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1Bernstein Centre for Computational Neuroscience, University of Göttingen, Germany and
2Cognitive Vision Group, University of Southern Denmark, Denmark

(Received 5 March 2007; accepted 18 July 2007)

Abstract
In the first part of this article, we analyze the relation between local image structures
(i.e., homogeneous, edge-like, corner-like or texture-like structures) and the underlying local
3D structure (represented in terms of continuous surfaces and different kinds of 3D
discontinuities) using range data with real-world color images. We find that homogeneous
image structures correspond to continuous surfaces, and discontinuities are mainly formed by
edge-like or corner-like structures, which we discuss regarding potential computer vision
applications and existing assumptions about the 3D world. In the second part, we utilize the
measurements developed in the first part to investigate how the depth at homogeneous
image structures is related to the depth of neighbor edges. For this, we first extract the local
3D structure of regularly sampled points, and then, analyze the coplanarity relation between
these local 3D structures. We show that the likelihood to find a certain depth at a
homogeneous image patch depends on the distance between the image patch and a neighbor
edge. We find that this dependence is higher when there is a second neighbor edge which
is coplanar with the first neighbor edge. These results allow deriving statistically based
prediction models for depth interpolation on homogeneous image structures.

Keywords: Natural scenes, visual system

Introduction

Depth estimation relies on the extraction of 3D structure from 2D images

which is realized by a set of inverse problems including structure from motion,
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stereo vision, shape from shading, linear perspective, texture gradients, and

occlusion (Bruce et al. 2003). In methods which make use of multiple views

(i.e., stereo and structure from motion), correspondences between different 2D

views of the scene are required. In contrast, monocular or pictorial cues such as

shape from shading, texture gradients or linear perspective use statistical and

geometrical relations within one image to make statements about the underlying

3D structure.

Many surfaces have only weak texture or no texture at all, and as a consequence,

the correspondence problem is very hard or not at all resolvable for these surfaces.

Nevertheless, humans are able to reconstruct the 3D information for these surfaces,

too. This gives rise to the assumption that in the human visual system, an

interpolation process is realized that, starting with the local analysis of edges, corners

and textures computes depth also in areas where correspondences cannot easily

be found.

Processing of depth in the human visual system starts with the processing of local

image structures (such as edge-like structures, corner-like structures, and textures)

in V1 (Hubel and Wiesel 1969; Gallent et al. 1994; Lee et al. 1998).

These structures (called 2D structures in the rest of the article) are utilized in

stereo vision, depth from motion, depth from texture gradients and other depth

cues, which are localized in different parts of the brain, starting from V1 and

involving V2, V3, V4 and MT (Sereno et al. 2002).

There exists good evidence that depth cues which are not directly based on

correspondences evolve rather late in the development of the human visual system.

For example, pictorial depth cues are made use of only after approximately 6

months (Kellman and Arterberry 1998). This indicates that experience may play an

important role in the development of these cues, i.e., we have to understand depth

perception as a statistical learning problem (Knill and Richards 1996; Purves and

Lotto 2002; Rao et al. 2002). A step towards such an understanding is the

investigation and use of the statistical relations between the local 2D structures and

the underlying 3D structure for each of these depth cues (Knill and Richards 1996;

Purves and Lotto 2002; Rao et al. 2002).

With the notion that the human visual system is adapted to the statistics of the

environment (Brunswik and Kamiya 1953; Knill and Richards 1996; Olshausen

and Field 1996; Krueger 1998; Purves and Lotto 2002; Rao et al. 2002;

Simoncelli 2003) and its successful applications to grouping, object recognition

and stereo (Zhu, 1999; Elder and Goldberg 2002; Elder et al. 2003; Pugeault

et al. 2004), the analysis and the usage of natural image statistics have become

an important focus of vision research. Moreover, with the advances in

technology, it has been also possible to analyze the 3D world using 3D range

scanners Huang et al. 2000; Potetz and Lee 2003; Yang and Purves 2003; Howe

and Purves 2004.

In this article, we analyze first-order and second-order relations1 between 2D and

3D structures extracted from chromatic 3D range data.2 For the first-order

analysis, we investigate the relation between local 2D structures (i.e., homogeneous,

edge-like, corner-like or texture-like structures) and the underlying local 3D

structure. As for the second-order analysis, we investigate the relation

between the depth at homogeneous 2D structures and the depth at the

bounding edges.

130 S. Kalkan et al.
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There have been only a few studies that have analyzed the 3D world from range

data (Huang et al. 2000; Potetz and Lee 2003; Yang and Purves 2003; Howe and

Purves 2004), and these works have only been of first order. In Yang and Purves

(2003), the distribution of roughness, size, distance, 3D orientation, curvature, and

independent components of surfaces was analyzed. Their major conclusions were:

(1) local 3D patches tend to be saddle-like, and (2) natural scene geometry is quite

regular and less complex than luminance images. In Hunag et al. (2000), the

distribution of 3D points was analyzed using co-occurrence statistics and 2D and

3D joint distributions of Haar filter reactions. They showed that range images are

much simpler to analyze than optical images and that a 3D scene is composed of

piecewise smooth regions. In Potetz and Lee (2003), the correlation between light

intensities of the image data and the corresponding range data as well as surface

convexity were investigated. They could justify the event that brighter objects are

closer to the viewer, which is used by shape from shading algorithms in estimating

depth. In Howe and Purves (2002, 2004), range image statistics were analyzed for

explanation of several visual illusions.

Our first-order analysis differs from these works. For 2D local image patches,

existing studies have only considered light intensity. As for 3D local patches, the

most complex considered representation has been the curvature of the local 3D

patch. In this work, however, we create a higher order representation of the 2D local

image patches and the 3D local patches; we represent 2D local image patches using

homogeneous, edge-like, corner-like or texture-like structures, and 3D local patches

using continuous surfaces and different kinds of 3D discontinuities. By this, we

relate established local 2D structures to their underlying 3D structures.

For the first-order analysis, we compute the conditional likelihood

P (3D structure j 2D structure), by creating 2D and 3D representations of the

local structure. Using this likelihood, we quantify some assumptions made by the

studies that reconstruct the 3D world from dense range data. For example, we will

show that the depth distribution varies significantly for different visual features, and

we will quantify already established inter-dependencies such as ‘no news is good

news’ (Grimson 1983). This work also supports the understanding of how intrinsic

properties of 2D–3D relations can be used for the reconstruction of depth, for

example, by using statistical priors in the formalization of depth cues.

For the second-order analysis, given two proximate co-planar edges, we compute

the ‘likelihood field’ of finding co-planar surface patches which project as

homogeneous 2D structures in the 2D image. This likelihood field is similar to

the ‘association field’ (Field et al. 1993) which is a likelihood field also based on

natural image statistics. The ‘likelihood field’ which we compute provides important

information about (1) the predictability of depth at homogeneous 2D structures

using the depth available at the bounding edges and (2) the relative complexity of

3D geometric structure compared to the complexity of local 2D structures.

The article is organized as follows: in the second and third sections, we define the

types of local 2D structures and local 3D structures and how we extract them for our

analysis. In the fourth section, we analyze the relation between the local 2D and 3D

structures, and discuss the results. In the fifth section, we present our methods for

analyzing the second-order relation between the homogeneous 2D structures and

bounding edge structures, and discuss the results. Finally, we conclude the article in

the last section with a discussion.

First-order and second-order statistical analysis 131
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Local 2D structures

We distinguish between the following local 2D structures (examples of each

structure are given in Figure 1):

. Homogeneous 2D structures: Homogeneous 2D structures are signals of uniform

intensities, and they are not much made use of in the human visual system

because retinal ganglion cells give only weak sustained responses and adapt

quickly at homogeneous intensities (Bruce et al. 2003).

. Edge-like 2D structures: Edges are low-level structures which constitute the

boundaries between homogeneous or texture-like signals. Detection of edge-like

structures in the human visual system starts with orientation sensitive cells in

V1 (Hubel and Wiesel 1969), and biological and machine vision systems depend

on their reliable extraction and utilization (Koenderink and Dorn 1982;

Marr 1982).

. Corner-like 2D structures: Corners3 are image patches where two or more

edge-like structures with significantly different orientations intersect (see, e.g.,

Guzman (1968) and Rubin (2001) for their importance in vision). It has been

suggested that the human visual system makes use of them for different tasks

like recovery of surface occlusion (Guzman 1968; Rubin 2001) and shape

interpretation (Malik 1987).

. Texture-like 2D structures: Although there is not a widely agreed definition,

textures are often defined as signals which consist of repetitive, random or

directional structures (for their analysis, extraction and importance in vision,

Figure 1. How a set of 54 patches map to the different areas of the intrinsic dimensionality
triangle. Some examples from these patches are also shown. The horizontal and vertical axes
of the triangle denote the contrast and the orientation variances of the image patches,
respectively.

132 S. Kalkan et al.
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see e.g., Tuceryan and Jain (1998). Our world consists of textures on many

surfaces, and the fact that we can reliably reconstruct the 3D structure from any

textured environment indicates that human visual system makes use of and is very

good at the analysis and the utilization of textures.

In this article, we define texture as 2D structures which have low spectral energy

and a lot of orientation variance (see Figure 1 and the following subsection).

It is locally hard to distinguish between these ‘ideal’ cases, and there are 2D

structures that carry mixed properties of these ‘ideal’ cases. The classification of the

features outlined above is a discrete one. However, a discrete classification may

cause problems as the inherent properties of the ‘mixed’ structures are lost in the

discretization process. Instead, in this article, we make use of a continuous scheme

which is based on the concept of intrinsic dimensionality (see the following

subsection for more details).

Detection of local 2D structures

In image processing, intrinsic dimensionality (iD) was introduced by Zetzsche and

Barth (1990) and was used to formalize a discrete distinction between edge-like and

junction-like structures. This corresponds to a classical interpretation of local 2D

structures in computer vision.

Homogeneous, edge-like and junction-like structures are respectively classified

by iD as intrinsically zero-dimensional (i0D), intrinsically one-dimensional (i1D) and

intrinsically two-dimensional (i2D).

When looking at the spectral representation of a local image patch (Figure 2(a)

and (b)), we see that the energy of an i0D signal is concentrated in the origin

(Figure 2(b)-top), the energy of an i1D signal is concentrated along a line

(Figure 2(b)-middle) while the energy of an i2D signal varies in more than one

dimension (Figure 2(b)-bottom).

It has been shown in Felsberg and Krüger (2003) and Krüger and

Felsberg (2003) that the structure of the iD can be understood as a triangle that

is spanned by two measures: origin variance (i.e., contrast) and line variance.

Origin variance describes the deviation of the energy from a concentration at the

origin while line variance describes the deviation from a line structure (Figure 2(b)

and (c)); in other words, origin variance measures non homogeneity of the signal

whereas the line variance measures the junctionness. The corners of the triangle

then correspond to the ‘ideal’ cases of iD. The surface of the triangle corresponds to

signals that carry aspects of the three ‘ideal’ cases, and the distance from the corners

of the triangle indicates the similarity (or dissimilarity) to ideal i0D, i1D, and i2D

signals.

The triangular structure of the intrinsic dimension is counter-intuitive, in the

first place, since it realizes a two-dimensional topology in contrast to a linear

one-dimensional structure that is expressed in the discrete counting 0, 1, and 2.

As shown in Krüger and Felsberg (2003) and Felsberg and Krüger (2003), this

triangular interpretation allows for a continuous formulation of iD in terms of 3

confidences assigned to each discrete case. This is achieved by first computing two

measurements of origin and line variance which define a point in the triangle

First-order and second-order statistical analysis 133
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(Figure 2(c)). The bary centric coordinates (Coxeter 1969) of this point in the

triangle directly lead to a definition of three confidences that add up to one:

ci0D ¼ 1� x; ci1D ¼ x� y; ci2D ¼ y: ð1Þ

These three confidences reflect the volume of the areas of the three sub-triangles

which are defined by the point in the triangle and the corners of the triangle

(Figure 2(c)). For example, for an arbitrary point P in the triangle, the area of the

sub-triangle i0D-P-i1D denotes the confidence for i2D as shown in Figure 2(c).

That leads to the decision areas for i0D, i1D and i2D as seen in Figure 2(d).

See Appendix (Felsberg and Krüger 2003; Krüger and Felsberg 2003) for more

details.

For the example image in Figure 2, computed iD is given in Figure 3.

(a) (b)

1

1
i2D

i1D0
0i0D

P

Origin variance
(contrast)

Origin variance
(contrast)

L
in

e 
va

ri
an

ce

ci2D

ci1D

ci0D

(c)
1

00

0.5

L
in

e 
va

ri
an

ce
(d)

i0D i1D

i2D

01 0.5

Figure 2. Illustration of iD (sub-figures (a) and (b) taken from Felsberg and Krüger (2003)).
(a) Three image patches for three different intrinsic dimensions. (b) The 2D spatial frequency
spectra of the local patches in (a), from top to bottom: i0D, i1D, i2D. (c) The topology of iD.
Origin variance is variance from a point, i.e., the origin. Line variance is variance from a line,
measuring the junctionness of the signal. ciND for N ¼ 0; 1; 2 stands for confidence for
being i0D, i1D and i2D, respectively. Confidences for an arbitrary point P is shown in the
Figure which reflect the areas of the sub-triangles defined by P and the corners of the triangle.
(d) The decision areas for local 2D structures.
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Figure 1 shows how a set of example local 2D structures map on to it. In Figure 1,

we see that different visual structures map to different areas in the triangle.

A detailed analysis of how 2D structures are distributed over the intrinsic

dimensionality triangle and how some visual information depends on this

distribution can be found in Kalkan et al. (2005).

Local 3D structures

To our knowledge, there does not exist a systematic and agreed classification of

local 3D structures like there is for 2D local structures (i.e., homogeneous

structures, edges, corners and textures). Intuitively, the 3D world consists of

continuous surface patches and different kinds of 3D discontinuities. During the

imaging process (through the lenses of the camera or the eye), 2D local structures

are generated by these 3D structures together with the illumination and the

reflectivity of the environment.

With this intuition, any 3D scene can be decomposed geometrically into surfaces

and 3D discontinuities. In this context, the local 3D structure of a point can be:

. Surface continuity: The underlying 3D structure can be described by one surface

whose normal does not change or changes smoothly (Figure 4(a)).

. Regular gap discontinuity: Regular gap discontinuities are occlusion boundaries,

whose underlying 3D structure can be described by a small set of surfaces with

a significant depth difference. The 2D and 3D views of an example gap

discontinuity are shown in Figure 4(d).

. Irregular gap discontinuity: The underlying 3D structure shows high

depth-variation that cannot be described by two or three surfaces. An example

of an irregular gap discontinuity is shown in Figure 4(e).

. Orientation discontinuity: The underlying 3D structure can be described by two

surfaces with significantly different 3D orientations that meet at the center of the

patch. This type of discontinuity is produced by a change in 3D orientation rather

than a gap between surfaces. An example for this type of discontinuity is shown

in Figure 4(c).

One interesting example is 3D corners of, for example, a cube. 3D corners

would be classified as regular gap discontinuities or orientation discontinuities,

Figure 3. Computed iD for the image in Figure 2, black means zero and white means one.
From left to right: ci0D, ci1D, ci2d and highest confidence marked in gray, white and black for
i0D, i1D and i2D, respectively.

First-order and second-order statistical analysis 135
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depending on the view. If the image patch includes parts of the background objects,

then there is a gap discontinuity, and the 3D corner would be classified as a gap

discontinuity. If, however, the camera centers the corner so that all the adjacent

edges of the cube are visible and no parts of other objects are visible, then the 3D

corner would be an orientation discontinuity.

(d)

(b)

(c)

(e)

(a)

(f)

(g)

(h)

(i)

(j)

Figure 4. Illustration of the types of 3D discontinuities. (a) 2D image. (b) Continuity.
(c) Orientation discontinuity. (d) Gap discontinuity. (e) Irregular gap discontinuity. (f)–(j)
The range images corresponding to (a)–(e). Note that the range images are scaled
independently for better visibility.

136 S. Kalkan et al.
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Detection of local 3D structures

In this subsection, we define our measures for the three kinds of discontinuities that

we described above; namely, gap discontinuity, irregular gap discontinuity and

orientation discontinuity. The measures for gap discontinuity, irregular gap

discontinuity and orientation discontinuity of a patch P will be denoted by

�GD(P), �IGD(P) and �OD(P), respectively. The reader who is not interested in the

technical details can jump directly to the fourth section.

Three-dimensional discontinuities are detected in studies which involve

range data processing, using different methods and under different names like

two-dimensional discontinuous edge, jump edge or depth discontinuity for

gap discontinuity; and, two-dimensional corner edge, crease edge or surface

discontinuity for orientation discontinuity (Shirai 1987; Bolle and Vemuri 1991;

Hoover et al. 1996).

In our analysis, we used chromatic range data of outdoor scenes which were

obtained from RIEGL UK Ltd (http://www.riegl.co.uk/). There were 20 scenes in

total, 10 of which are shown in Figure 5. The range of an object which does not

reflect the laser beam back to the scanner or is out of the range of the scanner cannot

be measured. These points are marked with blue in Figure 5 and are not processed

in our analysis. The horizontal and the vertical resolutions of the scenes respectively

have the following ranges: [512–2048] and [390–2290]. The average resolution of

the scenes is 1140� 1001.

Measure for gap discontinuity: �GD. Gap discontinuities can be measured or

detected in a similar way as edges in 2D images; edge detection processes

Figure 5. 10 of the 20 3D data sets used in the analysis. The points without range information
are marked in blue. The gray image shows the range data of the top-left scene.

First-order and second-order statistical analysis 137
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RGB-coded 2D images, while for a gap discontinuity one needs to process

XYZ-coded 2D images.4 In other words, gap discontinuities can be measured or

detected by taking the second-order derivative of XYZ values (Shirai, 1987).

Measurement of a gap discontinuity is expected to operate on both the horizontal

and the vertical axes of the 2D image; that is, it should be a two-dimensional

function. The alternative is to discard the topology and do an ‘edge-detection’ in

sorted XYZ values, i.e., to operate as a one-dimensional function. Although we are

not aware of a systematic comparison of the alternatives, for our analysis and for

our data, the topology-discarding gap discontinuity measurement captured the

underlying 3D structure better (of course, qualitatively, i.e., by visual inspection).

Therefore, we have adopted the topology-discarding gap discontinuity

measurement in the rest of the article.

For an image patch P of size N�N, let,

X ¼ ascending sort
��
Xi j i 2 P

��
;

Y ¼ ascending sort
��
Yi j i 2 P

��
;

Z ¼ ascending sort
��
Zi j i 2 P

��
;

ð2Þ

and also, for i¼ 1, . . ., (N�N� 2),

X� ¼
�
j ðX iþ2 � X iþ1Þ � ðX iþ1 � X iÞ j

�
;

Y� ¼
�
j ðYiþ2 � Yiþ1Þ � ðYiþ1 � YiÞ j

�
;

Z� ¼
�
j ðZiþ2 �Ziþ1Þ � ðZiþ1 � ZiÞ j

�
;

ð3Þ

where X i;Yi;Zi represents 3D coordinates of pixel i. Equation (3) takes the

absolute value of the [þ1, �2, þ1] operator.

The sets X�;Y� and Z� are the measurements of the jumps (i.e., second-order

differentials) in the sets X ;Y and Z, respectively. A gap discontinuity can be defined

simply as a measure of these jumps in these sets. In other words:

�GDðPÞ ¼
hðX�Þ þ hðY�Þ þ hðZ�Þ

3
; ð4Þ

where the function h : S ! ½0; 1� over the set S measures the homogeneity of its

argument set (in terms of its ‘peakiness’) and is defined as follows:

hðSÞ ¼
1

#ðSÞ
�

X
i2S

si

maxðSÞ
; ð5Þ

where #ðSÞ is the number of the elements of S, and si is the ith element of the set S.

Note that as a homogeneous set (i.e., a non-gap discontinuity) S produces a high

hðSÞ value, a gap discontinuity causes a low �GD value. Figure 8(c) shows the

performance of �GD on one of our scenes shown in Figure 5.

It is known that derivatives, like in Equations (2) and (3), are sensitive to noise.

Gaussian-based functions could be employed instead. In this article, we chose

simple derivatives for their faster computation times, and instead employed a more

robust processing stage (i.e., analyzing the uniformity of the distribution of

derivatives) to make the measurement more robust to noise. As shown in

Figure 8(c), this method can capture the underlying 3D structure well.

138 S. Kalkan et al.
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Measure for orientation discontinuity: �OD. The orientation discontinuity of a patch

P can be detected or measured by taking the 3D orientation difference between the

surfaces that meet in P. If the size of the patch P is small enough, the surfaces can be,

in practice, approximated by 2-pixel wide unit planes.5

The histogram of the 3D orientation differences between every pair of unit planes

forms one cluster for continuous surfaces and two clusters for orientation

discontinuities.

For an image patch P of size N�N pixels, the orientation discontinuity measure

is defined as:

�ODðPÞ ¼  Hn
n
�ði; jÞ j i; j 2 planesðPÞ; i 6¼ j

o� �� �
; ð6Þ

where HnðSÞ is a function which computes the n-bin histogram of its argument set

S;  ðSÞ is a function which finds the number of clusters in S; planes (P) is a function

which fits 2-pixel-wide unit planes to 1-pixel-apart points in P using singular value

decomposition;6 and, �ði; jÞ is the angle between planes i and j.

For a histogram H of size NH, the number of clusters is given by:

 ðSÞ ¼

PNHþ1
i¼1 neqð½Hi > maxðHÞ=10�; ½Hi�1 > maxðHÞ=10�Þ

2
; ð7Þ

where the function neq returns 1 if its parameters are not equal and returns 0,

otherwise; Hi represents the ith element of the histogram H; H0 and HNHþ1 are

defined as zero; and, maxðHÞ=10 is an empirically set threshold. Figure 6 shows two

example clusters for a continuous surface and an orientation discontinuity.

Figure 8(d) shows the performance of �OD on one of our scenes shown in

Figure 5.

Measure for irregular gap discontinuity: �IGD. Irregular gap discontinuity of a patch

P can be measured using the observation that an irregular-gap discontinuous patch

in a real image usually consists of small surface fragments with different 3D

orientations. Therefore, the spread of the 3D orientation histogram of a patch P can

measure the irregular gap discontinuity of P.

Similar to the measure for orientation discontinuity defined in the previous two

subsections, the histogram of the differences between the 3D orientations of the unit

planes (which are of 2 pixels wide) is analyzed. For an image patch P of size N�N

pixels, the irregular gap discontinuity measure is defined as:

�IGDðPÞ ¼ h Hn
�
�ði; jÞ j i; j 2 planesðPÞ; i 6¼ j

�� �� �
; ð8Þ

where planes (P), �ði; jÞ, HnðSÞ and hðSÞ are as defined in the previous subsection.

Figure 8(e) shows the performance of �IGD on one of our scenes shown in Figure 5.

Combining the measures. The relation between the measurements and the types of

the 3D discontinuities are outlined in Table 1 which entails that an image patch P is:

. gap discontinuous if �GDðPÞTg and �IGDðPÞTig,

. irregular-gap discontinuous if �GDðPÞ < Tg and �IGDðPÞTig ,

. orientation discontinuous if �GDðPÞ � Tg and �OD > 1,

. continuous if �GDðPÞ � Tg and �ODðPÞ � 1.
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For our analysis,N, whereN �N is the size of the patches, is set to 10 pixels. Bigger

values for N means larger support region for the measures, in which case different

kinds of 3D discontinuities might interfere in the patch. On the other hand, using

smaller values would make the measures very sensitive to noise. Other thresholds Tg

and Tig are respectively set to 0.4 and 0.6. These values are empirically determined

by testing the measures over a large set of samples. Different values for these

thresholds may result in wrong classifications of local 3D structures and may lead to

different results than those presented in this article. Similarly, the number of bins, n,

in Hn is empirically determined as 20.

Figure 7 shows the performance of the measures on two artificial scenes, one for

gap discontinuity and one for orientation discontinuity for a set of depth and angle

differences between planes. In the figure, the detected discontinuity type is shown

for each pixel. We see that gap discontinuity can be detected reliably even if the gap

difference is low. The sensitivity of the orientation discontinuity measure is around

Figure 6. Example histograms and the number of clusters that the function  (S) computes.
 (S) finds one cluster in the left histogram and two clusters in the right histogram. Red line
marks the threshold value of the function. x axis denotes the values for 3D orientation
differences.

Table I. The relation between the measurements and the types of the 3D

discontinuities.

Discontinuity type �GD �IGD �OD

Continuity High value Don’t care 1

Gap discontinuity Low value Low value Don’t care

Irregular gap discontinuity Low value High value Don’t care

Orientation gap discontinuity High value Don’t care >1
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160 degrees. However, the sensitivity of the measures would be different in real

scenes due to the noise in the range data.

For a real example scene from Figure 5, the detected discontinuities are shown in

Figure 8(a). We see that the underlying 3D structure of the scene is reflected in

Figure 8(a).

Note that this categorical combination of the measures appears to be against

the motivation that has been provided for the classification of local 2D structures

where we had advocated a continuous approach. There are two reasons: (1) with

continuous 3D measures, the dimensionality of the results would be four

(origin variance, line variance, a 3D measure and the normalized frequency of the

signals), which is difficult to visualize and analyze. In fact, the number of triangles

that had to be shown in Figure 9 would be 12, and it would be very difficult to

interpret all the triangles together. (2) It has been argued by several studies

(Huang et al. 2000; Yang and Purves 2003) that range images are much simpler and
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(b)

(a)

(c)

(d)

d = 0 m d = 0.02 md = 0.01 m d = 0.03 m d = 0.04 m

a = 117 deg.a = 180 deg. a = 90 deg.a = 153 deg.a = 171 deg.

Figure 7. Results of the combined measures on artificial data. The camera and the range
scanner are denoted by c. (a) Gap discontinuity tests. There are two planes which are
separated by a distance d where d ¼ 0; 0:01; 0:02; 0:03; 0:04 meters. (b) The detected
discontinuities. Dark blue marks the boundary points where the measures are not applicable.
Blue and orange respectively correspond to detected continuities and gap discontinuities. (c)
Orientation discontinuity tests. There are two planes which are connected but separated with
an angle a where a¼ 180; 171; 153; 117; 90 degrees. (d) The detected discontinuities.
Dark blue marks the boundary points where the measures are not applicable. Blue and green
respectively correspond to detected continuities and orientation discontinuities.
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less complex to analyze than 2D images. This suggests that it might be safer to have

a categorical classification for range images.

First-order statistics: Analysis of the relation between local 3d and

2d structure

In this section, we analyze the relation between local 2D structures and local 3D

structure; namely, the likelihood of observing a 3D structure given the correspond-

ing 2D structure (i.e., P(3D structure j 2D structure).

Results and discussion

For each pixel of the scene (except where range data is not available), we computed

the 3D discontinuity type and the intrinsic dimensionality. Figure 8(a) and (b) show

the images where the 3D discontinuity and the intrinsic dimensionality of each pixel

are marked with different colors.

(a) (b)

(d)(c) (e)

Figure 8. The 3D and 2D information for one of the scenes shown in Figure 5. Dark blue
marks the points without range data. (a) 3D discontinuity. Blue: continuous surfaces, light
blue: orientation discontinuities, orange: gap discontinuities and brown: irregular gap
discontinuities. (b) Intrinsic dimensionality. Homogeneous patches, edge-like and corner-
like structures are encoded in colors brown, yellow and light blue, respectively. (c) Gap
discontinuity measure �GD. (d) Orientation discontinuity measure �OD. (e) Irregular gap
discontinuity measure �IGD.
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Having the 3D discontinuity type and the information about the local 2D

structure of each point, we wanted to analyze what the likely underlying 3D

structure is for a given local 2D structure; that is, the conditional likelihood

(i.e., P(3D discontinuity j 2D structure). Using the available 3D discontinuity type

and the information about the local 2D structure, other measurements or

correlations between the range data and the image data could also be computed

in a further study.

P(3D discontinuity j 2D structure) is shown in Figure 9. Note that the four

triangles in Figure 9(a–d) add up to one for all points of the triangle.

In Figure 10, maximum likelihood estimates (MLE) of local 3D structures, given

local 2D structures, are provided. Figure 10(a) shows the MLE from the

distributions in Figure 9. Due to high likelihoods, gap discontinuities and

continuities are the most likely estimates, given local 2D structures. Figure 10(b)

shows the MLE from the normalized distributions: i.e., each triangle in Figure 9 is

Figure 9. Pð3D discontinuity j 2D structureÞ. The schematic insets indicate the locations of
the different types of 2D structures inside the triangle for easy reference (the letters C, E,
H, T represent corner-like, edge-like, homogeneous and texture-like structures).
(a) PðContinuity j 2D structureÞ. (b) PðGap discontinuity j 2D structureÞ. (c) P (Irregular
gap discontinuity | 2D structure). (d) PðOrientation discontinuity j 2D structureÞ.
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normalized within itself so that its maximum likelihood is 1. This way we can see the

mostly likely local 2D structures for different local 3D structures.

. Figure 9(a) shows that homogeneous 2D structures are very likely to be formed

by 3D continuities as the likelihood P(Continuity j 2D structure) is very high

(bigger than 0.85) for the area where homogeneous 2D structures exist (marked

with H in Figure 9(a)). This observation is confirmed in the MLE estimates of

Figure 10. Many surface reconstruction studies make use of a basic assumption

that there is a smooth surface between any two points in the 3D world, if there is

no contrast difference between these points in the image. This assumption has

been first called as ‘no news is good news’ in Grimson (1983). Figure 9(a)

quantifies ‘no news is good news’ and shows for which structures and to what

extent it holds: in addition to the fact that no news is in fact good news,

Figure 9(a) shows that news, especially texture-like structures and edge-like

structures, can also be good news (see subsequently). Homogeneous 2D

structures cannot be used for depth extraction by correspondence-based

methods, and only weak or no information from these structures is processed

by the cortex. Unfortunately, the vast majority of local image structure is of this

type (Kalkan et al. 2005). On the other hand, homogeneous structures indicate

‘no change’ in depth which is the underlying assumption of interpolation

algorithms.

. Edges are considered as important sources of information for object recognition

and reliable correspondence finding. Approximately 10% of local 2D structures

are of that type (Kalkan et al. 2005). Figure 9(a–d) together with the MLE

estimates in Figure 10 show that most of the edges are very likely to be formed by

continuous surfaces or gap discontinuities. Looking at the decision areas for

different local 2D structures shown in Figure 2(d), we see that the edges formed

by continuous surfaces are mostly low-contrast edges (Figure 9(a)); i.e., the

origin variance is close to 0.5. Little percentage of the edges are formed by

orientation discontinuities (Figure 9(d)).

Figure 10. Maximum likelihood estimates of local 3D structures, given local 2D structures.
Numbers 1, 2, 3 and 4 represent continuity, gap discontinuity, orientation discontinuity and
irregular gap discontinuity, respectively. (a) Raw maximum likelihood estimates. Note that
the estimates are dominated by continuities and gap discontinuities. (b) Maximum likelihood
estimates from normalized likelihood distributions: the triangles provided in Figure 9 are
normalized within themselves so that the maximum likelihood of PðX j 2D structureÞ is 1 for
X being continuity, gap discontinuity, irregular gap discontinuity and orientation
discontinuity.
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. Figures 9(a) and (b) show that well-defined corner-like structures are formed

by either gap discontinuities or continuities.

. Figures 9(d) and 10 show that textures also are very likely to be formed by surface

continuities and irregular gap discontinuities. Finding correspondences becomes

more difficult with the lack or repetitiveness of the local structure. The estimates

of the correspondences at texture-like structures are naturally less reliable. In this

sense, the likelihood that certain textures are formed by continuous surfaces

(shown in Figure 9(a)) can be used to model stereo-matching functions that

include interpolation as well as information about possible correspondences

based on the local image information.

It is remarkable that local 2D structures mapping to different sub-regions in the

triangle are formed by rather different 3D structures. This clearly indicates that

these different 2D structures should be used in different ways for surface

reconstruction.

Second-order statistics: Analysis of co-planarity between 3D edges and

continuous patches

As already mentioned in the first section, it is not possible to extract depth at

homogeneous 2D structures (in the rest of the article, a homogeneous 2D structure

that corresponds to a 3D continuity will be called a mono) using methods that make

use of multiple views for 3D reconstruction. In this section, by making use of the

ground truth range data, we investigate co-planarity relations between the depth

at homogeneous 2D structures and the edges that bound them. This relation is

illustrated for a few examples in Figure 11.

For the analysis, we used the chromatic range data set that we also used for the

first-order analysis in the fourth section. Samples from the dataset are displayed in

Figure 5.

In the following subsection, we explain how we analyze the relation.

The results are presented and discussed in the subsection ‘Results and discussions’

further.

(a) (b) (c)

Figure 11. Illustration of the relation between the depth of homogeneous 2D
structures and the bounding edges. (a) In the case of the cube, the depth of homogeneous
image area and the bounding edges are related. However, in the case of round surfaces, (b)
the depth of homogeneous 2D structures may not be related to the depth of the bounding
edges. (c) In the case of a cylinder, we see both cases of the relation as illustrated in (a)
and (b).
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Methods

This subsection provides the procedural details of how the analysis is performed.

The analysis is performed in three stages: First, local 2D and 3D representations

of the scene are extracted from the chromatic range data. Second, a data set is

constructed out of each pair of edge features, associating the monos that are likely to

be coplanar to those edges to them (see subsection ‘Collecting the data set’ for what

we mean by relevance). Third, the coplanarity between the monos and the edge

features that they are associated to are investigated. An overview of the analysis

process is sketched in Figure 12, which roughly lists the steps involved.

Representation. Using the 2D image and the associated 3D range data, a

representation of the scene is created in terms of local compository 2D and 3D

features denoted by �. In this process, first, 2D features are extracted from the

image information, and at the locations of these 2D features, 3D features are

computed. The complementary information from the 2D and 3D features are then

merged at each valid position, where validity is only defined by having enough range

data to extract a 3D representation.

For homogeneous and edge-like structures, different representations are needed

due to different underlying structures. For this reason, we have two different

definitions of � denoted respectively by �e (for edge-like structures) and �m

(for monos) and formulated as:

�m ¼ ðX3D;X2D; c;pÞ; ð9Þ

�e ¼ ðX3D;X2D; �2D; c1; c2;p1;p2Þ; ð10Þ

where X3D and X2D denote 3D and 2D positions of the 3D entity; �2D is the 2D

orientation of the 3D entity; c1 and c2 are the 2D color representation of the

surfaces of the 3D entity; c represents the color of �m; p1 and p2 are the planes that

represent the surfaces that meet at the 3D entity; and p represents the plane of

�m (see Figure 13). Note that �m does not have any 2D orientation information

Investigate the coplanarity
relations between pairs of

edges and the monos

Analysis

Data collection

Representation

Local 2D
representation

Local 3D
representation

3D
discontinuity

Go over every
proximate pair of

edge features

Associate the
“interesting” monos

to each pair

Figure 12. Overview of the analysis process.
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(because it is undefined for homogeneous structures), and �e has two color and

plane representations to the ‘left’ and ‘right’ of the edge.

The process of creating the representation of a scene is illustrated in Figure 13.

In our analysis, the entities are regularly sampled from the 2D information.

The sampling size is 10 pixels. See Krügar et al. (2003) and Krüger and Wörgötter

(2005) for details.

Extraction of the planar representation requires knowledge about the type of local

3D structure of the 3D entity (see Figure 13). Namely, if the 3D entity is a

continuous surface, then only one plane needs to be extracted; if the 3D entity is an

orientation discontinuity, then there will be two planes for extraction; if the 3D

entity is a gap discontinuity, then there will also be two planes for extraction.

In the case of a continuous surface, a single plane is fitted to the set of 3D points

in the 3D entity in question. For orientation discontinuous 3D structures,

extraction of the planar representation is not straight-forward. For these structures,

our approach was to fit unit-planes7 to the 3D points of the 3D entity and find the

two clusters in these planes using k-means clustering of the 3D orientations of

the small planes. Then, one plane is fitted for each of the two clusters, producing

the bi-fold planar representation of the 3D entity.

Color representation is extracted in a similar way. If the image patch is a

homogeneous structure, then the average color of the pixels in the patch is taken to

be the color representation. If the image patch is edge-like, then it has two colors

separated by the line which goes through the center of the image patch and which

2D image Range image Discontinuous image

Local 2D representation Local 3D representation

OR
OR

c1,c2

f2D

c
p

p1,p2

πm = (X3D,X2D,c,p)

πe = (X3D, X2D, f2D, c1, c2, p1, p2)

Figure 13. Illustration of the representation of a 3D entity. From the 2D and 3D information,
local 2D and 3D representation is extracted.
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has the 2D orientation of the image patch. In this case, the averages of the colors of

the different sides of the edge define the color representation in terms of c1 and c2.

If the image patch is corner-like, the color representation becomes undefined.

Collecting the data set. In our analysis, we form pairs out of �e’s that are close

enough (see subsequently), and for each pair, we check whether monos in the scene

are coplanar to the elements of the pair or not. As there are plenty of monos in the

scene, we only consider a subset of monos for each pair of �e that we suspect to be

relevant to the analysis because otherwise, the analysis becomes computationally

intractable. The situation is illustrated in Figure 14(a). In this Figure, two �e and

three regions are shown; however, only one of these regions (i.e., region A) is likely

to have coplanar monos (Figure 11(a)). This assumption is based on the observation

50px

10px

Region A

Intersection point (IP)

Region B

Region C

(a)

(e)

(b)

(c)

(d)

100px

Intersection point (IP)

eπ1

eπ2

eπ2

eπ1 (X2D)′2

(X2D)2

f2=(X2D)1

f1=(X2D)′1

Figure 14. (a) Given a pair of edge features, coplanarity relation can be investigated for
homogeneous image patches inside regions A, B and C. However, due to computational
intractability reasons, this article is concerned in making the analysis only in region A (see the
text for more details). (b)–(d) A few different configurations of edge features that might be
encountered in the analysis. The difficult part of the investigation is to make these different
configurations comparable, which can be achieved by fitting a shape (like square, rectangle,
circle, parallelogram, ellipse) to these configurations. (e) The ellipse, among the alternative
shapes (i.e., square, rectangle, circle, parallelogram) turns out to describe the different
configurations shown in (b)–(d) better. For this reason, ellipse is for analyzing coplanarity
relations in the rest of the article. See the text for details on how the parameters of the ellipse
are set.
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of how objects are formed in the real world: objects have boundaries which consists

of edge-like structures who bound surfaces, or image areas, of the object. The image

area that is bounded by a pair of edge-like structures is likely to be the area that has

the normals of both structures. For convex surfaces of the objects, the area that is

bounded belongs to the object; however, in the case of concave surfaces, the area

covered may also be from other objects, and the extent of the effect of this is part of

the analysis.

Let P denote the set of pairs of proximate �e’s whose normals intersect. P can be

defined as:

P ¼

n
ð�e1; �

e
2Þ j 8�

e
1; �

e
2; �

e
1 2 �ð�e2Þ; Ið? ð�e1Þ;? ð�e2ÞÞ

o
; ð11Þ

where �ð�eÞ is the N-pixel-2D-neighborhood of �e8; ? ð�eÞ is the 2D line

orthogonal to the 2D orientation of �e, i.e., the normal of �e; and, Iðl1; l2Þ is true

if the lines l1 and l2 intersect. We have taken N to be 100.

It turns out that there are a lot of different configurations possible for a pair of

edge features based on relative position and orientation, which are illustrated for a

few cases in Figure 14(b)–(d). The difficult part of the investigation is to be able to

compare these different configurations. One way to achieve this is to fit a shape to

region A which can normalize the coplanarity relations by its size in order to make

them comparable (see subsection ‘Results and discussions’ further for more

information).

The possible shapes would be square, rectangle, parallelogram, circle and ellipse.

Among the alternatives, it turns out that an ellipse (1) is computationally cheap

and (2) fits to different configurations of �1 and �2 under different orientations and
distances without leaving region A much. Figure 14(e) demonstrates the ellipse

generated by an example pair of edges in Figure 14(a). The center of the ellipse is at

the intersection of the normals of the edges, which we call the intersection point (IP) in

the rest of the article.

The parameters of an ellipse are composed of two focus points f1, f2 and the minor

axis b. In our analysis, the more distant 3D edge determines the foci of the ellipse

(and, hence, the major axis), and the other 3D edge determines the length of the

minor axis. Alternatively, the ellipse can be constructed by minimizing an energy

functional which optimizes the area of the ellipse inside region A and going through

the features �1 and �2. However, for the sake of speed issues, the ellipse is

constructed without optimization.

See ‘Parameters of an ellipse’ in Appendix for details on how we determine the

parameters of the ellipse.

For each pair of edges in P, the region to analyze coplanarity is determined by

intersecting the normals of the edges. Then, the monos inside the ellipse are

associated to the pair of edges.

Note that a �e has two planes that represent the underlying 3D structure.

When �e’s become associated to monos, only one plane, the one that points into the

ellipse, remains relevant. Let �se denote the semi-representation of �ewhich can be

defined as:

�se ¼ ðX3D;X2D; c;pÞ: ð12Þ

Note that �se is equivalent to the definition of �m in equation (10).
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Let T denote the data set which stores P and the associated monos which can be

formulated as:

T ¼
�
ð�se1 ; �

se
2 ; �

mÞ j ð�e1; �
e
2Þ 2 P; �m 2 S

m; �m 2 Eð�e1; �
e
2Þ
�
; ð13Þ

where S
m is the set of all �m.

A pair of �e’s and the set of monos associated to them are illustrated in Figure 15.

The figure shows the edges and the monos (together with ellipse) in 2D and 3D.

Definition of coplanarity. Two entities are coplanar if they are on the same plane.

Coplanarity of edge features and monos is equivalent to coplanarity of two planar

patches: two planar patches A and B are coplanar if (1) they are parallel and (2) the

planar distance between them is zero.

See ‘Definition of coplanarity’ in Appendix for more information.

Results and discussions

The data set T defined in Equation (13) consists of pairs of �e1, �
e
2 and the associated

monos. Using this set, we compute the likelihood that a mono is coplanar with �e1
and/or �e2 against a distance measure.

(a) (b)

(c) (d)

Figure 15. Illustration of a pair of �e and the set of monos associated to them. (a) The input
scene. A pair of edges (marked in blue) and the associated monos (marked in green) with an
ellipse (drawn in black) around them shown on the input image. See (c) for a zoomed version.
(b) The 3D representation of the scene in our 3D visualization software. This representation
is created from the range data corresponding to (a) and is explained in the text. (c) The part
of the input image from (a) where the edges, the monos and the ellipse are better visible.
(d) A part of the 3D representation (from (b)) corresponding to the pair of edges and
the monos in (c) is displayed in detail where the edges are shown with blue margins;
the monos with the edges are shown in green (all monos are coplanar with the edges).
The 3D entities are drawn in rectangles because of the high computational complexity for
drawing circles.
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The results of our analysis are shown in Figures 16, 18 and 19.

In Figure 16(b), the likelihood of the coplanarity of a mono against the

distance to �e1 or �e2 is shown. This likelihood can be denoted formally as

Pðcopð�m; �e1 and �e2Þ j dN ð�
m; �eÞÞ where copð�m; �e1 and �e2Þ is defined as

copð�e1; �
e
2Þ ^ copð�m; �eÞ, and �e is either �e1 or �e2. The normalized distance

measure9 dN ð�
m; �eÞ is defined as:

dN ð�
m; �eÞ ¼

dð�m; �eÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dð�e1; IPÞ

2
þ dð�e2; IPÞ

2
q ; ð14Þ

where �e is either �e1 or �e2, and IP is the intersection point of �e1 and �e2. We see in

Figure 16(b) that the likelihood decreases when a mono is more distant from an

edge. However, when the distance measure gets closer to one, the likelihood

increases again. This is because, when a mono gets away from either �e1 or �e2, it
gets closer to the other �e.

In Figure 16(a), we see the unconstrained case of Figure 16(b); i.e., the case

where there is no information about the coplanarity of �e1 and �e2; namely, the

likelihood Pðcopð�m; �eÞ j dN ð�
m; �eÞÞ where �e is either �e1 or �e2. The comparison

with Figure 16(b) shows that the existence of another edge in the neighborhood

increases the likelihood of finding coplanar structures. As there is no other coplanar

edge in the neighborhood, the likelihood does not increase when the distance is

close to one (compare with Figure 16(b)).

It is intuitive to expect symmetries in Figure 16. However, as (1) the roles of �e1
and �e2 in the ellipse are fixed, and (2) one �e is guaranteed to be on the major axis,

and the other �e may or may not be on the minor axis, the symmetry is not

observable in Figure 16.
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(a) (b)

Figure 16. Likelihood distribution of coplanarity of monos. In each sub-figure, left-plot shows
the likelihood distribution whereas right-plot shows the frequency distribution. (a)
The likelihood of the coplanarity of a mono with �e1 or �e2 against the distance to �e1 or
�e2 . This is the unconstrained case; i.e., the case where there is no information about the
coplanarity of �e1 and �e2 . (b) The likelihood of the coplanarity of a mono with �e1 and �e2
against the distance to �e1 or �e2 .
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To see the effect of the coplanarity relation on the results, we reproduced

Figure 16(a) and (b) with a more strict coplanarity relation (namely, we set the

thresholds Tp and Td to 10 degrees and 0.2, respectively. See Appendix for more

information about these thresholds). The results with more constrained coplanarity

relation are shown in Figure 17. Although the likelihood changes quantitatively, the

figure shows the qualitative behaviours that have been observed with the standard

thresholds. Moreover, we cross-checked the results for subsets of the original

dataset (results not provided here) and confirmed the same qualitative results.

In Figure 18, the likelihood of the coplanarity of a mono against the distance to IP

(i.e., Pðcopð�m; �e1 and �e2Þ j dN ð�
m; IPÞÞ) is shown. We see in the figure that the

likelihood shows a flat distribution against the distance to IP.

In Figure 19, the likelihood of the coplanarity of a mono against the distance to �e1
and �e2 (i.e., Pðcopð�

m; �e1 and �e2Þ j dN ð�
m; �e1Þ; dN ð�

m; �e2ÞÞ ) is shown. We see that

when �m is close to �e1 or �e2, it is more likely to be coplanar with �e1 and �e2 than

when it is equidistant to both edges. The reason is that, when �m moves away from

an equidistant point, it becomes closer to the other edge, in which case the

likelihood increases as shown in Figure 16(a).

The results, especially Figure 16(a) and (b) confirms the importance of the

relation illustrated in Figure 11(a).

Discussion

Summary of the findings

The ‘Results and discussion’ in the fourth section analyzed the likelihood

Pð3D structure j 2D structureÞ. In this section, we confirm and quantify the
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1
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dN(p m, p e)
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dN(p m, p e)

P(cop(p m, p e
1 & p e

2) | d(p m, p e)

Figure 17. Likelihoods from Figure 16(a) and (b) with a more strict coplanarity relation
(namely, we set the thresholds Tp and Td to 10 degrees and 0.2, respectively. See Appendix
for more information about these thresholds). (a) Figure 16(a) with more strict coplanarity
relation. (b) Figure 16(b) with more strict coplanarity relation.
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assumptions used in several surface interpolation studies. Our main findings from

this section are as follows:

. As expected, homogeneous 2D structures are formed by continuous surfaces.

. Surprisingly, considerable amount of edges and texture-like structures are likely

to be formed by continuous surfaces too. However, we confirm the expectation

that gap discontinuities and orientation discontinuities are likely to be the

underlying 3D structure for edge-like structures. As for texture-like structures,

they may also be formed by irregular gap discontinuities.

. Corner-like structures, on the other hand, are mainly formed by gap

discontinuities.

dN(p m, p e
1)

d N
(p

m
, p

e 2)

P(cop(p m, p e
1 & p e

2) | d(p m, p e
1), d(p m, p e

2)
1

0.75

0.50

0.25

0

d N
(p

m
, p

e 2)
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Figure 19. The likelihood of the coplanarity of a mono against the distance to �e1 and �e2 .
Left-plot shows the likelihood distribution whereas right-plot shows the frequency
distribution.
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Figure 18. The likelihood of the coplanarity of a mono against the distance to IP. Left-plot
shows the likelihood distribution whereas right-plot shows the frequency distribution.
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In ‘Results and discussion’ of the fifth section, we investigated the predictability of

depth at homogeneous 2D structures. We confirm the basic assumption that closer

entities are very likely to be coplanar. Moreover, we provide results showing that this

likelihood increases if there are more edge features in the neighborhood.

Interpretation of the findings

Existing psychophysical experiments (Collett 1985; Anderson et al. 2002),

computational theories (Barrow and Tenenbaum 1981; Grimson 1982;

Terzopoulos 1988) and the observation that humans can perceive depth at weakly

textured areas suggest that in the human visual system, an interpolation process is

realized that, starting with the local analysis of edges, corners and textures,

computes depth also in areas where correspondences cannot easily be found.

This article was concerned with the analysis of the statistics that might be involved

in such an interpolation process, by making use of chromatic range data.

In the first part (fourth section), we analyzed which local 2D structures suggest a

depth interpolation process. Using natural images, we showed that homogeneous

2D structures correspond to continuous surfaces, as suggested and utilized by some

computational theories of surface interpolation (Grimson 1983). On the other hand,

a considerable proportion of edge-like structures lie on continuous surfaces

(Figure 9(a)); i.e., a contrast difference does not necessarily mean a depth

discontinuity. This suggests that interpreting edges in combination with neighbor-

ing corners or edges is important for understanding the underlying 3D structure

(Barrow and Tenenbaum 1981).

The results from the fourth section are useful in several contexts:

. Depth interpolation studies assume that homogeneous image regions are part of

the same surface. Such studies can be extended with the statistics provided here

as priors in a Bayesian framework. This extension would allow making use of the

continuous surfaces that a contrast difference (caused by textures or edge-like

structures) might correspond to. Acquiring range data from a scene is a time-

consuming task compared to image acquisition, which lasts on the order of

seconds even for high resolutions. In Torres-Mendez and Dudek (2006), for

mobile robot environment modeling, instead of making a full-scan of the whole

scene, only partial range scan is performed due to time constraints. This partial

range data is completed by using a Markov Random Field which is trained from a

pair of complete range and the corresponding image data. In Torres-Mendez and

Dudek (2006), the partial range data is produced in a regular way; i.e., every n-th

scan-column is neglected. This assumption, however, may introduce aliasing in

the 3D data acquired from natural images using depth cues, and therefore, their

method may not be applicable. Nevertheless, it could possibly be improved by

utilizing the priors introduced in this article.

. Automated registration of range and color images of a scene is crucial for several

purposes like extracting 3D models of real objects. Methods that align edges

extracted from the intensity image with the range data already exist (Laycock and

Day 2006). These methods can be extended with the results presented in this

article in a way that not only edges but also other 2D structures are used for

alignment. Such an extension also allows a probabilistic framework by utilizing

154 S. Kalkan et al.
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the likelihood Pð3D structure j 2D structureÞ. Moreover, making use of local 3D

structure types that are introduced in this article can be more robust than just

a gap discontinuity detection. Such an extension is possible by maximizing the

following energy function:

EðR;T Þ ¼

Z
u;v

Pð3D structure at ðu; vÞ j 2D structure at ðu; vÞÞdudv; ð15Þ

where R and T are translation and rotation of the range data in 3D space

respectively.

In the second part (fifth section), we analyzed whether depth at homogeneous 2D

structures is related to the depth of edge-like structures in the neighborhood.

Such an analysis is important for understanding the possible mechanisms that could

underlie depth interpolation processes. Our findings show that an edge feature

provides significant evidence for making depth prediction at a homogeneous image

patch that is in the neighborhood. Moreover, the existence of a second edge feature

in its neighborhood which is not collinear with the first edge feature increases the

likelihood of the prediction.

Using second-order relations and higher order features for representing the 2D

image and 3D range data, we produce confirming results that the range images

are simpler to analyze compared to 2D images (Huang et al. 2000; Yang and

Purves 2003).

By extracting a more complex representation than existing range-data analysis

studies, we could point to the intrinsic properties of the 3D world and its relation to

the image data. This analysis is important because (1) it may be that the human

visual system is adapted to the statistics of the environment (Brunswik and Kamiya

1953; Knill and Richards 1996; Olshausen and Field 1996; Krueger 1998; Purves

and Lotto 2002; Rao et al. 2002), and (2) it may be used in several computer vision

applications (for example, depth estimation) in a similar way as in (Zhu 1999;

Elder and Goldberg 2002; Elder et al. 2003; Pugeault et al. 2004).

In our current work, the likelihood distributions are being used for estimating the

3D depth at homogeneous 2D structures from the depth of bounding edge-like

structures.

Limitations of the current work

The first limitation is due to the type of scenes that have been used; i.e., scenes

of man-made environments which also included trees. Alternative scenes could

include pure forest scenes or scenes taken from an environment with totally round

objects. However, we believe that our data set captures the general properties of the

scenes that a human being encounters in daily life.

Different scenes might produce quantitatively different but qualitatively similar

results. For example, forest scenes would produce much more irregular gap

discontinuities than the current scenes; however, our conclusions regarding the link

between textures and irregular gap discontinuities would still hold. Moreover,

coplanarity relations would be harder to predict for such scenes since (depending on

the scale) surface continuities are harder to find; however, on a bigger scale, some

forest scenes are likely to produce the same qualitative results presented in

First-order and second-order statistical analysis 155
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this article because of piecewise planar leaves which are separated by gap

discontinuities.

It should be noted that acquisition of range data with color images is very hard for

forest scenes since the color image of the scene is taken after the scene is scanned

with the scanner. During this period, the leaves and the trees may move (due to

wind etc.), making the range and the color data inconsistent. In office

environments, a similar problem arises: due to lateral separation between the

digital camera and range scanner, there is the parallax problem, which again

produces inconsistent range–color association. For an office environment, a small-

scale range scanner needs to be used.

The statistics presented in this article can be extended by analyzing forest scenes,

office scenes etc. independently. The comparison of such independent analyses

should provide more insights into the relations that this article have investigated but

we believe that the qualitative conclusions of this article would still hold.

It would be interesting to see the results presented in the article by changing the

measure for surface continuity so that it can separate planar and curved surfaces.

We believe that such a change would effect only the second part of the article.
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Notes

[1] In this article, a relation is first-order if it involves two entities and an event between

them. Analogously, a is second-order if there are three entities and (at least) two

events between them.

[2] In this article, chromatic 3D range data means range data which has associated real-

world color information. The color information is acquired using a digital camera

which is calibrated with the range scanner.

[3] In this article, for the sake of simplicity, junctions are called corners, too.

[4] Note that XYZ and RGB coordinate systems are not the same. However, detection of

gap discontinuity in XYZ coordinates can be assumed to be a special case of edge

detection in RGB coordinates.

[5] Note that using bigger planes have the disadvantage of losing accuracy in positioning

which is very crucial for the current analysis.

[6] Singular value decomposition is a standard technique for fitting planes to a set of

points. It finds the perfectly fitting plane if it exists; otherwise, it returns the least-

squares solution.

[7] By unit-planes, we mean planes that are fitted to the 3D points that are 1-pixel apart in

the 2D image.

[8] In other words, the Euclidean image distance between the structures should be less

than N.

[9] In the following plots, the distance means the Euclidean distance in the image

domain.
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Appendix

Parameters of an ellipse

Let us denote the position of two 3D edges �e1; �
e
2 by ðX2DÞ1 and ðX2DÞ2 respectively.

The vectors between the 3D edges and IP (let us call l1 and l2) can be defined as:

l1 ¼ ððX2DÞ1 � IPÞ;

l2 ¼ ððX2DÞ2 � IPÞ:
ðA1Þ

Having defined l1 and l2, the ellipse Eð�e1; �
e
2Þ is as follows:

Eð�e1; �
e
2Þ ¼

f1 ¼ ðX2DÞ1; f2 ¼ ðX2DÞ
0
1; b ¼ jl2j if jl1j > jl2j;

f1 ¼ ðX2DÞ2; f2 ¼ ðX2DÞ
0
2; b ¼ jl1j otherwise:

�
ðA2Þ
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where ðX2DÞ
0 is symmetrical with X2D around the intersection point and on the line

defined by X2D and IP (as shown in Figure 14(e)).

Definition of coplanarity

Let �s denote either a semi-edge �se or a mono �m. Two �s are coplanar iff they are

on the same plane. When it comes to measuring coplanarity, two criteria need to be

tested:

(i) Angular criterion: For two �s to be coplanar, the angular difference between

the orientation of the planes that represent them should be less than a

threshold. A situation is illustrated in Figure A1(a) where angular criterion

holds but the planes are not coplanar.

(ii) Distance-based criterion: For two �s to be coplanar, the distance between the

center of the first �s and the plane defined by the other �s should be less than a

threshold. In Figure A1(b), B and C are at the same distance to the plane P

which is the plane defined by the planar patch A. However, C is more distant to

the center of A than B, and in this article, we treat that C is more coplanar to A

than B is to A. The reason for this can be clarified with an example: assume that

A, B and C are all parallel, and that the planar and the Euclidean distances

between A and B are both D units, and between A and C are respectively D and

n�D. It is straightforward to see that although B and C have the same planar

distances to A, for n � 1, C should have a higher coplanarity measure.

It is sufficient to combine these two criteria as follows:

copð�s1; �
s
2Þ ¼ �ðp�

s
1 ; p�

s
2Þ < Tp and

dðp�
s
1 ; �s2Þ=dð�

s
1; �

s
2Þ < Td; ðA3Þ

where p�
s

is the plane associated to �s; �ðp1;p2Þ is the angle between the

orientations of p1 and p2; and, dð:; :Þ is the Euclidean distance between two entities.

In our analysis, we have empirically chosen Tp and Td as 20 degrees and 0.5,

respectively. Again, like the parameters set in ‘Combining the measures’ in third

section, these values are determined by testing the coplanarity measure over

B

A

(a)

d

A

B

C

P

d

(b)

Figure A1. Criteria for coplanarity of two planes. (a) According to the angular-difference
criterion of coplanarity, entities A and B will be measured as coplanar although they are on
different planes. In (b), P is the plane defined by entity A. According to the distance-based
coplanarity definition, entities B and C have the same measure of coplanarity. However,
entity C which is more distant to entity A should have a higher measure of coplanarity than
entity B although they have the same distance to plane P (see the text).
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different samples. Tp is the limit for angular separation between two planar patches.

Bigger values would relax the coplanarity measure, and vice versa. Td restricts the

distances between the patches; in analogy to Tp, Td can be used to relax the

coplanarity measure. As shown in Figure 17 for a stricter coplanarity definition

(with Tp and Td set to 10 degrees and 0.2), different values for these thresholds

would quantitatively but not qualitatively change the results presented in the fifth

section.
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