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Abstract 

For the analysis of images, a deeper understanding of 
their intrinsic structure is required. This has been obtained 
for 2 0  images by means of statistical analysis [15, 181. 
Here, we analyze the relation between local image struc- 
tures (i.e., homogeneous, edge-like, comer-like or texture- 
like structures) and the underlying local 3 0  structure, rep- 
resented in t e r n  of continuous su@aces and different kinds 
of 3 0  discontinuities, using 3 0  range data with the true 
color information. We find that homogeneous image patches 
correspond to continuous suflaces, and discontinuities are 
mainly formed by edge-like or comer-like structures. The 
results are discussed with regard to existing and potential 
computer vision applications and the assumptions made by 
these applications. 

1. Introduction 

With the notion that the human visual system is adapted 
to the statistics of the environment [2, 13, 15, 18, 22, 211 
and its successful applications to grouping, object recogni- 
tion and stereo [3, 4, 20, 291 the analysis, and the usage of 
natural image statistics has become an important focus of 
vision research. Moreover, with the advances in technol- 
ogy, it has been also possible to analyze the underlying 3D 
world using 3D range scanners [lo, 11, 19,271. 

In this paper, we analyze the relation between local im- 
age structures (i.e., homogeneous, edge-like, comer-like or 
texture-like structures) and the underlying local 3D struc- 
ture using 3D range data with the true color information. 

There have been only a few studies that have analyzed 
the 3D world from range data [lo, 11, 19, 271. In [27], 
the distribution of roughness, size, distance, 3D orientation, 

curvature and independent components of surfaces was an- 
alyzed. Their major conclusions were: (1) local 3D patches 
tend to be saddle-like, and (2) natural scene geometry is 
quite regular and less complex than luminance images. In 
[Ill ,  the distribution of 3D points was analyzed using co- 
occurrence statistics and 2D and 3D joint distributions of 
Haar filter reactions. They showed that range images are 
much simpler to analyze than optical images and that a 3D 
scene is composed of piecewise smooth regions. In [19], the 
correlation between light intensities of the image data and 
the corresponding range data as well as surface convexity 
were investigated. They could justify the event that brighter 
objects are closer to the viewer, which is used by shape from 
shading algorithms in estimating depth. In [9, 101, range 
image statistics were analyzed for explanation of several vi- 
sual illusions. 

Our analysis differs from these works. For 2D local im- 
age patches, existing studies have only considered light in- 
tensity. As for 3D local patches, the most complex consid- 
ered representation have been the curvature of the local 3D 
patch. In this work, however, we create a higher-order rep- 
resentation of the 2D local image patches and the 3D local 
patches; we measure 2D local image patches using homoge- 
neous, edge-like, comer-like or texture-like structures, and 
3D local patches using continuous surfaces and different 
kinds of 3D discontinuities. By this, we relate established 
local image structures to their underlying 3D structures. 

By creating 2D and 3D representations of the lo- 
cal structure, we compute the conditional probability 
P(3D Structure I 2D Structure). Using this probability, we 
quantify some assumptions made by the studies that recon- 
struct the 3D world from dense range data. For example, 
we could show that the depth distribution varies signifi- 
cantly for different visual features, and we could quantify 
already established inter-dependencies such as 'no new is 
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good news' [6]. This work also supports the understanding 
of how intrinsic properties 2D-3D relations can be used for 
the reconstruction of depth, for example, by using statistical 
priors in the formalisation of depth cues. 

The paper is organized as follows: In section 2, we define 
the types of local image structures and local 3D structures 
that we extract for our analysis. In section 3, we introduce 
a continuous classifier for local 2D structures. In section 4, 
we outline our methods for measuring the 3D structure of a 
3D point. We present and discuss our results in section 5. 
Finally, we conclude the paper in section 6. 

2. Local 2D and 3D Structures 

We distinguish between the following local 2D struc- 
tures: 

Homogeneous image patches: Homogeneous patches 
are signals of uniform intensities. 
Edge-like structures: Edges are low-level structures 
which constitute the boundaries between homoge- 
neous or texture-like signals (see, e.g., [14, 171 for 
their importance in vision). 
Corners: Corners are signals where two or more edge- 
like structures with significantly different orientations 

by these 3D structures together with the illumination and 
reflectivity of the environment. 

With this intuition, any 3D scene can be decomposed 
geometrically into surfaces and 3D discontinuities. In this 
context, the local 3D structure of a point can be a: 

Surface Continuity: The underlying 3D structure can 
be described by one surface whose normal does not 
change or changes smoothly. 
Regular Gap discontinuity: The underlying 3D struc- 
ture can be described by a small set of surfaces with a 
significant depth difference. The 2D and 3D views of 
an example gap discontinuity are shown in figure l(a). 
Irregular Gap discontinuity: The underlying 3D struc- 
ture shows high depth variation and can not be de- 
scribed by two or three surfaces. An example of an 
irregular gap discontinuity is shown in figure l(b). 
Orientation Discontinuity: The underlying 3D struc- 
ture can be described by two surfaces with signifi- 
cantly different 3D orientations that meet at the point 
whose 3D structure is being questioned. In this type 
of discontinuity, no gap but a change in 3D orientation 
between the meeting surfaces occurs. An example for 
this type of discontinuity is shown in figure l(c). 

intersect (see, e.g., [7,23, 241 for their importance in 
vision). 3. Intrinsic Dimensionality 

Texture: Although there is not a widely-agreed defini- 
tion, textures are often defined as signals which consist 
of repetitive, random or directional structures (for their 
analysis, extraction and importance in vision, see e.g., 
[261). 

Locally, it is hard to distinguish between these struc- 
tures, and there are structures that carry mixed properties 
of the 'ideal' cases. The classification of the features out- 
lined above is discrete. However, a discrete classification 
may cause problems as the inherent properties of "mixed" 
structures are lost in the discretization process. Instead, in 
this paper, we make use of a recently developed continu- 
ous scheme which is based on the concept of intrinsic di- 
mensionality [5, 161. In this concept, local image structures 
are organized continuously in a triangle. This approach is 
briefly described in section 3. Here, we show that the differ- 
ent classes of local image structures map to different distin- 
guishable areas in the domain of the intrinsic dimensionality 
triangle (see figure 2) which is the first contribution of this 
paper. 

To our knowledge, there does not exist a systematic and 
agreed classification of 3D local structures like there is 
for 2D local image structures (i.e., homogeneous patches, 
edges, comers and textures). Intuitively, the 3D world con- 
sists of continuous surface patches and different kinds of 3D 
discontinuities. In the imaging process (through the lenses 
of camera or a retina), 2D local image structures are formed 

In image processing, intrinsic dimensionality was intro- 
duced by Zetsche and Barth[28] to distinguish between dif- 
ferent local image structures. The idea is to assign intrin- 
sically zero dimensionality (iOD), intrinsically one dimen- 
sionality (ilD) and intrinsically two dimensionality (i2D) to 
homogeneous patches, edges and comer-like structures, re- 
spectively. The concept of intrinsic dimensionality has been 
mostly applied in a discrete way which has been extended 
in [5, 161 to classify the local image structures continuously 
instead of giving them discrete labels. 

In [5, 161, it has been also shown that the topological 
structure of the intrinsic dimensionality can be understood 
as a triangle whose corners correspond to the 'ideal' cases 
of 2D structures (i.e., homogeneous patches, edges and cor- 
ners). The inner of the triangle spans signals that carry 
aspects of the three 'ideal' cases, and the distance from 
the specific comers indicates the similarity (or dissimilar- 
ity) to the 'ideal' iOD, ilD and i2D signals. The horizontal 
and the vertical axes denote the contrast and the orientation 
variance, respectively. Contrast measures non-homogeneity 
whereas orientation variance measures the variation of ori- 
entation in a local patch describing the local image struc- 
ture. An 'ideal' homogeneous image patch is expected to 
have zero contrast and zero orientation variance whereas an 
'ideal' edge should have high contrast and zero orientation 
variance. An 'ideal' comer is supposed to have high con- 
trast and high orientation variance. 
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Figure 1. Examples for types of 3D discontinuities. Points of interest are marked with yellow circles. (a) 2D and 3D views of a gap 
discontinuity, (b) image (on the left) and range data (on the right) of an irregular gap discontinuity and (c) orientation discontinuity. 

Figure 2 shows how the triangle of intrinsic dimension- 
ality looks like and how a set of example local image struc- 
tures map on to it. In figure 2, we see that different visual 
structures map to different areas in the triangle. A detailed 
analysis of how 2D structures are distributed over the intrin- 
sic dimensionality triangle and how some visual informa- 
tion depends on this distribution can be found in [12]. Dif- 
ferent from [12], in this paper, regarding this distribution, 
we show that textures also map to a different area of their 
own. The fact that different local image structures have their 
own distinguishable areas in the triangle provides us with 
a continuous classifier that distinguishes between homoge- 
neous, edge-like, texture-like and corner-like structures. 

4. Methods 

In this section, we define our measures for the three kinds 
of discontinuities that we described in section 1; namely, 
gap discontinuity, irregular gap discontinuity and orienta- 
tion discontinuity. The measures for gap discontinuity, ir- 
regular gap discontinuity and orienhtion discontinuity of a 
patch P will be respectively denoted by pGD(P), prGD(P) 
and (P) .  The reader who is not interested in the tech- 
nical details can jump directly to section 5. 

In our analysis, we used chromatic range data of out- 
door scenes1 which were obtained from Riegl UK Ltd. 
( h t t p :  //www. riegl. co. uk/). There were 20 scenes 
in total, 10 of which are shown in figure 3. The range of 
an object which does not reflect the laser beam back to the 
scanner or is out of the range of the scanner cannot be mea- 
sured. These points are marked with blue in figure 3 and are 
not processed in our analysis. The resolution range of the 
data set is [512-2048]x[390-22901 with an average resolu- 
tion of 1140x1001. 

3D discontinuities are detected in studies which involve 
range data processing, using different methods and using 
different names like two-dimensional discontinuous edge, 
jump edge or depth discontinuity for gap discontinuity; and, 

two-dimensional corner edge, crease edge or surface dis- 
continuity for orientation discontinuity [I, 8,251. 

4.1. Measure for Gap Discontinuity: ~ G D  

Gap discontinuities can be measured or detected in a 
similar way to edges in 2D images; edge detection pro- 
cesses RGB-coded 2D images while for a gap discontinu- 
ity, one needs to process XYZ-coded 2D images. In other 
words, gap discontinuities can be measured or detected by 
taking a second order derivative of XYZ values 1251. 

Measurement of a gap discontinuity is expected to oper- 
ate on both the horizontal and vertical axes of the 2D image; 
that is, it should be a two dimensional function. The al- 
ternative is to discard the topology and do 'edge-detection' 
in sorted XYZ values, i.e., to operate as a one-dimensional 
function. Although we are not aware of a systematic com- 
parison of the alternatives, for our analysis and for our 
data, the topology-discarding gap discontinuity measure- 
ment produced better results. Therefore, we have adopted 
the topology-discarding gap discontinuity measurement in 
the rest of the paper. 

For an image patch P of size N x N ,  let, 
X = ascending-sort({Xi I i E P ) ) ,  

y = ascending- sort({^ I i E P ) ) ,  

2 = ascending-sort({Zi 1 i E P ) ) ,  

and also, for i = 1: ..: (N x IV - 2), 

where Xi ;  y i ,  Zi represents 3D coordinates of pixel i. 
The sets x A ,  yA and 2A are the measurements of the 

jumps (i.e., second order differentials) in the sets X ,  y and 
2 ,  respectively. A gap discontinuity can be defined simply 
as a measure of these jumps in these sets. In other words: 

'we would like to note that it is problematic to do range scanning in 
where the function 4 : S --t [O: 11 over the set S measures 

naturc sccncs that include trces or other kinds of vegetation because of the 
the homogeneity of its argument set (in terms of its 'peaki- 

unintended motion due to wind. As the imane of the scene is taken afler ness') and is defined as follows: - 
the scannlng phase, this delay may make the Image data fall to correspond 
to the range data. 
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Figure 2. How a set of 54 patches map to the different areas of the intrinsic dimensionality triangle. Some examples from these patches 
are also shown. The horizontal and vertical axes of the triangle denote the contrast and the orientation variances of the image patches, 
respectively. 

Figure 3. 10 of the 20 3D data sets used in the analysis. The points 
that don't have range data are marked in blue. The gray image 
shows the range data of the top-left scene. The resolution range is 
[512-2048]x[390-22901 with an average resolution of 1140x1001. 

where #(S) is the number of the elements of S, and si is 
the it" element of the set S. Note that as a homogeneous 
set (i.e., a non-gap discontinuity) S produces a high 4(S) 
value, a gap discontinuity causes a low /LGD value. Figure 
5(c) shows the performance of p c ~  on one of our scenes 
shown in figure 3. 

4.2. Measure for Orientation Discontinuity: 

The orientation discontinuity of a patch P can be de- 
tected or measured by talung the 3D onentanon difference 
of the surfaces which meet at P. As the size of the patch 
P is small enough, the surfaces can be, in practice, approx- 
imated by 2-pixel wide unit planes. The histogram of the 
3D orientation differences between every pair of unit planes 
forms one cluster for continuous surfaces and two clusters 
for orientation discontinuities. 

For an image patch P of size N x N pixels, the orien- 
tation discontinuity measure is defined as: 

where Hn(S) is a function which computes the n-bin his- 
togram of its argument set S; $(S) is a function which finds 
the number of clusters in S; planes(P) is a function which 
fits 2-pixel-wide unit planes to 1-pixel apart points in P us- 
ing Singular Value Decomposition2; and, a(i; j) is the angle 
between planes i and j. 

For a histogram H of size NH,  the number of clusters is: 

?singular Value Decomposition is a standard technique for fitt~ng 
planes LO a set of points. It finds the perfectly fitting plane if it exists; 
otherwise, it returns Lhc least-square solution. 
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Figure 4. Example histograms and the number of clusters that the 
function +(S) computes. +(S)  finds one cluster in the left his- 
togram and two clusters in the right histogram. Red line marks the 
threshold value of the function. X axis denotes the values for 3D 
orientation differences. 

where the operator # returns 1 if its operands are not equal 
and returns 0, otherwise; Hi represents the ith element of 
the histogram H; Ho and H.vH+l are defined as zero; and, 
max(H)/10 is an empirical value which functions as the 
threshold value for finding the clusters. Figure 4 shows two 
example clusters for a continuous surface and an orientation 
discontinuity. Figure 5(d) shows the performance of p o p  

on one of our scenes shown in figure 3. 

4.3. Measure for Irregular Gap Discontinuity: ~ I G D  

Irregular gap discontinuity of a patch P can be measured 
by making use of the observation that an irregular-gap dis- 
continuous patch from nature usually consists of small sur- 
face fragments with different 3D orientations. Therefore, 
the amount of variety in the 3D orientation histogram of a 
patch P can measure the irregular gap discontinuity of P. 

Similar to the measure for orientation discontinuity de- 
fined in section 4.2, the histogram of the differences be- 
tween the 3D orientations of the unit planes (which are of 
2 pixels wide) is analyzed. For an image patch P of size 
N x N pixels, the irregular gap discontinuity measure is 
defined as: 

where ~ l a n e s ( P ) ,  a(i; j ) ,  H"(S) and 4(S)  are as defined 
in section 4.2. Figure 5(e) shows the performance of ~ I G D  

on one of our scenes shown in figure 3. 
The relation between the measurements and the types of 

the 3D discontinuities are outlined in table 1 which entails 
that an image patch P is: 

gap discontinuous if p,,(r) < T, and ~ I G D ( P )  < T ~ ~ .  

irregular-gap discontinuous if pG, ( r )  i T~ and 
P I G U ( ~ )  > T;,. 
orientation discontinuous if p G o ( r )  2 T~ and p,, > 1, 

Dis. Typc 
Continuity 
Cap Dis. 

Table 1. The relation between the measurements and the types of 
the 3D discontinuities. 

continuous if pGD ( P )  T~ and ( P )  5 1. 

For our analysis, we have taken N and the threshold val- 
ues T,; Ti, empirically as 10,0.4 and 0.6, respectively. The 
number of bins, n,  in Hn is taken as 20. 

Figure 5(a) shows the types of 3D discontinuities marked 
in four different colors for every pixel of the scenes shown 
in figure 3. We see that our measures can capture the 3D 
structure of the data sufficiently correct. 

5. Results and Discussion 

For each pixel of the scene (except for pixels where range 
data is not available), we computed the 3D discontinuity 
type and the intrinsic dimensionality. Figure 5(a) and (b) 
shows the images where the 3D discontinuity and the intrin- 
sic dimensionality of each pixel are marked with different 
colors. 

Having the 3D discontinuity type and the infor- 
mation about the local 2D structure of each point, 
it is straightforward to compute the probability 
P(3D Discontinuity I 2D Structure), which is shown 
in figure 6. Note that the four triangles in figures 6(a), 6(b), 
6(c) and 6(d) add up to one for all points of the triangle. 
We see that: 

Figure 6(a) shows that homogeneous image patches 
correspond to 3D continuities. 

Many surface reconstruction studies make use of a ba- 
sic assumption that there is a smooth surface between 
any two points in the 3D world, if there is no contrast 
difference between these points in the image. This 
assumption has been first called as 'no news is good 
news' in [6]. With figure 6(a), we quantify 'no news is 
good news' and show for which structures and to what 
extent it holds. In addition to the fact that no news is 
in fact good news, the figure shows that news, espe- 
cially texture-like structures and edge-like structures, 
can also be good news (see below). 
Edges are considered as important sources of informa- 
tion for object recognition and reliable correspondence 
finding. Approximately 10% of local image structures 
are of that type (see, e.g., [12]). Figures 6(a), (b) and 
(d) show that most of the edges correspond to continu- 
ous surfaces or gap discontinuities. The edges that cor- 
respond to continuous surfaces are mostly low-contrast 
edges. Little percentage of the edges are formed by 
orientation discontinuities. 
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Figure 5. The 3D and 2D information for one of the scenes shown in figure 3. Dark blue marks the points without range data. (a) 3D 
discontinuity. Blue: continuous surfaces, light blue: orientation discontinuities, orange: gap discontinuities and brown: irregular gap 
discontinuities. (b) Intrinsic Dimensionality. Homogeneous patches, edge-like and comer-like structures are encoded in colors brown, 
yellow and light blue, respectively. (c) Gap discontinuity measure ~ G D .  (d) Orientation discontinuity measure POD. (e) Irregular gap 
discontinuity measure ~ I G D .  

Figure 6(b) shows that well-defined corner-like struc- 
tures result from either gap discontinuities or continu- 
ities. 

Textures also map with high likelihood to surface con- 
tinuities but also to irregular gap discontinuities. 

Finding correspondences becomes more difficult with 
the lack or repetitiveness of the local structure. The 
estimates of the correspondences at texture-like struc- 
tures are naturally less reliable. In this sense, the like- 
lihood that certain textures are caused by continuous 
surfaces (shown in figure 6(a)) can be used to model 
stereo matching functions that include interpolation as 
well as information about possible correspondences 
based on the local image information. 

It is remarkable that local image structures mapping to 
different sub-regions in the triangle are caused by rather dif- 
ferent 3D structures. This clearly indicates that these differ- 
ent image structures should be used in different ways for 
surface reconstruction. 

of a 3D structure given the 2D structure. With this prob- 
ability, we could investigate the relation between 2D struc- 
tures and the underlying 3D structures as well as analyze the 
validity of a widely-used assumptiodsmoothing constraint, 
namely, 'no news is good news' [6]. 

Besides, we have presented a continuous classification 
scheme which can be used to distinguish between homo- 
geneous, edge-like, corner-like and texture-like structures. 
By taking a higher-order representation than existing range- 
data analysis studies, we could point to the intrinsic proper- 
ties of the 3D world and its relation to the image data. This 
analysis is important because (1) it may be that the human 
visual system is adapted to the statistics of the environment 
[2,13,15,18,21,22],and(2)itmaybeusedinseveralcom- 
puter vision applications like depth estimation in a similar 
way as in [3,4,20,29]. 

In our current work, the probability distributions will 
be used for estimating the 3D structure from 2D struc- 
ture in a Bayesian framework for surface reconstruc- 
tiodinterpolation studies. 

6. Conclusion 7. Acknowledgments 
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Figure 6. P(3D Discontinuity I 2D Structure): (a) P(Continuity I 2D Slructure). (b) P(Gap Discontinuity I 2D Structure). (c) 
P(hegu1ar Gap Discontinuity I 2D Structure). (d) P(0rientation Discontinuity I 2D Structure). 
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