provides a level of analysis where these issues can be addressed in a perspicuous manner.
In particular, this theoretical framework allows us to address analytically the questions which rules for
reward-gated synaptic rewiring and plasticity would work best in this context, and what impact different
levels of activity-independent synaptic processes are likely to have. We demonstrate the viability of this
approach through computer simulations and links to experimental data.
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to configure themselves for specific computational tasks, and to compensate automatically for later changes in
the network or task. Furthermore, we show theoretically and through computer simulations that stable compu-
tational performance is compatible with continuously ongoing synapse-autonomous changes. After reaching
good computational performance it causes primarily a slow drift of network architecture and dynamics in
task-irrelevant dimensions, as observed for neural activity in motor cortex and other areas. On the more abstract
level of reinforcement learning the resulting model gives rise to an understanding of reward-driven network
plasticity as continuous sampling of network configurations.

Key words: reward-modulated STDP; spine dynamics; stochastic synaptic plasticity; synapse-autonomous
processes; synaptic rewiring; task-irrelevant dimensions in motor control

Introduction
The connectome is dynamic: Networks of neurons in

the brain rewire themselves on a time scale of hours to
days (Holtmaat et al., 2005; Stettler et al., 2006; Holtmaat
and Svoboda, 2009; Minerbi et al., 2009; Yang et al.,
2009; Ziv and Ahissar, 2009; Kasai et al., 2010;
Loewenstein et al., 2011, 2015; Rumpel and Triesch,
2016; Chambers and Rumpel, 2017; van Ooyen and Butz-
Ostendorf, 2017). This synaptic rewiring manifests in the
emergence and vanishing of dendritic spines (Holtmaat
and Svoboda, 2009). Additional structural changes of
established synapses are observable as a growth and
shrinking of spine heads which take place even in the
absence of neural activity (Yasumatsu et al., 2008). The
recent study of Dvorkin and Ziv (2016), which includes in
their Figure 8 a reanalysis of mouse brain data from
Kasthuri et al. (2015), showed that this spontaneous com-
ponent is surprisingly large, at least as large as the impact
of pre- and postsynaptic neural activity. In addition, Na-
gaoka and colleagues provide direct evidence in vivo that
the baseline turnover of dendritic spines is mediated by
activity-independent intrinsic dynamics (Nagaoka et al.,
2016). Furthermore, experimental data also suggest that
task-dependent self-configuration of neural circuits is me-
diated by reward signals in Yagishita et al. (2014).

Other experimental data show that not only the con-
nectome, but also the dynamics and function of neural
circuits is subject to continuously ongoing changes. Con-
tinuously ongoing drifts of neural codes were reported in
Ziv et al. (2013); Driscoll et al. (2017). Further data show
that the mapping of inputs to outputs by neural networks
that plan and control motor behavior are subject to a
random walk on a slow time scale of minutes to days, that
is conjectured to be related to stochastic synaptic rewir-

ing and plasticity (Rokni et al., 2007; van Beers et al.,
2013; Chaisanguanthum et al., 2014).

We address two questions that are raised by these data.
(1) How can stable network performance be achieved in
spite of the experimentally found continuously ongoing re-
wiring and activity-independent synaptic plasticity in neural
circuits? (2) What could be a functional role of these pro-
cesses?

Similar as previously shown (Rokni et al., 2007; Statman
et al., 2014; Loewenstein et al., 2015), we model sponta-
neous synapse-autonomous spine dynamics of each po-
tential synaptic connection i through a stochastic process
that modulates a corresponding parameter �i. We provide
in this article a rigorous mathematical framework for such
stochastic spine dynamics and rewiring processes. Our
analysis assumes that one can describe the network
configuration, i.e., the current state of the dynamic con-
nectome and the strengths of all currently functional syn-
apses, at any time point by a vector � that encodes the
current values �i for all potential synaptic connections i.
The stochastic dynamics of this high-dimensional vector �
defines a Markov chain, whose stationary distribution (Fig.
1D) provides insight into questions that address the rela-
tion between properties of local synaptic processes and
the computational function of a neural network.

Based on the well-studied paradigm for reward-based
learning in neural networks, we propose the following
answer to the first question: as long as most of the mass
of this stationary distribution lies in regions or low-
dimensional manifolds of the parameter space that pro-
duce good performance, stable network performance can
be assured despite continuously ongoing movement of �
(Loewenstein et al., 2015). Our experimental results sug-
gest that when a computational task has been learnt,
most of the subsequent dynamics of � takes place in
task-irrelevant dimensions.

The same model also provides an answer to the second
question: synapse-autonomous stochastic dynamics of
the parameter vector � enables the network not only to
find in a high-dimensional region with good network per-
formance but also to rewire the network to compensate
for changes in the task. We analyze how the strength of
the stochastic component of synaptic dynamics affects
this compensation capability. We arrive at the conclusion
that compensation works best for the task considered
here if the stochastic component is as large as in exper-
imental data (Dvorkin and Ziv, 2016).

On the more abstract level of reinforcement learning,
our theoretical framework for reward-driven network plas-
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ticity suggests a new algorithmic paradigm for network
learning: policy sampling. Compared with the familiar pol-
icy gradient learning (Williams, 1992; Baxter and Bartlett,
2000; Peters and Schaal, 2006), this paradigm is more
consistent with experimental data that suggest a contin-
uously ongoing drift of network parameters.

The resulting model for reward-gated network plasticity
builds on the approach from Kappel et al. (2015) for
unsupervised learning, that was only applicable to a spe-
cific neuron model and a specific Spike-timing-dependent
plasticity rule. Since the new approach can be applied to

arbitrary neuron models, in particular also to large data-
based models of neural circuits and systems, it can be
used to explore how data-based models for neural cir-
cuits and brain areas can attain and maintain a computa-
tional function.

Results
We first address the design of a suitable theoretical

framework for investigating the self-organization of neural
circuits for specific computational tasks in the presence of
spontaneous synapse-autonomous processes and re-

Figure 1. Illustration of the theoretical framework. A, A neural network scaffold N of excitatory (blue triangles) and inhibitory (purple
circles) neurons. Potential synaptic connections (dashed blue arrows) of only two excitatory neurons are shown to keep the figure
uncluttered. Synaptic connections (black connections) from and to inhibitory neurons are assumed to be fixed for simplicity. B, A
reward landscape for two parameters � � ��1, �2� with several local optima. Z-amplitude and color indicate the expected reward
V��� for given parameters � (X-Y plane). C, Example prior that prefers small values for �1 and �2. D, The posterior distribution
p���� that results as product of the prior from C and the expected discounted reward of B. E, Illustration of the dynamic forces
(plasticity rule Eq. 5) that act on � in each sampling step d� (black) while sampling from the posterior distribution. The deterministic
term (red), which consists of the first two terms (prior and reward expectation) in Equation 5, is directed to the next local maximum
of the posterior. The stochastic term dW (green) of Equation 5 has a random direction. F, A single trajectory of policy sampling from
the posterior distribution of D under Equation 5, starting at the black dot. The parameter vector � fluctuates between different
solutions and moves primarily along the task-irrelevant dimension �2.
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wards. There exist well-established models for reward-
modulated synaptic plasticity, (Frémaux et al., 2010),
where reward signals gate common rules for synaptic
plasticity, such as STDP. But these rules are lacking two
components that we need here: (1) an integration of re-
wiring with plasticity rules that govern the modulation of
the strengths of already existing synaptic connections;
and (2) a term that reflects the spontaneous synapse-
autonomous component of synaptic plasticity and rewir-
ing.

To illustrate our approach, we consider a neural net-
work scaffold (Fig. 1A) with a large number of potential
synaptic connections between excitatory neurons. Only a
subset of these potential connections is assumed to be
functional at any point in time.

If one allows rewiring then the concept of a neural
network becomes problematic, since the definition of a
neural network typically includes its synaptic connections.
Hence, we refer to the set of neurons of a network, its set
of potential synaptic connections, and its set of definite
synaptic connections, such as in our case connections
from and to inhibitory neurons (Fig. 1A), as a network
scaffold. A network scaffold N together with a parameter
vector � that specifies a particular selection of functional
synaptic connections out of the set of potential connec-
tions and particular synaptic weights for these defines a
concrete neural network, to which we also refer as net-
work configuration.

For simplicity we assume that only excitatory connec-
tions are plastic, but the model can be easily extended to
also reflect plasticity of inhibitory synapses. For each
potential synaptic connection i, we introduce a parameter
�i that describes its state both for the case when this
potential connection i is currently not functional (this is the
case when �i � 0) and when it is functional (i.e., �i � 0).
More precisely, �i encodes the current strength or weight
wi of this synaptic connection through the formula

wi � �exp(�i � �0) if �i � 0 (functional synaptic connection)
0 if �i � 0 (non � functional potential connection) ,

(1)

with a positive offset parameter �0 that regulates the initial
strength of new functional synaptic connections (we set �0

� 3 in our simulations).
The exponential function in Equation 1 turns out to be

useful for relating the dynamics of �i to experimental data
on the dynamics of synaptic weights. The volume, or
image brightness in Ca-imaging, of a dendritic spine is
commonly assumed to be proportional to the strength wi

of a synapse (Holtmaat et al., 2005). The logarithm of this
estimate for wi was shown in Holtmaat et al. (2006), their
Figure 2I, and also in Yasumatsu et al. (2008) and Loew-
enstein et al. (2011), to exhibit a dynamics similar to that
of an Ornstein–Uhlenbeck process, i.e., a random walk in
conjunction with a force that draws the random walk back
to its initial state. Hence if �i is chosen to be proportional
to the logarithm of wi, it is justified to model the sponta-
neous dynamics of �i as an Ornstein–Uhlenbeck process.
This is done in our model, as we will explain after Equation
5 and demonstrate in Figure 2C. The logarithmic transfor-

mation also ensures that additive increments of �i yield
multiplicative updates of wi, which have been observed
experimentally (Loewenstein et al., 2011).

Together, our model needs to create a dynamics for �i

that is not only consistent with experimental data on
spontaneous spine dynamics, but is for the case �i � 0
also consistent with rules for reward-modulated synaptic
plasticity as in Frémaux et al. (2010). This suggests to look
for plasticity rules of the form

d�i � � � (deterministic plasticity rule) � dt

	 �2�TdWi , (2)

where the deterministic plasticity rule could for example
be a standard reward-based plasticity rule. We will argue
below that it makes sense to include also an activity-
independent prior in this deterministic component of rule
(2), both for functional reasons and to fit data on sponta-
neous spine dynamics. We will further see that when the
activity-independent prior dominates, we obtain the Orn-
stein–Uhlenbeck process mentioned above. The stochas-
tic term dWi in Equation 2 is an infinitesimal step of a
random walk, more precisely for a Wiener process Wi. A
Wiener process is a standard model for Brownian motion
in one dimension (Gardiner, 2004). The term �2�T scales
the strength of this stochastic component in terms of a
“temperature” T and a learning rate � and is chosen to be
of a form that supports analogies to statistical physics.
The presence of this stochastic term makes it unrealistic
to expect that �i converges to a particular value under the
dynamics defined by Equation 2. In fact, in contrast to
many standard differential equations, the stochastic dif-
ferential equation or SDE (Eq. 2) does not have a single
trajectory of �i as solution but an infinite family of trajec-
tories that result from different random walks.

We propose to focus, instead of the common analysis
of the convergence of weights to specific values as invari-
ants, on the most prominent invariant that a stochastic
process can offer: the long-term stationary distribution of
synaptic connections and weights. The stationary distri-
bution of the vector � of all synaptic parameters �i informs
us about the statistics of the infinitely many different
solutions of a stochastic differential equation of the form
of Equation 2. In particular, it informs us about the fraction
of time at which particular values of � will be visited by
these solutions (for details, see Materials and Methods).
We show that a large class of reward-based plasticity
rules produce in the context of an equation of the form of
Equation 2 a stationary distribution of � that can be clearly
related to reward expectation for the neural network, and
hence to its computational function.

We want to address the question whether reward-
based plasticity rules achieve in the context with other
terms in Equation 2 that the resulting stationary distribu-
tion of network configurations has most of its mass on
highly rewarded network configurations. A key observa-
tion is that if the first term on the right-hand-side of
Equation 2 can be written for all potential synaptic con-

nections i in the form




�i
logp����, where p���� is some
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Figure 2. Reward-based routing of input patterns. A, Illustration of the network scaffold. A population of 20 model MSNs (blue)
receives input from 200 excitatory input neurons (green) that model cortical neurons. Potential synaptic connections between these
two populations of neurons were subject to reward-based synaptic sampling. In addition, fixed lateral connections provided recurrent
inhibitory input to the MSNs. The MSNs were divided into two groups, each projecting exclusively to one of two target areas T1 and
T2. Reward was delivered whenever the network managed to route an input pattern Pi primarily to that group of MSNs that projected
to target area Ti. B, Illustration of the model for spine dynamics. Five potential synaptic connections at different states are shown.

Synaptic spines are represented by circular volumes with diameters proportional to �
3

wi for functional connections, assuming a linear
correlation between spine-head volume and synaptic efficacy wi (Matsuzaki et al., 2001). C, Dynamics of weights wi in log scale for

10 potential synaptic connections i when the activity-dependent term




�i
logV���dt in Equation 5 is set equal to zero). As in

experimental data (Holtmaat et al., 2006, their Fig. 2I) the dynamics is in this case consistent with an Ornstein–Uhlenbeck process in
the logarithmic scale. Weight values are plotted relative to the initial value at time 0. D, E, Dynamics of a model synapse when a
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arbitrary given distribution and 
 / 
�i denotes the partial
derivative with respect to parameter �i, then these sto-
chastic processes

d�i � �




�i
log p�(�)dt 	 �2�TdWi (3)

give rise to a stationary distribution that is proportional to
p����1/T. Hence, a rule for reward-based synaptic plasticity

that can be written in the form




�i
logp����, where p���� has

most of its mass on highly rewarded network configura-
tions �, achieves that the network will spend most of its
time in highly rewarded network configurations. This will
hold even if the network does not converge to or stay in
any particular network configuration � (Fig. 1D,F). Further-
more, the role of the temperature T in Equation 3 becomes
clearly visible in this result: if T is large the resulting
stationary distribution flattens the distribution p����,
whereas for 0 � T � 1 the network will remain for larger
fractions of the time in those regions of the parameter
space where p���� achieves its largest values. In fact, if the
temperature T converges to 0, the resulting stationary
distribution degenerates to one that has all of its mass on
the network configuration � for which p���� reaches its
global maximum, as in simulated annealing (Kirkpatrick
et al., 1983).

We will focus on target distributions p���� of the form

p�(�) � pS(�) � V(�) , (4)

where � denotes proportionality up to a positive normal-
izing constant. pS��� can encode structural priors of the
network scaffold N. For example, it can encode a prefer-
ence for sparsely connected networks. This happens
when pS��� has most of its mass near 0 (Fig. 1C). But it

could also convey genetically encoded or previously
learnt information, such as a preference for having strong
synaptic connections between two specific populations of
neurons. The term V��� in Equation 4 denotes the ex-
pected discounted reward associated with a given pa-
rameter vector � (Fig. 1B). Equation 3 for the stochastic
dynamics of parameters takes then the form

d�i � �� 


�i

log pS(�) 	




�i
log V(�)	dt 	 �2�TdWi . (5)

When the term




�i
logV��� vanishes, this equation mod-

els spontaneous spine dynamics. We will make sure that
this term vanishes for all potential synaptic connections i
that are currently not functional, i.e., where �i � 0. If one
chooses a Gaussian distribution as prior pS���, the dy-
namics of Equation 5 amounts in the case





�i
log V��� �

0 to an Ornstein–Uhlenbeck process. There is currently no
generally accepted description of spine dynamics. Orn-
stein–Uhlenbeck dynamics has previously been proposed
as a simple model for experimentally observed spontane-
ous spine dynamics (Loewenstein et al., 2011, 2015).
Another proposed model uses a combination of multipli-
cative and additive stochastic dynamics (Statman et al.,
2014; Rubinski and Ziv, 2015). We used in our simulations
a Gaussian distribution that prefers small but nonzero
weights for the prior pS���. Hence, our model (Eq. 5) is
consistent with previous Ornstein–Uhlenbeck models for
spontaneous spine dynamics.

Thus, altogether, we arrive at a model for the interaction
of stochastic spine dynamics with reward where the usu-
ally considered deterministic convergence to network
configurations � that represent local maxima of expected
reward V��� (e.g., to the local maxima in Fig. 1B) is re-

continued
reward-modulated STDP pairing protocol as in Yagishita et al. (2014) was applied. D, Reward delivery after repeated firing of the
presynaptic neuron before the postsynaptic neuron resulted in a strong weight increase (left). This effect was reduced without reward
(right) and prevented completely if no presynaptic stimulus was applied. Values in D, E represent percentage of weight changes
relative to the pairing onset time (dashed line, means � SEM over 50 synapses). Compare with Yagishita et al. (2014), their Figure
1F,G. E, Dependence of resulting changes in synaptic weights in our model as a function of the delay of reward delivery. Gray shaded
rectangle indicates the time window of STDP pairing application. Reward delays denote time between paring and reward onset.
Compare to Yagishita et al. (2014), their Figure 1O. F, The average reward achieved by the network increased quickly during learning
according to Equation 5 (mean over five independent trial runs; shaded area indicates SEM). G, Synaptic parameters kept changing
throughout the experiment in F. The magnitude of the change of the synaptic parameter vector � is shown (mean � SEM as in F;
Euclidean norm, normalized to the maximum value). The parameter change peaks at the onset of learning but remains high (larger than
80% of the maximum value) even when stable performance has been reached. H, Spiking activity of the network during learning.
Activities of 20 randomly selected input neurons and all MSNs are shown. Three salient input neurons (belonging to pools S1 or S2
in I) are highlighted. Most neurons have learnt to fire at a higher rate for the input pattern Pj that corresponds to the target area Tj to
which they are projecting. Bottom, Reward delivered to the network. I, Dynamics of network rewiring throughout learning. Snapshots
of network configurations for the times t indicated below the plots are shown. Gray lines indicate active connections between neurons;
connections that were not present at the preceding snapshot are highlighted in green. All output neurons and two subsets of input
neurons that fire strongly in pattern P1 or P2 are shown (pools S1 and S2, 20 neurons each). Numbers denote total counts of functional
connections between pools. The connectivity was initially dense and then rapidly restructured and became sparser. Rewiring took
place all the time throughout learning. J, Analysis of random exploration in task-irrelevant dimensions of the parameter space.
Projection of the parameter vector � to the two dPCA components that best explain the variance of the average reward. dpc1 explains
�99.9% of the reward variance (dpc2 and higher dimensions �0.1%). A single trajectory of the high-dimensional synaptic parameter
vector over 24 h of learning projected onto dpc1 and dpc2 is shown. Amplitude on the y-axis denotes the estimated average reward
(in fractions of the total maximum achievable reward). After converging to a region of high reward (movement mainly along dpc1),
network continues to explore task-irrelevant dimensions (movement mainly along dpc2).
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placed by a stochastic model. If the stochastic dynamics
of � is defined by local stochastic processes of the form of
Equation 5, as indicated in Figure 1E, the resulting sto-
chastic model for network plasticity will spend most of its
time in network configurations � where the posterior p����,
illustrated in Figure 1D, approximately reaches its maxi-
mal value. This provides on the statistical level a guaran-
tee of task performance, despite ongoing stochastic
dynamics of all the parameters �i.

Reward-based rewiring and synaptic plasticity as
policy sampling

We assume that all synapses and neurons in the net-
work scaffold N receive reward signals r(t) at certain times
t, corresponding for example to dopamine signals in the
brain (for a recent discussion of related experimental data,
see Collins and Frank, 2016). The expected discounted
reward V��� that occurs in the second term of Equation 5
is the expectation of the time integral over all future
rewards r(t), while discounting more remote rewards ex-
ponentially (Eq. 6). Figure 1B shows a hypothetical V���
landscape over two parameters �1,�2. The posterior p����
shown in Figure 1D is then proportional to the product of
V��� (Fig. 1B) and the prior (Fig. 1C).

The computational behavior of the network configuration,
i.e., the mapping of network inputs to network outputs that
is encoded by the parameter vector �, is referred to as a
policy in the context of reinforcement learning theory. The
parameters � (and therefore the policy) are gradually
changed through Equation 5 such that the expected dis-
counted reward V��� is increased: The parameter dynamics

follows the gradient of logV���, i.e.,
d�i

dt
� �




�i

logV���, where

� � 0 is a small learning rate. When the parameter dy-
namics is given solely by the second term in the paren-

thesis of Equation 5,




�i
logV���, we recover for the case �i

� 0 deterministic policy gradient learning (Williams, 1992;
Baxter and Bartlett, 2000; Peters and Schaal, 2006).

For a network scaffold N of spiking neurons, the deriv-

ative




�i
logV��� gives rise to synaptic updates at a syn-

apse i that are essentially given by the product of the
current reward signal r(t) and an eligibility trace that de-
pends on pre- or postsynaptic firing times (see Materials
and Methods, Synaptic dynamics for the reward-based
synaptic sampling model). Such plasticity rules have pre-
viously been proposed (Seung, 2003; Xie and Seung,
2004; Pfister et al., 2006; Florian, 2007; Izhikevich, 2007;
Legenstein et al., 2008; Urbanczik and Senn, 2009). For
nonspiking neural networks, a similar update rule was first
introduced by Williams and termed the REINFORCE rule
(Williams, 1992).

In contrast to policy gradient, reinforcement learning in the
presence of the stochastic last term in Equation 5 cannot
converge to any network configuration. Instead, the dynam-
ics of Equation 5 produces continuously changing network
configurations, with a preference for configurations that
both satisfy constraints from the prior pS��� and provide a
large expected reward V��� (Fig. 1D,F). Hence this type of
reinforcement learning samples continuously from a pos-

terior distribution of network configurations. This is rigor-
ously proven in Theorem 1 of Methods. We refer to this
reinforcement learning model as policy sampling, and to
the family of reward-based plasticity rules that are defined
by Equation 5 as reward-based synaptic sampling.

Another key difference to previous models for reward-
gated synaptic plasticity and policy gradient learning is,
apart from the stochastic last term of Equation 5, that the
deterministic first term of Equation 5 also contains a

reward-independent component




�i
logpS��� that arises

from a prior pS��� for network configurations. In our sim-
ulations we consider a simple Gaussian prior pS��� with
mean 0 that encodes a preference for sparse connectivity
(Eq. 17).

It is important that the dynamics of disconnected syn-
apses, i.e., of synapses i with �i � 0 or equivalently wi � 0,
does not depend on pre-/postsynaptic neural activity or
reward since nonfunctional synapses do not have access to
such information. This is automatically achieved through our

ansatz




�i
logV��� for the reward-dependent component in

Equation 5, since a simple derivation shows that it entails
that the factor wi appears in front of the term that depends
on pre- and postsynaptic activity (Eq. 15). Instead, the dy-
namics of �i depends for �i � 0 only on the prior and the
stochastic term dWi. This results in a distribution over wait-
ing times between downwards and upwards crossing of the
threshold �i � 0 that was found to be similar to the distribu-
tion of inter-event times of a Poisson point process (for a
detailed analysis, see Ding and Rangarajan, 2004). This
theoretical result suggest a simple approximation of the
dynamics of Equation 5 for currently nonfunctional synaptic
connections, where the process of Equation 5 is suspended
whenever �i becomes negative, and continued with �i � 0
after a waiting time that is drawn from an exponential distri-
bution. As in Deger et al. (2016), this can be realized by
letting a nonfunctional synapse become functional at any
discrete time step with some fixed probability (Poisson pro-
cess). We have compared in Figure 3C the resulting learning
dynamics of the network for this simple approximation with
that of the process defined by Equation 5.

Task-dependent routing of information through the
interaction of stochastic spine dynamics with
rewards

Experimental evidence about gating of spine dynamics
by reward signals in the form of dopamine is available for
the synaptic connections from the cortex to the entrance
stage of the basal ganglia, the medium spiny neurons
(MSNs) in the striatum (Yagishita et al., 2014). They report
that the volumes of their dendritic spines show significant
changes only when pre- and postsynaptic activity is paired
with precisely timed delivery of dopamine (Yagishita et al.,
2014; Fig. 1E–G,O). More precisely, an STDP pairing proto-
col followed by dopamine uncaging induced strong LTP in
synapses onto MSNs, whereas the same protocol without
dopamine uncaging lead only to a minor increase of synaptic
efficacies.

MSNs can be viewed as readouts from a large number
of cortical areas, that become specialized for particular
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Figure 3. Reward-based self-configuration and compensation capability of a recurrent neural network. A, Network scaffold and task
schematic. Symbol convention as in Figure 1A. A recurrent network scaffold of excitatory and inhibitory neurons (large blue circle);
a subset of excitatory neurons received input from afferent excitatory neurons (indicated by green shading). From the remaining
excitatory neurons, two pools D and U were randomly selected to control lever movement (blue shaded areas). Bottom inset,
Stereotypical movement that had to be generated to receive a reward. B, Spiking activity of the network at learning onset and after
22 h of learning. Activities of random subsets of neurons from all populations are shown (hidden: excitatory neurons of the recurrent
network, which are not in pool D or U). Bottom, Lever position inferred from the neural activity in pools D and U. Rewards are indicated
by red bars. Gray shaded areas indicate cue presentation. C, Task performance quantified by the average time from cue presentation
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motor functions, e.g., movements of the hand or leg. We
asked whether reward gating of spine dynamics accord-
ing to the experimental data of Yagishita et al. (2014) can
explain such task dependent specialization of MSNs.
More concretely, we asked whether it can achieve that
two different distributed activity patterns P1, P2 of up-
stream neurons in the cortex get routed to two different
ensembles of MSNs, and thereby to two different down-
stream targets T1 and T2 of these MSNs (Fig. 2A,H,I). We
assumed that for each upstream activity pattern Pj a
particular subset Sj of upstream neurons is most active,
j � 1, 2. Hence this routing task amounted to routing
synaptic input from Sj to those MSNs that project to
downstream neuron Tj.

We applied to all potential synaptic connections i from
upstream neurons to MSNs a learning rule according to
Equation 5, more precisely, the rule for reward-gated
STDP (Eqs. 15, 16, 18) that results from this general
framework. The parameters of the model were adapted to
qualitatively reproduce the results from Yagishita et al.
(2014), their Figure 1F,G, when the same STDP protocol
was applied to our model (Fig. 2D,E). The parameter
values are reported in Table 1. If not stated otherwise, we
applied these parameters in all following experiments. In
Role of the prior distribution (see Materials and Methods),
we further analyze the impact of different prior distribu-
tions on task performance and network connectivity.

Our simple model consisted of 20 inhibitory model
MSNs with lateral recurrent connections. These received
excitatory input from 200 input neurons. The synapses
from input neurons to model MSNs were subject to our
plasticity rule. Multiple connections were allowed be-
tween each pair of input neuron and MSNs (see Materials
and Methods). The MSNs were randomly divided into two
assemblies, each projecting exclusively to one of two
downstream target areas T1 and T2. Cortical input x�t� was
modeled as Poisson spike trains from the 200 input neu-
rons with instantaneous rates defined by two prototype
rate patterns P1 and P2 (Fig. 2H). The task was to learn

to activate T1-projecting neurons and to silence T2-
projecting neurons whenever pattern P1 was presented as
cortical input. For pattern P2, the activation should be
reversed: activate T2-projecting neurons and silence
those projecting to T1. This desired function was defined
through a reward signal r(t) that was proportional to the
ratio between the mean firing rate of MSNs projecting to
the desired target and that of MSNs projecting to the
nondesired target area (see Materials and Methods).

Figure 2H shows the firing activity and reward signal of
the network during segments of one simulation run. After
�80 min of simulated biological time, each group of
MSNs had learned to increase its firing rate when the
activity pattern Pj associated with its projection target Tj

was presented. Figure 2F shows the average reward
throughout learning. After 3 h of learning �82% of the
maximum reward was acquired on average, and this level
was maintained during prolonged learning.

Figure 2G shows that the parameter vector � kept
moving at almost the same speed even after a high pla-
teau of rewards had been reached. Hence these ongoing
parameter changes took place in dimensions that were
irrelevant for the reward-level.

Figure 2I provides snapshots of the underlying “dy-
namic connectome” (Rumpel and Triesch, 2016) at differ-
ent points of time. New synaptic connections that were
not present at the preceding snapshot are colored green.
One sees that the bulk of the connections maintained a
solution of the task to route inputs from S1 to target area
T1 and inputs from S2 to target area T2. But the identity
of these connections, a task-irrelevant dimension, kept
changing. In addition, the network always maintained
some connections to the currently undesired target area,
thereby providing the basis for a swift built-up of these
connections if these connections would suddenly also
become rewarded.

We further examine the exploration along task-irre-
levant dimensions in Figure 2J. Here, the high-dimen-
sional parameter vector over a training experiment of 24 h

continued
onset to movement completion. The network was able to solve this task in �1 s on average after �8 h of learning. A task change was
introduced at time 24 h (asterisk; function of D and U switched), which was quickly compensated by the network. Using a simplified
version of the learning rule, where the reintroduction of nonfunctional potential connections was approximated using exponentially
distributed waiting times (green), yielded similar results (see also E). If the connectome was kept fixed after the task change at 24 h,
performance was significantly worse (black). D, Trial-averaged network activity (top) and lever movements (bottom). Activity traces are
aligned to movement onsets (arrows); y-axis of trial-averaged activity plots are sorted by the time of highest firing rate within the
movement at various times during learning: sorting of the first and second plot is based on the activity at t � 0 h, third and fourth by
that at t � 22 h, fifth is resorted by the activity at t � 46 h. Network activity is clearly restructured through learning with particularly
stereotypical assemblies for sharp upward movements. Bottom: average lever movement (black) and 10 individual movements (gray).
E, Turnover of synaptic connections for the experiment shown in D; y-axis is clipped at 3,000. Turnover rate during the first 2 h was
around 12,000 synapses (�25%) and then decreased rapidly. Another increase in spine turnover rate can be observed after the task
change at time 24 h. F, Effect of forgetting due to parameter diffusion over 14 simulated days. Application of reward was stopped after
24 h when the network had learned to reliably solve the task. Parameters subsequently continue to evolve according to the SDE (Eq.
5). Onset of forgetting can be observed after day 6. A simple consolidation mechanism triggered after 4 days reliably prevents
forgetting. G, Histograms of time intervals between disappearance and reappearance of synapses (waiting times) for the exact (upper
plot) and approximate (lower plot) learning rule. H, Relative fraction of potential synaptic connections that were stably nonfunctional,
transiently decaying, transiently emerging or stably function during the relearning phase for the experiment shown in D. I, PCA of a
random subset of the parameters �i. The plot suggests continuing dynamics in task-irrelevant dimensions after the learning goal has
been reached (indicated by red color). When the function of the neuron pools U and D was switched after 24 h, the synaptic
parameters migrated to a new region. All plots show means over five independent runs (error bars: SEM).
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projected to the first two components of the demixed
principal component analysis (dPCA) that best explain the
variance of the average reward is shown (see Materials
and Methods; Kobak et al., 2016). The first component
(dpc1) explains �99.9% of the variance. Movement of the
parameter vector mainly takes place along this dimen-
sions during the first 4 h of learning. After the performance
has converged to a high value, exploration continues
along other components (dpc2, and higher components)
that explain �0.1% of the average reward variance.

This simulation experiment showed that reward-gated
spine dynamics as analyzed previously (Yagishita et al.,
2014) is sufficiently powerful from the functional perspec-
tive to rewire networks so that each signal is delivered to
its intended target.

A model for task-dependent self-configuration of a
recurrent network of excitatory and inhibitory
spiking neurons

We next asked, whether our simple integrated model
for reward-modulated rewiring and synaptic plasticity of
neural circuits according to Equation 5 could also explain
the emergence of specific computations in recurrent net-
works of spiking neurons. As paradigm for a specific
computational task we took a simplified version of the
task that mice learned to carry out in the experimental
setup of Peters et al. (2014). There a reward was given
whenever a lever was pressed within a given time window
indicated by an auditory cue. This task is particular suit-
able for our context, since spine turnover and changes of
network activity were continuously monitored in Peters
et al. (2014), while the animals learned this task.

We adapted the learning task of Peters et al. (2014) in
the following way for our model (Fig. 3A). The beginning of
a trial was indicated through the presentation of a cue
input pattern x�t�: a fixed, randomly generated rate pattern
for all 200 input neurons that lasted until the task was
completed, but at most 10 s. As network scaffold N, we
took a generic recurrent network of excitatory and inhib-
itory spiking neurons with connectivity parameters for
connections between excitatory and inhibitory neurons
according to data from layer 2/3 in mouse cortex (Aver-
mann et al., 2012). The network consisted of 60 excitatory
and 20 inhibitory neurons (Fig. 3A). Half of the excitatory
neurons could potentially receive synaptic connections
from the 200 excitatory input neurons. From the remaining
30 neurons, we randomly selected one pool D of 10
excitatory neurons to cause downwards movements of
the lever, and another pool U of 10 neurons for upwards
movements. We refer to the 40 excitatory neurons that
were not members of D or U as hidden neurons. All
excitatory synaptic connections from the external input
(cue) and between the 60 excitatory neurons (including
those in the pools D and U) in the network were subjected
to reward-based synaptic sampling.

To decode the lever position, we filtered the population
spikes of D and U with a smoothing kernel. The filtered
population spikes of D were then subtracted from those of
U to determine the lever position (see Methods for de-
tails). When the lever position crossed the threshold �5

after first crossing a lower threshold -5 (Fig. 3A,B, black
horizontal lines) within 10 s after cue onset a 400-ms
reward window was initiated during which r(t) was set to 1
(Fig. 3B, red vertical bars). Unsuccessful trials were
aborted after 10 s and no reward was delivered. After
each trial a brief holding phase of random length was
inserted, during which input neurons were set to a back-
ground input rate of 2 Hz.

Thus, the network had to learn without any guidance,
except for the reward in response to good performance,
to create after the onset of the cue first higher firing in pool
D, and then higher firing in pool U. This task was chal-
lenging, since the network had no information which
neurons belonged to pools D and U. Moreover, the syn-
apses did not “know” whether they connected to hidden
neurons, neurons within a pool, hidden neurons and pool-
neurons, or input neurons with other neurons. The plas-
ticity of all these different synapses was gated by the
same global reward signal. Since the pools D and U were
not able to receive direct synaptic connections from the
input neurons, the network also had to learn to commu-
nicate the presence of the cue pattern via disynaptic
connections from the input neurons to these pools.

Network responses before and after learning are shown
in Figure 3B. Initially, the rewarded goal was only reached
occasionally, while the turnover of synaptic connections
(number of synaptic connections that became functional
or became nonfunctional in a time window of 2 h) re-
mained very high (Fig. 3E). After �3 h, performance im-
proved drastically (Fig. 3C), and simultaneously the
turnover of synaptic connections slowed down (Fig. 3E).
After learning for 8 h, the network was able to solve the
task in most of the trials, and the average trial duration
(movement completion time) had decreased to �1 s (851 �
46 ms; Fig. 3C). Improved performance was accompanied
by more stereotyped network activity and lever movement
patterns as in the experimental data of Peters et al. (2014):
compare our Figure 3D with Figures 1B and 2J of Peters
et al. (2014). In Figure 3D, we show the trial-averaged
activity of the 60 excitatory neurons before and after
learning for 22 h. The neurons are sorted in the first two
plots of Figure 3D by the time of maximum activity after
movement onset times before learning, and in the 3rd plot
resorted according to times of maximum activity after 22
h of learning (see Materials and Methods). These plots
show that reward-based learning led to a restructuring of
the network activity: an assembly of neurons emerged
that controlled a sharp upwards movement. Also, less
background activity was observed after 22 h of learning,
in particular for neurons with early activity peaks. Fig. 3D,
lower panels, shows the average lever movement and 10
individual movement traces at the beginning and after 22
h of learning. Similar as in Peters et al. (2014), the lever
movements became more stereotyped during learning,
featuring a sharp upwards movement at cue onset fol-
lowed by a slower downwards movement in preparation
for the next trial.

The synaptic parameter drifts due to stochastic differ-
ential Equation 5 inherently lead to forgetting. In Figure
3F, we tested this effect by running a very long experi-
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ment over 14 simulated days. After 24 h, when the net-
work had learned to reliably solve the task, we stopped
the application of the reward but continued the synaptic
dynamics. We found that the task could be reliably re-
called for �5 d. Onset of forgetting was observed after
day 6. We wondered whether a simple consolidation
mechanism could prevent forgetting in our model. To test
this, we used the prior distribution pS��� to stabilize the
synaptic parameters. After four simulated days we set the
mean of the before the current value of the synaptic
parameters and reduced the variance, while continuing
the synaptic dynamics with the same temperature. A
similar mechanism for synaptic consolidation has been
recently suggested previously (Kirkpatrick et al., 2017).
This mechanism reliably prevents forgetting in our model
throughout the simulation time of 14 d. We conclude that
the effect of forgetting is quite mild in our model and can
be further suppressed by a consolidation mechanism that
stabilizes synapses on longer timescales.

Next, we tested whether similar results could be
achieved with a simplified version of the stochastic syn-
apse dynamics while a potential synaptic connection i is
nonfunctional, i.e., �i � 0. Equation 5 defines for such
nonfunctional synapses an Ornstein–Uhlenbeck process,
which yields a heavy-tailed distribution for the waiting
time until reappearance (Fig. 3G, left). We tested whether
similar learning performance can be achieved if one ap-
proximates the distribution by an exponential distribution,
for which we chose a mean of 12 h. The small distance
between the blue and green curve in Figure 3C shows that
this is in fact the case for the overall computational task
that includes a task switch at 24 h that we describe below.
Compensation for the task switch was slightly slower
when the approximating exponential distribution was
used, but the task performance converged to the same
result as for the exact rule. This holds despite the fact that
the approximating exponential distribution is less heavy
tailed (Fig. 3G, right). Together, these results show that
rewiring and synaptic plasticity according to Equation 5
yields self-organization of a generic recurrent network of
spiking neurons so that it can control an arbitrarily chosen
motor control task.

Compensation for network perturbations
We wondered whether this model for the task of Peters

et al. (2014) would in addition be able to compensate for
a drastic change in the task, an extra challenge that had
not been considered in the experiments of Peters et al.
(2014). To test this, we suddenly interchanged the actions
that were triggered by the pools D and U at 24 h after
learning had started. D now caused upwards and U down-
wards lever movement.

We found that our model compensated immediately
(see the faster movement in the parameter space de-
picted in Fig. 3H) for this perturbation and reached after
�8 h a similar performance level as before (Fig. 3C). The
compensation was accompanied by a substantial in-
crease in the turnover of synaptic connections (Fig. 3E).
This observation is similar to findings from experiments
that involve learning a new task (Xu et al., 2009). The

turnover rate also remained slightly elevated during the
subsequent learning period. Furthermore, a new assem-
bly of neurons emerged that now triggered a sharp onset
of activity in the pool D (compare the activity neural traces
t � 22 h and t � 46 h; Fig. 3D). Another experimentally
observed phenomenon that occurred in our model were
drifts of neural codes, which happened also during phases
of the experiment without perturbations. Despite these
drifts, the task performance stayed constant, similar to
experimental data in Driscoll et al. (2017 see Relative
contributions of spontaneous and activity-dependent
synaptic processes).

In Figure 3H, we further analyzed the profile of synaptic
turnover for the different populations of the network scaf-
fold in Figure 3A. The synaptic parameters were mea-
sured immediately before the task change at 24 h and
compared to the connectivity after compensation at 48 h
for the experiment shown in Figure 3C, blue. Most syn-
apses (66–75%) were nonfunctional before and after the
task change (stable nonfunctional). Approximately 20% of
the synapses changed their behavior and either became
functional or nonfunctional. Most prominently a large frac-
tion (21.9%) of the synapses from hidden neurons to U
became nonfunctional while only few (5.9%) new connec-
tions were introduced. The connections from hidden to D
showed the opposite behavior. This modification of the
network connectome reflects the requirement to reliably
route information about the presence of the cue pattern
encoded in the activity of hidden neurons to the pool D
(and not to U) to initiate the lever movement after the task
change.

If rewiring was disabled after the task change at 24 h
the compensation was significantly delayed and overall
performance declined (Fig. 3C, black curve). Here, we
disallowed any turnover of potential synaptic connections
such that the connectivity remained the same after 24 h.
This result suggests that rewiring is necessary for adapt-
ing to the task change. We then asked whether rewiring is
also necessary for the initial learning of the task. To
answer this question, we performed a simulation where
the network connectivity was fixed from the beginning.
We found that initial task performance was not signifi-
cantly worse compared to the setup with rewiring. This
indicates that at least for this task, rewiring is necessary
for compensating task switches, but not for initial task
learning. We expect however that this is not the case for
more complex tasks, as indicated by a recent study that
used artificial neural networks (Bellec et al., 2017).

A structural difference between stochastic learning
models such as policy sampling and learning models that
focus on convergence of parameters to a (locally) optimal
setting becomes apparent when one tracks the temporal
evolution of the network parameters � over larger periods
of time during the previously discussed learning process
(Fig. 3I). Although performance no longer improved after 5
h, both network connectivity and parameters kept chang-
ing in task-irrelevant dimensions. For Figure 3I, we ran-
domly selected 5% of the roughly 47,000 parameters �i

and plotted the first three principal components of their
dynamics. The task change after 24 h caused the param-
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eter vector � to migrate to a new region within �8 h of
continuing learning (see Materials and Methods the pro-
jected parameter dynamics is further analyzed). Again, we
observe that policy sampling keeps exploring different
equally good solutions after the learning process has
reached stable performance.

To further investigate the impact of the temperature
parameter T on the magnitude of parameter changes, we
measured the amplitudes of parameter changes for dif-
ferent values of T. We recorded the synaptic parameters
every 20 min and measured the average Euclidean dis-
tance between successive snapshots of the parameter
vectors. We found that a temperature of T � 0.1 increased
the amplitude of parameter changes by around 150%
compared to the case of T � 0. A temperature of T � 0.5
resulted in an increase of around 400%. Since this in-
crease is induced by additional noise on parameter
changes, it can be attributed to enhanced exploration in
parameters space.

Role of the prior distribution
Next, we investigated the role of the prior distribution

and initial network configuration for the experiment in
Figure 3. Figure 4 shows the performance and total num-
ber of active connections for different parameter settings.
As in the previous experiments, we used in Figure 4A,B a
Gaussian prior distribution with mean � and variance 2.
The preferred number of active connections changes with
the prior, i.e., priors with smaller variance and low mean
lead to sparser networks. Convergence to this preferred
number can take �24 h depending on the initial connec-
tivity. Different parameter settings can therefore lead to
quite different network connectivities at a similar task
performance. A too strong prior (e.g., � � –2,  � 0.5)
leads to very sparse networks, thereby preventing learn-
ing.

In addition to the Gaussian prior distribution we tested
a Laplace prior of the form pS��i� � 1/2bexp � � ��i�/b�, with
zero mean and scale parameter b � 0 (Fig. 4C). This leads
to a constant negative drift term in the parameter dynam-
ics Equation 5, i.e.,





�i
log pS��� � �1/b for active synaptic

connections. A similar mechanism for synaptic weight
decay was used previously (Rokni et al., 2007). Conver-
gence to sparse connectivities is faster with this prior and
good task performance can be reached by networks with
less active connections compared to the Gaussian prior.
For example, the network with b � 2 solved the task in
0.66 s on average using roughly 5700 active connections,
whereas the best solution for the Gaussian prior was 0.83
s on average with typically �7500 active connections.
Again, for the Laplace prior, parameters that enforced too
sparse networks degraded task performance.

We next investigated whether a scaling of the amplitude
of the reward signal r(t) while keeping the same prior has
an influence on network performance. we introduced a
scaling constant cr that can be used to modulate the
amplitude of the reward signal (cr � 1 corresponds to the
setting in Fig. 3; for details, see Materials and Methods).
We repeated the experiment from Figure 3 (including the
task change after 24 h) with cr ranging between 0.1 and

10. For values of cr smaller than 1 the effect of the second
term of the synaptic dynamics (Eq. 5) is scaled down
which results in an overall reduced learning speed and a
stronger influence of the prior. Interestingly however, in all
cases the network was able to compensate for the task
change after 48 h of simulated biological time (see Fig.
4D, movement completion times of 983 � 63, 894 � 41,
820 � 45, 743 � 25, and 1181 � 42 ms for cr � 0.1, 0.5,
1,5, and 10, respectively). In the next section we further
investigate the role of the temperature T that controls the
amount of noise in the synaptic dynamics.

Relative contributions of spontaneous and activity-
dependent synaptic processes

Dvorkin and Ziv (2016) analyzed the correlation of sizes
of postsynaptic densities and spine volumes for synapses
that shared the same pre- and postsynaptic neuron,
called commonly innervated (CI) synapses, and also for
synapses that shared in addition the same dendrite (CISD).
Activity-dependent rules for synaptic plasticity, such as
Hebbian or STDP rules, on which previous models for
network plasticity relied, suggest that the strength of CI
and especially CISD synapses should be highly correlated.
But both data from ex vivo (Kasthuri et al., 2015) and
neural circuits in culture (Dvorkin and Ziv, 2016) show that
postsynaptic density sizes and spine volumes of CISD

synapses are only weakly correlated, with correlation co-
efficients between 0.23 and 0.34. Thus even with a con-
servative estimate that corrects for possible influences of
their experimental procedure, �50% of the observed syn-
aptic strength appears to result from activity-independent
stochastic processes (Dvorkin and Ziv, 2016, their Fig.
8E); Bartol et al., (2015) had previously found larger cor-
relations of synaptic strengths of CISD synapses for a
smaller data set (based on 17 CISD pairs instead of the 72
pairs, 10 triplets, and two quadruplets in the ex vivo data
from Kasthuri et al., 2015), but the spine volumes differed
in these pairs also on average by a factor of around 2.

We asked how such a strong contribution of activity-
independent synaptic dynamics affects network learning
capabilities, such as the ones that were examined in
Figure 3. We were able to carry out this test because
many synaptic connections between neurons that were
formed in our model consisted of more than one synapse.
We classified pairs of synapses that had the same pre-
and postsynaptic neuron as CI synapses (one could also
call them CISD synapses, since the neuron model did not
have different dendrites), and pairs with the same post-
synaptic but different presynaptic neurons as non-CI syn-
apses. Example traces of synaptic weights for CI and
non-CI synapse pairs of our network model from Figure 3
are shown in Figure 5A,B. CI pairs were found to be more
strongly correlated than non-CI pairs (Fig. 5C). However,
also the correlation of CI pairs was quite low and varied
with the temperature parameter T in Equation 5 (Fig. 5D).
The correlation was measured in terms of the Pearson
correlation (covariance of synapse pairs normalized be-
tween -1 and 1).

Since the correlation of CI pairs in our model depends
on the temperate T, we analyzed the model of Figure 3 for
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different temperatures (the temperature had been fixed
at T � 0.1 throughout the experiments for Fig. 3). In Figure
5D, the Pearson’s correlation coefficient for CI synapses
is plotted together with the average performance
achieved on the task of Figure 3D–H (24 h after the task
switch) for networks with different temperatures T. The

best performing temperature region for the task (0.01 � T
� 0.5) roughly coincided with the region of experimentally
measured values of Pearson’s correlation for CI syn-
apses. Figure 5E shows the correlation of 100 CI synapse
pairs that emerged from a run with T � 0.5. We found a
value of r � 0.239 in this case. This value is in the order of

Figure 4. Impact of the prior distribution and reward amplitude on the synaptic dynamics. Task performance and total number of
active synaptic connections throughout learning for different prior distributions and distribution of initial synaptic parameters. Synaptic
parameters were initially drawn from a Gaussian distribution with mean �init and  � 0.5. Comparison of the task performance and
number of active synapses for the parameter set used in Figure 3 (A) and Gaussian prior distribution with different parameters (B). C,
In addition, a Laplace prior with different parameters was tested. The prior distribution and the initial synaptic parameters had a
marked effect on the task performance and overall network connectivity. D, Impact of the reward amplitude on the synaptic dynamics.
Task performance is here measured for different values of cr to scale the amplitude of the reward signal. Dashed lines denote the task
switch as in Figure 3.
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the lowest experimentally found correlation coefficients in
Dvorkin and Ziv (2016; both in culture and ex vivo, see
their Figure 8A–D). The speed of compensation and the
overall replenishing of synapses was strongly dependent
on the temperature T (Fig. 5G). For T � 0, a complete

compensation for the task changes was prevented (per-
formance converged to 2.5 � 0.2 s during a longer run of
96 h). The temperature region 0.01 � T � 0.5, which is
consistent with experimentally measured Pearson’s cor-
relation for CI synapses, leads to fastest task relearning,

Figure 5. Contribution of spontaneous and neural activity-dependent processes to synaptic dynamics. A, B, Evolution of synaptic
weights wi plotted against time for a pair of CI synapses in a, and non-CI synapses in B, for temperature T � 0.5. C, Pearson’s
correlation coefficient computed between synaptic weights of CI and non-CI synapses of a network with T � 0.5 after 48 h of learning
as in Figure 3C,D. CI synapses were only weakly, but significantly stronger correlated than non-CI synapses. D, Impact of T on
correlation of CI synapses (x-axis) and learning performance (y-axis). Each dot represents averaged data for one particular
temperature value, indicated by the color. Values for T were 1.0, 0.75, 0.5, 0.35, 0.2, 0.15, 0.1, 0.01, 0.001, and 0.0. These values are
proportional to the small vertical bars above the color bar. The performance (measured in movement completion time) is measured
after 48 h for the learning experiment as in Figure 3C,D, where the network changed completely after 24 h. Good performance was
achieved for a range of temperature values between 0.01 and 0.5. Too low (�0.01) or too high (�0.5) values impaired learning. Means
� SEM over five independent trials are shown. E, Synaptic weights of 100 pairs of CI synapses that emerged from a run with T � 0.5.
Pearson’s correlation is 0.239, comparable to the experimental data in Dvorkin and Ziv (2016), their Figure 8A–D. F, Estimated
contributions of activity history dependent (green), spontaneous synapse-autonomous (blue) and neuron-wide (gray) processes to the
synaptic dynamics for a run with T � 0.15. The resulting fractions are very similar to those in the experimental data, see Dvorkin and
Ziv (2016), their Figure 8E. G, Evolution of learning performance and total number of active synaptic connections for different
temperatures as in D. Compensation for task perturbation was significantly faster with higher temperatures. Temperatures larger than
0.5 prevented compensation. Overall number of synapses was decreasing for temperatures T � 0.1 and increasing for T � 0.1.
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allowing for a compensation within �12 h of exposure.
For T � 0.15, we found the best compensation capabili-
ties and the closest match to experimentally measured
correlations when the results of Dvorkin and Ziv (2016)
were corrected for measurement limitations: a correlation
coefficient of r � 0.46 � 0.034 for CI synapses and 0.08
�0.015 for non-CI synapse pairs (mean � SEM over five
trials, CI synapses were significantly stronger correlated
than non-CI, p � 0.005 in all trials; statistical significance
values based on two-tailed Mann–Whitney U test).

Dvorkin and Ziv (2016) further analyzed the ratio of
contributions from different processes to the measured
synaptic dynamics. They analyzed the contribution of neural
activity history dependent processes, which amount for
36% of synapse dynamics in their data, and that of neuron-
wide processes that were not specific to presynaptic activ-
ity, but specific to the activity of the postsynaptic neuron
(8%). Spontaneous synapse-autonomous processes were
found to explain 56% of the observed dynamics (see Dvor-
kin and Ziv, 2016, their Fig. 8E). The results from our model
with T � 0.15, which are plotted in Figure 5F, match these
experimentally found values quite well. Together, we found
that the results of Dvorkin and Ziv (2016) are best explained
by our model for a temperature parameter between T � 0.5
(corresponding to their lowest measured correlation coeffi-
cient) and T � 0.15 (corresponding to their most conserva-
tive estimate). This range of parameters coincided with well-
functioning learning behavior in our model, which included a
test of compensation capability for a change of the task after
24 h (Fig. 5D). Hence, our model suggests that a large
component of stochastic synapse-autonomous processes,
as it occurs in the data, supports efficient network learning
and compensation for changes in the task.

Discussion
Recent experimental data (Nagaoka et al., 2016; see

also Dvorkin and Ziv, 2016, where in their Figure 8 also
mouse brain data from Kasthuri et al., 2015 were reana-
lyzed) suggest that common models for learning in neural
networks of the brain need to be revised, since synapses
are subject to powerful processes that do not depend on
pre- and postsynaptic neural activity. In addition, experi-
mentally found network rewiring has so far not been
integrated into models for reward-gated network plastic-
ity. We have presented a theoretical framework that en-
ables us to investigate and understand reward-based
network rewiring and synaptic plasticity in the context of
the experimentally found high level of activity-inde-
pendent fluctuations of synaptic connectivity and synap-
tic strength. We have shown that the analysis of the
stationary distribution of network configurations, in par-
ticular the Fokker–Planck equation from theoretical phys-
ics, allows us to understand how large numbers of local
stochastic processes at different synapses can orches-
trate global goal-directed network learning. This approach
provides a new normative model for reward-gated net-
work plasticity.

We have shown in Figure 2 that the resulting model is
consistent with experimental data on dopamine-depen-
dent spine dynamics reported in Yagishita et al. (2014)

and that it provides an understanding how these local
stochastic processes can produce function-oriented cortical-
striatal connectivity. We have shown in Figure 3 that this
model also elucidates reward-based self-organization of
generic recurrent neural networks for a given computa-
tional task. We chose as benchmark task the production
of a specific motor output in response to a cue, like in the
experiments of Peters et al. (2014). Similarly as reported in
Peters et al. (2014), the network connectivity and dynam-
ics reorganized itself in our model, just driven by stochas-
tic processes and rewards for successful task completion,
and reached a high level of performance. Furthermore, it
maintained this computational function despite continu-
ously ongoing further rewiring and network plasticity. A
quantitative analysis of the impact of stochasticity on this
process has shown in Figure 5 that the network learns
best when the component of synaptic plasticity that does
not depend on neural activity is fairly large, as large as
reported in the experimental data of Kasthuri et al. (2015);
Dvorkin and Ziv (2016).

Our approach is based on experimental data for the
biological implementation level of network plasticity, i.e.,
for the lowest level of the Marr hierarchy of models (Marr
and Poggio, 1976). However, we have shown that these
experimental data have significant implications for under-
standing network plasticity on the top level (“what is the
functional goal?”) and the intermediate algorithmic level
(“what is the underlying algorithm?”) of the Marr hierarchy.
They suggest for the top level that the goal of network
plasticity is to evaluate a posterior distribution of network
configurations. This posterior integrates functional de-
mands formalized by the expected discounted reward
V��� with a prior pS��� in a multiplicative manner p���� �
pS��� � V���. Priors can represent structural constraints
as well as results of preceding learning experiences and
innate programs. Since our model samples from a distri-
bution proportional to p����1/T, for T � 1, our model sug-
gests to view reward-gated network plasticity as Bayesian
inference over network configurations on a slow time
scale (for details, see Materials and Methods, Probabilis-
tic framework for reward-modulated learning). For a tem-
perature parameter T 	 1, the model samples from a
tempered version of the posterior, which generalizes the
basic Bayesian approach. This Bayesian perspective also
creates a link to previous work on Bayesian reinforcement
learning (Vlassis et al., 2012; Rawlik et al., 2013). We note
however that we do not consider parameter adaptation in
our framework to implement full Bayesian learning, as
there is no integration over the posterior parameter set-
tings to obtain network outputs (or actions in a reinforce-
ment learning context). Even if one would do that, it would
be of little practical use, since the sampling would be
much too slow in any but the simplest networks. The
experimental data suggest for the intermediate algorith-
mic level of the Marr hierarchy a strong reliance on sto-
chastic search (“synaptic sampling”). The essence of the
resulting model for reward-gated network learning is illus-
trated in Figure 1. The traditional view of deterministic
gradient ascent (policy gradient) in the landscape (Fig. 1B)
of reward expectation is first modified through the
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integration of a prior (Fig. 1C), and then through the
replacement of gradient ascent by continuously ongoing
stochastic sampling (policy sampling) from the posterior
distribution of Figure 1D, which is illustrated in Figure
1E,F.

This model explains a number of experimental data that
had not been addressed by previous models. Continu-
ously ongoing stochastic sampling of network configura-
tions suggests that synaptic connectivity does not
converge to a fixed point solution but rather undergoes
permanent modifications (Fig. 3H,I). This behavior is com-
patible with reports of continuously ongoing spine dy-
namics and axonal sprouting even in the adult brain
(Holtmaat et al., 2005; Stettler et al., 2006; Yasumatsu
et al., 2008; Holtmaat and Svoboda, 2009; Yamahachi
et al., 2009; Loewenstein et al., 2011, 2015). Recently
proposed models to maintain stable network function in
the presence of highly volatile spine dynamics suggest
that subsets of connections are selectively stabilized to
support network function (Berry and Nedivi, 2017; Mon-
gillo et al., 2017). Our result shows that high task perfor-
mance can be reached in spiking neural networks in the
presence of high volatility of all synapses. Still our model
can be extended with a process that selectively stabilizes
synapses on longer timescales as demonstrated in Figure
3F. In addition, our model predicts that not only synaptic
spine dynamics but also changes of synaptic efficacies
show a large stochastic component on all timescales.

The continuously ongoing parameter changes induce
continuously ongoing changes in the assembly se-
quences that accompany and control a motor response
(Fig. 3D). These changes do not impair the performance of
the network, but rather enable the network to explore
different but equally good solutions when exposed for
many hours to the same task (Fig. 3I). Such continuously
ongoing drifts of neural codes in functionally less relevant
dimensions have already been observed experimentally in
some brain areas (Ziv et al., 2013; Driscoll et al., 2017).
Our model also suggests that the same computational
function is realized by the same neural circuit in different
individuals with drastically different parameters, a feature
which has already been addressed (Prinz et al., 2004;
Grashow et al., 2010; Tang et al., 2010; Marder, 2011). In
fact, this degeneracy of neural circuits is thought to be an
important property of biological neural networks (Prinz
et al., 2004; Marder and Goaillard, 2006; Marder, 2011).
Our model networks automatically compensate for distur-
bances by moving their continuously ongoing sampling of
network configurations to a new region of the parameter
space, as illustrated by the response to the disturbance
marked by an asterisk in Figure 3I.

Our theoretical framework is consistent with experi-
mental data that showed drifts of neural representations
in motor learning (Rokni et al., 2007). In that article, a
stochastic plasticity model was proposed that is structur-
ally similar to our model. It was shown in computer sim-
ulations that a simple feed forward rate-based neural
network is able to retain stable functionality despite of
such stochastic parameter changes. The authors hypoth-
esized that this is the case because network parameters

move on a submanifold in parameter space with constant
performance. Our theoretical framework provides a math-
ematical justification for their hypothesis in general, but
also refines these statements. It shows that the network
samples network configurations (including the rewiring of
connections that was not considered in Rokni et al., 2007)
from a well-defined distribution. The manifold that is vis-
ited during the learning process is given by the high-
probability regions of this distribution, but in principle,
also suboptimal regions could be visited. Such subopti-
mal regions are however highly unlikely if the parameter
space is overcomplete, i.e., if large volumes of the param-
eter space lead to good performance. Hence, in compar-
ison with Rokni et al. (2007), this work provides the
following features: (1) it provides a quantitative mathemat-
ical framework for the qualitative descriptions in Rokni
et al. (2007) that allows a rigorous understanding of the
plasticity processes; (2) it includes synaptic rewiring, re-
producing experimental data on this topic and providing a
hypothesis on its computational role; and (3), it is able to
tackle the case of recurrent spiking neural networks as
compared to feed forward rate models.

We have shown in Figure 3F that despite these perma-
nent parameter drifts, the task performance in our model
remains stable for many simulated days if reward delivery
is stopped. At the same time, the model is also able to
continuously adapt to changes in the task (Fig. 3C–E).
These results suggest that our model keeps a quite good
balance between stability and plasticity (Abraham and
Robins, 2005), which has been shown previously to be
one important functional aspect of network rewiring
(Fauth et al., 2015). Furthermore, we have shown in Figure
3F that the structural priors over synaptic parameters can
be used to stabilize synaptic parameters similar to previ-
ous models of synaptic consolidation (Fusi et al., 2005;
Kirkpatrick et al., 2017). In addition, more complex prior
distributions over multiple synapses could be used to
model homeostatic processes and clustering of syn-
apses. The latter has been suggested as a mechanism to
tackle the stability-plasticity dilemma (Fares and Stepan-
yants, 2009).

In conclusion the mathematical framework presented in
this article provides a principled way of understanding the
complex interplay of deterministic and stochastic pro-
cesses that underlie the implementation of goal-directed
learning in neural circuits of the brain. It also offers a
solution to the problem how reliable network computa-
tions can be achieved with a dynamic connectome (Rum-
pel and Triesch, 2016). We have argued that the stationary
distribution of the high-dimensional parameter vector �
that results from large numbers of local stochastic pro-
cesses at the synapses provides a time-invariant per-
spective of salient properties of a network. Standard
reward-gated plasticity rules can achieve that this station-
ary distribution has most of its mass on regions in the
parameter space that provide good network performance.
The stochastic component of synaptic dynamics can flat-
ten or sharpen the resulting stationary distribution, de-
pending on whether the scaling parameter T (temperature)
of the stochastic component is larger or smaller than 1. A
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functional benefit of this stochastic component is that the
network keeps exploring its parameter space even after a
well-performing region has been found, providing one
mechanism to tackle the exploration-exploitation di-
lemma (Fig. 2J). This enables the network to migrate
quickly and automatically to a better performing region
when the network or task changes. We found in the case
of the motor learning task of Figure 3 that a temperature
T around 0.15, which lies in the same range as related
experimental data (Fig. 5D), suffices to provide this func-
tionally important compensation capability. The same
mathematical framework can also be applied to artificial
neural networks, leading to a novel brain-inspired learning
algorithm that uses rewiring to train deep networks under
the constraint of very sparse connectivity (Bellec et al.,
2017).

Materials and Methods
Probabilistic framework for reward-modulated
learning

The classical goal of reinforcement learning is to max-
imize the expected future discounted reward V��� given
by

V(�) � 
 �
0

�

e�
�

�e
r(�)d��

p(r|�)
. (6)

In Equation 6, we integrate over all future rewards r(�),
while discounting more remote rewards exponentially
with a discount rate �e, which for simplicity was set equal
to 1 s in this paper. We find (Eq. 15) that this time constant
�e is immediately related to the experimentally studied
time window or eligibility trace for the influence of dopa-
mine on synaptic plasticity (Yagishita et al., 2014). This
property is true in general for reward-based learning rules
that make use of eligibility traces and is not unique to our
model. The expectation in Equation 6 is taken with respect to
the distribution p�r��� over sequences r � �r���, � � 0� of future
rewards that result from the given set of synaptic param-
eters �. The stochasticity of the reward sequence r arises
from stochastic network inputs, stochastic network re-
sponses, and stochastic reward delivery. The resulting
distribution p�r��� of reward sequences r for the given
parameters � can also include influences of network initial
conditions by assuming some distribution over these ini-
tial conditions. Network initial conditions include for ex-
ample initial values of neuron membrane voltages and
refractory states of neurons. The role of initial conditions
on network learning is further discussed below when we
consider the online learning scenario (see Reward-
modulated synaptic plasticity approximates gradient as-
cent on the expected discounted reward).

There exists a close relationship between reinforcement
learning and Bayesian inference (Botvinick and Toussaint,
2012; Vlassis et al., 2012; Rawlik et al., 2013). To make
this relationship apparent, we define our model for
reward-gated network plasticity by introducing a binary
random variable vb that represents the currently expected
future discounted reward in a probabilistic manner. The
likelihood pN�vb � 1��� is determined in this theoretical

framework by the expected future discounted reward
Equation 6 that is achieved by a network with parameter
set � (Rawlik et al., 2013):

pN�vb � 1���  1
ZV

V(�) , (7)

where ZV denotes a constant, that assures that Equation
7 is a correctly normalized probability distribution. Thus
reward-based network optimization can be formalized as
maximizing the likelihood pN�vb � 1��� with respect to the
network configuration �. Structural constraints can be
integrated into a stochastic model for network plasticity
through a prior pS��� over network configurations. Hence
reward-gated network optimization amounts from a the-
oretical perspective to learning of the posterior distribu-
tion p����vb � 1�, which by Bayes’ rule is defined (up to
normalization) by pS���·pN�vb � 1���. Therefore, the learn-
ing goal can be formalized in a compact form as evaluat-
ing the posterior distribution p����vb � 1� of network
parameters � under the constraint that the abstract learn-
ing goal vb � 1 is achieved.

More generally, one is often interested in a tempered
version of the posterior

pT
� (�)  1

Z
p�(��vb � 1)

1

T , (8)

where Z is a suitable normalization constant and T � 0 is
the temperature parameter that controls the “sharpness”
of pT

� ���. For T � 1, pT
� ��� is given by the original posterior,

T � 1 emphasizes parameter values with high probability
in the posterior, while T � 1 leads to parameter distribu-
tions pT

� ��� which are more uniformly distributed than the
posterior.

Analysis of policy sampling
Here, we prove that the stochastic parameter dynamics

Equation 5 samples from the tempered posterior distribu-
tion pT

� ��� given in Equation 8. In Results, we suppressed
time-dependencies to simplify notation. We reiterate
Equation 3 with explicit time-dependencies of parame-
ters:

d�i(t) � �




�i
log p�(��vb � 1)�

�(t)
dt 	 �2�TdWi , (9)

where the notation




�i
f������t� denotes the derivative of f��� with

respect to �i evaluated at the current parameter values
��t�. By Bayes’ rule, the derivative of the log posterior is
the sum of the derivatives of the log prior and the log
likelihood:




�i

logp�(��vb � 1) �




�i
logpS(�)

	




�i
logpN(vb � 1��) �




�i

logpS(�) 	




�i
logV(�) ,

which allows us to rewrite Equation 9 as
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d�i(t) � �� 


�i

log pS(�)��(t) 	




�i
log V(�)��(t)	dt

	 �2�TdWi , (10)

which is identical to the form of Equation 5, where the
contributions of pS��� and V��� are given explicitly.

The fundamental property of the synaptic sampling
dynamics Equation 9 is formalized in Theorem 1 and
proven below. Before we state the theorem, we briefly
discuss its statement in simple terms. Consider some
initial parameter setting ��0�. Over time, the parameters
change according to the dynamics (9). Since the dynam-
ics include a noise term, the exact value of the parameters
��t� at some time t � 0 cannot be determined. However, it
is possible to describe the exact distribution of parameters
for each time t. We denote this distribution by pFP��, t�,
where the FP subscript stands for Fokker–Planck, since
the evolution of this distribution is described by the Fok-
ker–Planck equation (Eq. 11) given below. Note that we
make the dependence of this distribution on time explicit
in this notation. It can be shown that for the dynamics of
Equation 11, pFP��, t� converges to a well-defined and
unique stationary distribution in the limit of large t. Of
practical relevance is the so-called burn-in time after
which the distribution of parameters is very close to the
stationary distribution. Note that the parameters will con-
tinue to change. Nevertheless, at any time t after the burn
in, we can expect the parameter vector ��t� to be situated
at a particular value with the probability (density) given by
the stationary distribution (Fig. 1D,F). Any distribution that
is invariant under the parameter dynamics is a stationary
distribution. Here, invariance means: when one starts with
an invariant distribution over parameters in the Fokker–
Planck equation, the dynamics are such that this distribu-
tion will be kept forever (we will use this below in the proof
of Theorem 1). Theorem 1 states that the parameter dy-
namics leaves pT

� ��� given in Equation 8 invariant, i.e., it is
a stationary distribution of the network parameters. Note
that in general, the stationary distribution may not be
uniquely defined. That is, it could happen that for two
different initial parameter values, the network reaches two
different stationary distributions. Theorem 1 further states
that for the synaptic sampling dynamics, the stationary
distribution is unique, i.e., the distribution pT

� ��� is reached
from any initial parameter setting when the conditions of
the theorem apply. We now state Theorem 1 formally. To
simplify notation, we drop in the following the explicit time
dependence of the synaptic parameters �.

Theorem 1. Let p����vb � 1� be a strictly positive, contin-
uous probability distribution over parameters �, twice con-
tinuously differentiable with respect to �, and let � � 0. Then
the set of stochastic differential Equation 9 leaves the dis-
tribution pT

� ��� (8) invariant. Furthermore, pT
� ��� is the unique

stationary distribution of the sampling dynamics.
The proof is analogous to the one provided in Kappel et al.
(2015). The stochastic differential equation Equation 9
translates into a Fokker–Planck equation (Gardiner, 2004)
that describes the evolution of the distribution over param-
eters �




 t

pFP(�, t) � �
i

�




�i
�� 



�i
log p�(��vb � 1)	

pFP(�, t) 	

2


�i
2��TpFP(�, t)� , (11)

where pFP��, t� denotes the distribution over network pa-
rameters at time t. To show that pT

� ��� leaves the distribu-
tion invariant, we have to show that 
 / 
tpFP��, t� � 0 (i.e.,
pFP��, t� does not change) if we set pFP��, t� to pT

� ��� on the
right hand-side of Equation 11. Plugging in the presumed
stationary distribution pT

� ��� for pFP��, t� on the right hand-
side of Equation 11, one obtains





 t
pFP(�, t) � �

i

�




�i
�� 



�i
log p�(��vb � 1)pT

�
(�)	 	


2


�i
2��TpT

�
(�)�

��
i

�




�i
��pT

�
(�)





�i
log p�(��vb � 1)	 	





�i
��T 



�i
pT

�
(�)	

��
i

�




�i
��pT

�
(�)





�i
log p�(��vb � 1)	 	





�i
��TpT

�
(�)





�i
log pT

�
(�)	,

which by inserting pT
� ��� � 1 / Zp����vb � 1�1/T, with nor-

malizing constant Z, becomes




 t

pFP(�, t) �
1
Z �

i

�




�i
��p�(�)




�i

log p�(��vb � 1)	
	




�i

��Tp�(�)
1
T




�i

log p�(��vb � 1)	
� �

i

0 � 0 .

This proves that pT
� ��� is a stationary distribution of the

parameter sampling dynamics Equation 9. Since � is
strictly positive, this stationary distribution is also unique
(see Section 3.7.2 in Gardiner, 2004).

The unique stationary distribution of Equation 11 is
given by pT

� ��� � 1 / Zp����vb � 1�1 / T , i.e., pT
� ��� is the

only solution for which



t

pFP��, t� becomes 0, which com-
pletes the proof.

The uniqueness of the stationary distribution follows
because each parameter setting can be reached from any
other parameter setting with non-zero probability (ergod-
icity). The stochastic process can therefore not get
trapped in cycles or absorbed into a subregion of the
parameter space. The time spent in a certain region of
the parameter space is therefore directly proportional to
the probability of that parameter region under the poste-
rior distribution. The proof requires that the posterior dis-
tribution is smooth and differentiable with respect to the
synaptic parameters. This is not true in general for a
spiking neural network. In our simulations we used a
stochastic neuron model (defined in the next section). As
the reward landscape in our case is defined by the
expected discounted reward (Reward-modulated syn-
aptic plasticity approximates gradient ascent on the
expected discounted reward), a probabilistic network
tends to smoothen this landscape and therefore the
posterior distribution.
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Network model
Plasticity rules for this general framework were derived

based on a specific spiking neural network model, which
we describe in the following. All reported computer sim-
ulations were performed with this network model. We
considered a general network scaffold N of K neurons
with potentially asymmetric recurrent connections. Neu-
rons are indexed in an arbitrary order by integers between
1 and K. We denote the output spike train of a neuron k by
zk(t). It is defined as the sum of Dirac delta pulses posi-
tioned at the spike times tk

�1�, tk
�2�, �, i.e., zk�t� � �

l
��t �

tk
�l��. Potential synaptic connections are also indexed in an

arbitrary order by integers between 1 and Ksyn, where Ksyn

denotes the number of potential synaptic connections in
the network. We denote by PREi and POSTi the index of the
pre- and postsynaptic neuron of synapse i, respectively,
which unambiguously specifies the connectivity in the
network. Further, we define SYNk to be the index set of
synapses that project to neuron k. Note that this indexing
scheme allows us to include multiple (potential) synaptic
connections between a given pair of neurons. We in-
cluded this experimentally observed feature of biological
neuronal networks in all our simulations. We denote by
wi(t) the synaptic efficacy of the i-th synapse in the net-
work at time t.

Network neurons were modeled by a standard stochas-
tic variant of the spike response model (Gerstner et al.,
2014). In this model, the membrane potential of a neuron
k at time t is given by

uk(t) � �
i�SYNk

yPREi
(t)wi(t) 	 �k(t), (12)

where �k�t� denotes the slowly changing bias potential of
neuron k, and yprei

�t� denotes the trace of the (unweighted)
postsynaptic potentials (PSPs) that neuron PREi leaves in
its postsynaptic synapses at time t. More precisely, it is
defined as yprei

�t� � zprei
�t����t� given by spike trains filtered

with a PSP kernel of the form ��t� � ��t�
�r

�m��r
�e�t/�m � e�t/�r�,

with time constants �m � 20 ms and �r � 2 ms, if not
stated otherwise. Here � denotes convolution and 
(·) is
the Heaviside step function, i.e., 
(x) � 1 for x � 0 and 0
otherwise.

The synaptic weights wi(t) in Equation 12 were deter-
mined by the synaptic parameters �i(t) through the map-
ping Equation 1 for �i(t) � 0. Synaptic connections with
�i(t) � 0 were interpreted as not functional (disconnected)
and wi(t) was therefore set to 0 in that case.

The bias potential �k�t� in Equation 12 implements a slow
adaptation mechanism of the intrinsic excitability, which
ensures that the output rate of each neuron stays near the
firing threshold and the neuron maintains responsiveness
(Desai et al., 1999; Fan et al., 2005). We used a simple
adaptation mechanism which was updated according to

��

d�k(t)
dt

� �0 � zk(t) , (13)

where �� � 50s is the time constant of the adaptation
mechanism and �0 � 5 Hz is the desired output rate of the

neuron. In our simulations, the bias potential �k�t� was
initialized at -3 and then followed the dynamics given in
Equation 13. We found that this regularization significantly
increased the performance and learning speed of our
network model. In Remme and Wadman (2012), a similar
mechanism was proposed to balance activity in networks
of excitatory and inhibitory neurons. The regularization
used here can be seen as a simplified version of this
mechanism that regulates the mean firing rate of each
excitatory neuron using a simple linear control loop and
thereby stabilizes the output behavior of the network.

We used a simple refractory mechanism for our neuron
model. The firing rate, or intensity, of neuron k at time t is
defined by the function fk�t� � f�uk�t�, �k�t��, where �k(t)
denotes a refractory variable that measures the time
elapsed since the last spike of neuron k. We used an
exponential dependence between membrane potential
and firing rate, such that the instantaneous firing rate of
the neuron k at time t can be written as

fk(t) � f(uk, �k) � exp(uk)�(�k � tref) . (14)

Furthermore, we denote by fposti
�t� the firing rate of the

neuron postsynaptic to synapse i. If not stated otherwise
we set the refractory time tref to 5 ms. In addition, a subset
of neurons was clamped to some given firing rates (input
neurons), such that fk(t) of these input neurons was given
by an arbitrary function. We denote the spike train from
these neurons by x�t�, the network input.

Synaptic dynamics for the reward-based synaptic
sampling model

Here, we provide additional details on how the synaptic
parameter dynamics Equation 5 was computed. We will
first provide an intuitive interpretation of the equations
and then provide a detailed derivation in the next section.

The second term




�i
logV��� of Equation 5 denotes the

gradient of the expected future discounted reward Equa-
tion 6. In general, optimizing this function has to account
for the case where rewards are provided after some delay
period. It is well known that this distal reward problem can
be solved using plasticity mechanisms that make use of
eligibility traces in the synapses that are triggered by near
coincident spike patterns, but their consolidation into the
synaptic weights is delayed and gated by the reward
signal r(t) (Sutton and Barto, 1998; Izhikevich, 2007). The
theoretically optimal shape for these eligibility traces can
be derived using the reinforcement learning theory and
depends on the choice of network model. For the spiking
neural network model described above, the gradient




�i
logV��� can be estimated through a plasticity mecha-

nism that uses an eligibility trace ei(t) in each synapse i
which gets updated according to

dei(t)
dt

� �
1
�e

ei(t) 	 wi(t)yPREi
(t)(zPOSTi

(t) � fPOSTi
(t)) , (15)

where �e � 1 s is the time constant of the eligibility trace.
Recall that PREi denotes the index of the presynaptic
neuron and POSTi the index of the postsynaptic neuron for
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synapse i. In Equation 15, zposti
�t� denotes the postsynap-

tic spike train, fposti
�t� denotes the instantaneous firing rate

(Eq. 14) of the postsynaptic neuron and wi�t�yPREi
�t� de-

notes the PSP under synapse i.
The last term of Equation 15 shares salient properties

with standard STDP learning rules, since plasticity is en-
abled by the presynaptic term yprei

�t� and gated by the
postsynaptic term �zposti

�t� � fposti
�t�� (Pfister et al., 2006).

The latter term also regularizes the plasticity mechanism
such that synapses stop growing if the firing probability
fposti

�t� of the postsynaptic neuron is already close to one.
The eligibility trace Equation 15 is multiplied by the

reward r(t) and integrated in each synapse i using a sec-
ond dynamic variable

dgi(t)
dt

� �
1
�g

gi(t) 	 � r(t)
r̂(t)

	 ��ei(t) , (16)

where r̂�t� is a low-pass filtered version of r(t) (Reward-
modulated synaptic plasticity approximates gradient as-
cent on the expected discounted reward). The variable
gi(t) combines the eligibility trace and the reward, and
averages over the time scale �g. � is a constant offset on
the reward signal. This parameter can be set to an arbi-
trary value without changing the stationary dynamics of
the model (see next section). In our simulations, this offset
� was chosen slightly above 0 (� � 0.02) such that small
parameter changes were also present without any reward,
as observed previously (Yagishita et al., 2014). Further-
more, � does not have to be chosen constant. E.g., this
term can be used to incorporate predictions about the
reward outcome by setting � to the negative of output of
a critic network that learns to predict future reward. This
approach has been previously studied in Frémaux et al.
(2013) to model experimental data of Schultz et al. (1997);
Schultz (2002). In the experiment (Fig. 4D), we included in
Equation 16 the scaling constant cr to modulate the re-
ward term � r�t� / r̂�t� 	 ��.

In the next section, we show that gi(t) approximates the
gradient of the expected future reward with respect to the
synaptic parameter. In our simulations we found that
incorporating the low-pass filtered eligibility traces (Eq.
16) into the synaptic parameters works significantly better
than using the eligibility traces directly for weight updates,
although the latter approach was taken in a number of
previous studies (Pfister et al., 2006; Legenstein et al.,
2008; Urbanczik and Senn, 2009). Equation 16 essentially
combines the eligibility trace with the reward and smooth-
ens the resulting trace with a low-pass filter with time
constant �g. This time constant has been chosen to be in
the order of spontaneous decay of disinhibited CaMKII in
the synapse which is closely related to spine enlargement
in the dopamine-gated STDP protocol of Yagishita et al.,
2014 (compare their Figs. 3F, 4C).

r̂�t� in Equation 16 is a low-pass filtered version of r(t)
that scales the synaptic updates. It was implemented
through �a dr̂�t� / dt � � r̂�t� 	 r�t�, with �a � 50 s. The
value of �a has been chosen to equal �g based on theo-
retical considerations (see below, Online learning). This
scaling of the reward signal has the following effect. If the

current reward r(t) exceeds the average reward r̂�t�, the
effect of the neuromodulatory signal r(t) will be �1. On
the other hand, if the current reward is below average
synaptic updates will be weighted by a term significantly
lower than 1. Therefore, parameter updates are preferred
for which the current reward signal exceeds the average.

Similar plasticity rules with eligibility traces in spiking
neural networks have previously been proposed by sev-
eral authors (Seung, 2003; Xie and Seung, 2004; Pfister
et al., 2006; Florian, 2007; Izhikevich, 2007; Legenstein
et al., 2008; Urbanczik and Senn, 2009; Frémaux et al.,
2010, 2013). In Frémaux et al. (2013), also a method to
estimate the neural firing rate fposti

�t� from back-
propagating action potentials in the synapses has been
proposed. The main difference to these previous ap-
proaches is that the activity-dependent last term in Equa-
tion 15 is scaled by the current synaptic weight wi(t). This
weight-dependence of the update equations induces mul-
tiplicative synaptic dynamics and is a consequence of the
exponential mapping Equation 1 (see derivation in the
next section). This is an important property for a network
model that includes rewiring. Note, that for retracted syn-
apses (wi(t) � 0), both ei(t) and gi(t) decay to zero (within
few minutes in our simulations). Therefore, we find that
the dynamics of retracted synapses is only driven by the
first (prior) and last (random fluctuations) term of Equation
5 and are independent from the network activity. Thus,
retracted synapses spontaneously reappear also in the
absence of reward after a random amount of time.

The first term in Equation 5 is the gradient of the prior
distribution. We used a prior distribution that pulls the
synaptic parameters toward �i(t) � 0 such that unused
synapses tend to disappear and new synapses are per-
manently formed. If not stated otherwise we used inde-
pendent Gaussian priors for the synaptic parameters

pS(�) � �
i

pS(�i(t)), with pS(�i(t))

�
1

�2�
exp ��

(�i(t) � �)2

22 	 ,

where  is the standard deviation of the prior distribution.
Using this, we find that the contribution of the before the
online parameter update equation is given by




�i

log pS(�) �
1
2

(� � �i(t)) . (17)

Finally, by plugging Equations 17, 16 into Equation 5,
the synaptic parameter changes at time t are given by

d�i(t) � �� 1
2

(� � �i(t)) 	 gi(t)�dt

	 �2�TdWi . (18)

We tuned the parameters of the prior distribution by
hand to achieve good results on the task presented in
Figure 3 (for a comparison of different prior distributions,
see Fig. 4). These parameters were given by  � 2 and
� � 0 and were used throughout all experiments if not
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stated otherwise. By inspecting Equation 18, it becomes
immediately clear that the parameter dynamics follow an
Ornstein–Uhlenbeck process if the activity-dependent
second term is inactive (in the absence of reward), i.e., if
gi(t) � 0. In this case, the dynamics are given by the
deterministic drift toward the mean value � and the sto-
chastic diffusion fueled by the Wiener process Wi. The
temperature T and the standard deviation  scale the
contribution of these two forces.

Reward-modulated synaptic plasticity approximates
gradient ascent on the expected discounted reward

We first consider a theoretical setup where the network
is operated in arbitrarily long episodes such that in each
episode a reward sequence r is encountered. The reward
sequence r can be any discrete or real-valued function
that is positive and bounded. The episodic scenario is
useful to derive exact batch parameter update rules, from
which we will then deduce online learning rules. Due to
stochastic network inputs, stochastic network responses,
and stochastic reward delivery, the reward sequence r is
stochastic.

The classical goal of reinforcement learning is to max-
imize the function V��� of discounted expected rewards
Equation 6. Policy gradient algorithms perform gradient
ascent on V��� by changing each parameter �i in the
direction of the gradient 
logV���/
�i. Here, we show that
the parameter dynamics Equations 15, 16 approximate
this gradient, i.e., gi�t� � 
logV���/
�i.

It is natural to assume that the reward signal r(�) only
depends indirectly on the parameters �, through the his-
tory of network spikes zk(�) up to time �, which we write as
z��� � �zk�s��0 � s � �, 1 � k � K�, i.e., pN�r�t�,
z�t���� � p�r�t��z�t��pN�z�t����. We can first expand the
expectation 
·�p�r��� in Equation 6 to be taken over the joint
distribution p�r, z��� over reward sequences r and net-
work trajectories z. The derivative




�i

log V(�) �
1

V(�)




�i
V(�)

�
1

V(�)




�i

 �

0

�

e�
�

�e
r(�)d��

p(r,z|�)
(19)

can be evaluated using the well-known identity 
 / 
x 
f
�a��p�a�x� � 
f�a�
 / 
x logp�a�x��p�a�x�:





�i
log V(�) �

1
V(�)
�

0

�

e�
�

�er(�)




�i
log p(r(�), z(�)��)d��

p(r,z|�)

�
1

V(�)
�
0

�

e�
�

�er(�)




�i
(log p(r(�)�z(�)) 	 log pN(z(�)��))d��

p(r,z|�)

�
�
0

�

e�
�

�e

r(�)
V(�)





�i
log pN(z(�)��)d��

p(r,z|�)

(20)

Here, pN�z������ is the probability of observing the spike
train z��� in the time interval 0 to �. For the definition of the

network N given above, the gradient




�i
logpN�z������ of

this distribution can be directly evaluated. Using Equa-
tions 12, 1, we get (Pfister et al., 2006)




�i

log pN(z(�)��)

�

wi


�i




wi

�
0

�

zPOSTi
(s)log (fPOSTi

(s)) � fPOSTi
(s)ds

� �
0

�

wiyPREi
(s)(zPOSTi

(s) � fPOSTi
(s))ds, (21)

where we have used that by construction only the rate
function fposti

�s� depends on the parameter �i. If one dis-
cretizes time and assumes that rewards and parameter
updates are only realized at the end of each episode, the
REINFORCE rule is recovered (Williams, 1992).

In Equation 21, we used the approximation 
wi / 
�i �
wi. This expression ignores the discontinuity of Equation 1
at �i � 0, where the function is not differentiable. In
practice we found that this approximation is quite accu-
rate if �0 is large enough such that exp��i � �0� is close to
zero (which is the case for �0 � 3 in our simulation). In
control experiments, we also used a smooth function
wi � exp��i � �0� (without the jump at �i � 0), for which
Equation 21 is exact, and found that this yields results that
are not significantly different from the ones that use the
mapping Equation 1.

Online learning
Equation 20 defines a batch learning rule with an aver-

age taken over learning episodes where in each episode
network responses and rewards are drawn according to
the distribution p�r, z���. In a biological setting, there are
typically no clear episodes but rather a continuous stream
of network inputs and rewards and parameter updates are
performed continuously (i.e., learning is online). The anal-
ysis of online policy gradient learning is far more compli-
cated than the batch scenario, and typically only
approximate results can be obtained that however per-
form well in practice (for discussions, see Seung, 2003;
Xie and Seung, 2004).

To arrive at an online learning rule for this scenario, we
consider an estimator of Equation 20 that approximates
its value at each time t � �g based on the recent network
activity and rewards during time �t � �g, t� for some suit-
able �g � 0. We denote the estimator at time t by Gi(t)

where we want Gi�t� � 


�i

logV��� for all t � �g. To arrive at

such an estimator, we approximate the average over
episodes in Equation 20 by an average over time where
each time point is treated as the start of an episode. The
average is taken over a long sequence of network activity
that starts at time t and ends at time t � �g. Here, one
systematic difference to the batch setup is that one can-
not guarantee a time-invariant distribution over initial net-
work conditions as we did there since those will depend
on the current network parameter setting. However, under
the assumption that the influence of initial conditions
(such as initial membrane potentials and refractory states)
decays quickly compared to the time scale of the envi-
ronmental dynamics, it is reasonable to assume that the
induced error is negligible. We thus rewrite Equation 20 in
the form (we use the abbreviation PSPi�s� � wi�s�yPREi

�s�).
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�i

log V(�) � Gi(t) �
1
�g

�
t

t	�g �
�

t	�g

e�
���

�e

r(�)
V(�)

�
�

�

PSPi(s)(zPOSTi
(s) � fPOSTi

(s))ds d� d�,

where �g is the length of the sequence of network activity
over which the empirical expectation is taken. Finally, we
can combine the second and third integral into a single
one, rearrange terms and substitute s and � so that inte-
grals run into the past rather than the future, to obtain

Gi(t) � 1
�g

�
t��g

t r(�)
V(�) �

0

�

e�
s

�e
PSPi(� � s)

(zPOSTi
(� � s) � fPOSTi

(� � s))ds d�, (22)

We now discuss the relationship between Gi(t) and
Equations 15, 16 to show that the latter equations approx-
imate Gi(t). Solving Equation 15 with zero initial condition
ei(0) � 0 yields

ei(t) � �
0

t

e�
s

�e
PSPi(t � s)

�zPOSTi
(t � s) � fPOSTi

(t � s)�ds. (23)

This corresponds to the inner integral in Equation 22,
and we can write

Gi(t) � 1
�g

�
t��g

t r(�)
V(�)

ei(�) d� � 
 r(t)
V(�)

ei(t)��g

� 
 r(t)
r̂(t)

ei(t)��g

, (24)

where 
·��g
denotes the temporal average from t– �g to t

and r̂�t� estimates the expected discounted reward
through a slow temporal average.

Finally, we observe that any constant � can be added to
r���/V��� in Equation 20 since


 �
0

�

e�
�

�e
�




�i

log pN�z(�)���d��
p(r,z|�)

� 0 (25)

for any constant � (cf. Williams, 1992; Urbanczik and
Senn, 2009).

Hence, we have Gi�t� � 
� r�t� / r̂�t� 	 �� ei�t���g
. Equa-

tion 16 implements this in the form of a running average

and hence gi�t� � Gi�t� � 


�i

logV��� for t � �g. Note that

this result assumes that the parameters � change slowly
on the time scale of �g and �g has to be chosen signifi-
cantly longer than the time constant of the eligibility trace
�e such that the estimator works reliably, so we require
�e � �g � 1 / � . The time constant �a to estimate the
average reward V��� through �a dr̂�t� / dt � � r̂�t� 	 r�t�
should be on the same order as the time constant �g for
estimating the gradient. We selected both to be 50 s in our
simulations. Simulations using the batch model outlined
above and the online learning model showed qualitatively
the same behavior for the parameters used in our exper-
iments (data not shown).

Simulation details
Simulations were preformed with NEST (Gewaltig and

Diesmann, 2007) using an in-house implementation of the
synaptic sampling model (Kappel D, Hoff M, Subramoney
A, 2017); additional tests were run in Matlab R2011b
(Mathworks). The code/software described in the paper is
freely available online at URL: https://github.com/
IGITUGraz/spore-nest-module. The differential equations
of the neuron and synapse models were approximated
using the Euler method, with fixed time steps �t � 1 ms.
All network variables were updated based on this time
grid, except for the synaptic parameters �i(t) according to
Equation 18, which were updated only every 100 ms to
reduce the computation time. Control experiments with
�t � 0.1 ms, and 1-ms update steps for all synaptic
parameters showed no significant differences. If not
stated otherwise synaptic parameters were initially drawn
from a Gaussian distribution with � � –0.5 and  � 0.5
and the temperature was set to T � 0.1. The learning rate
for the synaptic dynamics was chosen to be � � 10–5 and
synaptic delays were 1 ms. Synaptic parameter changes
were clipped at �4 � 10–4 and synaptic parameters �i

were not allowed to exceed the interval [–2, 5] for the sake
of numerical stability.

Details to: Task-dependent routing of synaptic
connections through the interaction of stochastic
spine dynamics with rewards

The number of potential excitatory synaptic connec-
tions between each pair of input and MSNs neurons was
initially drawn from a Binomial distribution (p � 0.5, n �
10). The connections then followed the reward-based
synaptic sampling dynamics Equation 5 as described
above. Lateral inhibitory connections were fixed and thus
not subject to learning. These connections between
MSNs neurons were drawn from a Bernoulli distribution
with p � 0.5 and synaptic weights were drawn from a
Gaussian distribution with � � –1 and  � 0.2, truncated
at zero. Two subsets of ten neurons were connected to
either one of the targets T1 or T2.

To generate the input patterns we adapted the method
from Kappel et al. (2015). The inputs were representations
of a simple symbolic environment, realized by Poisson
spike trains that encoded sensory experiences P1 or P2.
The 200 input neurons were assigned to Gaussian tuning
curves ( � 0.2) with centers independently and equally
scattered over the unit cube. The sensory experiences P1

and P2 were represented by two different, randomly se-
lected points in this 3D space. The stimulus positions
were overlaid with small-amplitude jitter ( � 0.05). For
each sensory experience the firing rate of an individual
input neuron was given by the support of the sensory
experience under the input neuron’s tuning curve (maxi-
mum firing rate was 60 Hz). An additional offset of 2-Hz
background noise was added. The lengths of the spike
patterns were uniformly drawn from the interval [750,
1500 ms]. The spike patterns were alternated with time
windows (durations uniformly drawn from the interval
[1000, 2000 ms]), during which only background noise of
2 Hz was presented.
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The network was rewarded if the assembly associated
to the current sensory experience fired stronger than the
other assembly. More precisely, we used a sliding window
of 500 ms length to estimate the current output rate of the
neural assemblies. Let �̂1�t� and �̂2�t� denote the estimated
output rates of neural pools projecting to T1 and T2,
respectively, at time t and let I(t) be a function that indi-
cates the identity of the input pattern at time t, i.e., I(t) �
1 if pattern P1 was present and I(t) � –1 if pattern P2 was
present. If I�t���̂1�t� � �̂2�t�� � 0 the reward was set to r(t)
� 0. Otherwise the reward signal was given by r�t� � S
�1 / 5 �I�t��̂1�t� � I�t��̂2�t� � �0��, where �0 � 25 Hz is a soft
firing threshold and S(·) denotes the logistic sigmoid func-
tion. The reward was recomputed every 10 ms. During the
presentation of the background patterns no reward was
delivered.

In Figure 2D,E, we tested our reward-gated synaptic
plasticity mechanism with the reward-modulated STDP
pairing protocol reported in Yagishita et al. (2014). We
applied the STDP protocol to 50 synapses and reported
mean and SEM values of synaptic weight changes in
Figure 2D,E. Briefly, we presented 15 pre/post pairings;
one per 10 s. In each pre/post pairing, 10 presynaptic
spikes were presented at a rate of 10 Hz. Each presyn-
aptic spike was followed (�t � 10 ms) by a brief postsyn-
aptic burst of 3 spikes (100 Hz). The total duration of one
pairing was thus 1 s indicated by the gray shaded rect-
angle in Figure 2E. During the pairings the membrane
potential was set to u(t) � –2.4 and Equations 14, 15, 16,
18 solved for each synapse. Reward was delivered here in
the form of a rectangular-shaped wave of constant am-
plitude 1 and duration 300 ms to mimic puff application of
dopamine. Rewards were delivered for each pre/post
pairing and reward delays were relative to the onset of the
STDP pairings. The time constants �e and �g, the reward
offset � and the temperature T of the synapse model were
chosen to qualitatively match the results of Yagishita et al.
(2014), their Figures 1, 4 (Table 1). The value of �a for the
estimation of the average reward has been chosen to
equal �g based on theoretical considerations (see above,
Online learning). We found that the parameters of the prior
had relatively small effect on the synaptic dynamics on
timescales of 1 h.

Synaptic parameter changes in Figure 2G were mea-
sured by taking snapshots of the synaptic parameter
vectors every 4 min. Parameter changes were measured

in terms of the Euclidean norm of the difference between
two successively recorded vectors. The values were then
normalized by the maximum value of the whole experi-
ment and averages over five trials were reported.

To generate the dPCA projection of the synaptic pa-
rameters in Figure 2J, we adopted the methods of Kobak
et al. (2016). We randomly selected a subset of 500
synaptic parameters to compute the projection. We
sorted the parameter vectors by the average reward
achieved over a time window of 10 min and binned them
into 10 equally spaced bins. The dPCA algorithm was
then applied on this dataset to yield the projection matrix
and estimated fractions of explained reward variance. The
projection matrix was then applied to the whole trajectory
of network parameters and the first two components were
plotted. The trajectory was projected onto the estimated
expected reward surface based on the binned parameter
vectors.

Details to: A model for task-dependent self-
configuration of a recurrent network of excitatory
and inhibitory spiking neurons

Neuron and synapse parameters were as reported
above, except for the inhibitory neurons for which we
used faster dynamics with a refractory time tref � 2 ms
and time constants �m � 10 ms and �r � 1 ms for the PSP
kernel. The network connectivity between excitatory and
inhibitory neurons was as suggested previously (Aver-
mann et al., 2012). Excitatory (pools D, U, and hidden) and
inhibitory neurons were randomly connected with con-
nection probabilities given in Avermann et al. (2012), their
Table 2. Connections include lateral inhibition between
excitatory and inhibitory neurons. The connectivity to and
from inhibitory neurons was kept fixed throughout the
simulation (not subject to synaptic plasticity or rewiring).
The connection probability from excitatory to inhibitory
neurons was given by 0.575. The synaptic weights were
drawn from a Gaussian distribution (truncated at zero)
with � � 0.5 and  � 0.1. Inhibitory neurons were con-
nected to their targets with probability 0.6 (to excitatory
neurons) and 0.55 (to inhibitory neurons) and the synaptic
weights were drawn from a truncated normal distribution
with � � –1 and  � 0.2. The number of potential excit-
atory synaptic connections between each pair of excit-
atory neurons was drawn from a binomial distribution (p �
0.5, n � 10). These connections were subject to the
reward-based synaptic sampling and rewiring described
above. In the resulting network scaffold around 49% of
connections consisted of multiple synapses.

To infer the lever position from the network activity, we
weighted spikes from the neuron pool D with –1 and
spikes from U with � 1, summed them and then filtered
them with a long PSP kernel with �r � 50 ms (rise) and
�m � 500 ms (decay). The cue input pattern was realized
by the same method that was used to generate the pat-
terns P1 and P2 outlined above. If a trial was completed
successfully the reward signal r(t) was set to 1 for 400 ms
and was 0 otherwise. After each trial a short holding
phase was inserted during which the input neurons were
set to 2-Hz background noise. The lengths of these hold-

Table 1. Parameters of the synapse model Equations 15, 16,
and 18

Symbol Value Description
T 0.1 Temperature
�e 1 s Time constant of eligibility trace
�g 50 s Time constant of gradient estimator
�a 50 s Time constant to estimate the average reward
� 0.02 Offset to reward signals
� 10–5 Learning rate
� 0 Mean of prior
 2 STD of prior

Parameter values were found by fitting the experimental data of Yagishita
et al. (2014). If not stated otherwise, these values were used in all
experiments.
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ing phases were uniformly drawn from the interval [1, 2 s].
At the time points marked by an asterisk, the reward
policy was changed by switching the decoding functions
of the neural pools D and U and by randomly regenerating
the input cue pattern.

To identify the movement onset times in Figure 3D, we
adapted the method from Peters et al. (2014). Lever
movements were recorded at a sampling rate of 5 ms.
Lever velocities were estimated by taking the difference
between subsequent time steps and filtering them with a
moving average filter of five-time steps length. A Hilbert
transform was applied to compute the envelope of the
lever velocities. The movement onset time for each trial
was then defined as the time point where the estimated
lever velocity exceeded a threshold of 1.5 in the upward
movement direction. If this value was never reached
throughout the whole trial the time point of maximum
velocity was used (most cases at learning onset).

The trial-averaged activity traces in Figure 3D were
generated by filtering the spiking activity of the network
with a Gaussian kernel with  � 75 ms. The activity traces
were aligned with the movement onset times (Fig. 3D,
black arrows) and averaged across 100 trials. The result-
ing activity traces were then normalized by the neuron’s

mean activity over all trials and values below the mean
were clipped. The resulting activity traces were normal-
ized to the unit interval.

Turnover statistics of synaptic connections in Figure 3E
were measured as follows. The synaptic parameters were
recorded in intervals of 2 h. The number of synapses that
appeared (crossed the threshold of �i(t) � 0 from below) or
disappeared (crossed �i(t) � 0 from above) between two
measurements were counted and the total number was
reported as turnover rate.

For the consolidation mechanism in Figure 3F, we used
a modified version of the algorithm where we introduced
for each synaptic parameter �i an independent mean �i for
the prior distribution pS���. After four simulated days, we
set �i to the current value of �i for each synaptic param-
eter and the standard deviation  was set to 0.05. Simu-
lation of the synaptic parameter dynamics was then
continued for 10 subsequent days.

For the approximation of simulating retracted potential
synaptic connections in Figure 3C,G, we paused evalua-
tion of the SDE (Eq. 5) for �i � 0. Instead, synaptic
parameters of retracted connections where randomly set
to values above zero after random waiting times drawn
from an exponential distribution with a mean of 12 h.

Figure 6. Drifts of neural codes while performance remained constant. Trial-averaged network activity as in Figure 3D evaluated at
three different times selected from a time window where the network performance was stable (Fig. 3C). Each column shows the same
trial-averaged activity plot but subject to different sorting. Rows correspond to one sorting criterion based on one evaluation time.
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When a connection became functional at time t we set �i(t) �
10–5 and reset the eligibility trace ei(t) and gradient estima-
tor gi(t) to zero and then continued the synaptic dynamics
according to Equation 5. Histograms in Figure 3F were
computed over bins of 2-h width.

In Figure 6, we further analyzed the trial-averaged ac-
tivity at three different time points (18, 19, and 20 h) where
the performance was stable (Fig. 3C). Drifts of neural
codes on fast time scales could also be observed during
this phase of the experiment.

Since the 3D illustration of the PCA projection in Figure
3I is ambiguous, the corresponding 2D projections are
shown in Figure 7. The projection to the first two compo-
nents (pc1 and pc2) show the migration of synaptic pa-
rameters to a new region after the task change. The first
three principal components explain 82% of the total vari-
ance in the parameter dynamics.

Details to: Compensation for network perturbations
The black curve in Figure 3C shows the learning curve

of a network for which rewiring was disabled after the task
change at 24 h. Here, synaptic parameters were not
allowed to cross the threshold at �i � 0 and thus could not
change sign after 24 h. Apart from this modification the

synaptic dynamics evolved according to Equation 18 as
above with T � 0.1.

For the analysis of synaptic turnover in Figure 3G, we
recorded the synaptic parameters at t1 � 24 h and t2 � 48
h. We then classified each potential synaptic connection i
into one of four classes, stable nonfunctional: ��i�t1� �
0����i�t2� � 0�, transient decaying: ��i�t1� � 0����i�t2� �
0�, transient emerging: ��i�t1� � 0����i�t2� � 0�, and stable
functional: ��i�t1� � 0����i�t2� � 0�.

In Figure 3H, we randomly selected 5% of the synaptic
parameters �i and recorded their traces over a learning
experiment of 48 h (one sample per minute). The PCA was
then computed over these traces, treating the parameter
vectors at each time point as one data sample. The
high-dimensional trace was then projected to the first
three principal components in Figure 3H and colored
according to the average movement completion time that
was acquired by the network at the corresponding time
points.

Details to: Relative contribution of spontaneous and
activity-dependent processes to synaptic plasticity

Synaptic weights in Figure 5A,B were recorded in inter-
vals of 10 min. We selected all pairs of synapses with

Figure 7. 2D projections of the PCA analysis in Figure 3I. The 3D projection as in Figure 3I, top right, and the corresponding 2D
projections are shown.
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common pre- and postsynaptic neurons as CI synapses
and synapse pairs with the same post- but not the same
presynaptic neuron as non-CI synapses. In Figure 5D–F,
we took a snapshot of the synaptic weights after 48 h of
learning and computed the Pearson correlation of all CI
and non-CI pairs for random subsets of around 5000
pairs. Data for 100 randomly chosen CI synapse pairs are
plotted of Figure 5E.

In Figure 5F, we analyzed the contribution of activity-
dependent and spontaneous processes in our model.
Dvorkin and Ziv (2016) reported that a certain degree of
the stochasticity in their results could be attributed to their
experimental setup. The maximum detectable correlation
coefficient was limited to 0.76–0.78, due to the variability
of light fluorescence intensities which were used to esti-
mate the sizes of postsynaptic densities. Since in our
computer simulations we could directly read out values of
the synaptic parameters we were not required to correct
our results for noise sources in the experimental proce-
dure (see pp. 16ff and equations on p. 18 of Dvorkin and
Ziv, 2016). This is also reflected in our data by the fact that
we got a correlation coefficient that was close to 1.0 in the
case T � 0 (Fig. 5D). Following the procedure of Dvorkin
and Ziv (2016), we estimated in our model the contribu-
tions of activity history dependent and spontaneous
synapse-autonomous processes as in Dvorkin and Ziv
(2016), their Figure 8E. Using the assumption of zero
measurement error and thus a theoretically achievable
maximum correlation coefficient of r � 1.0. The Pearson
correlation of CI synapses was given by 0.46 �0.034 and
that of non-CI synapses by 0.08 �0.015. Therefore, we
estimated the fraction of contributions of specific activity
histories to synaptic changes (for T � 0.15) as 0.46 – 0.08
� 0.38 and of spontaneous synapse-autonomous pro-
cesses as 1.0 – 0.46 � 0.54 (Dvorkin and Ziv, 2016). The
remaining 8% (measured correlation between non-CI syn-
apses) resulted from processes that were not specific to
presynaptic input, but specific to the activity of the post-
synaptic neuron (neuron-wide processes).
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