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Abstract. In this paper, we propose a hierarchical architecture for rep-
resenting scenes, covering 2D and 3D aspects of visual scenes as well
as the semantic relations between the different aspects. We argue that
labeled graphs are a suitable representational framework for this repre-
sentation and demonstrate its potential by two applications. As a first
application, we localize lane structures by the semantic descriptors and
their relations in a Bayesian framework. As the second application, which
is in the context of vision based grasping, we show how the semantic re-
lations can be associated to actions that allow for grasping without using
any object knowledge.

1 Introduction

In this work, we represent scenes with a hierarchy of visual information. The
input consists of stereo images (or sequences of them) that become processed at
different levels. Information of increasing semantic richness becomes processed
at the different levels, covering multiple aspects of a scene such as 2D and 3D in-
formation as well as geometric and appearance based information. Furthermore,
the spatial extent of the processed entities increases in the higher levels of the
hierarchy.

We make use of rich local symbolic descriptors, describing edge-like structures
and homogeneous structures, as well as groups (contours and areas) formed
by them. Furthermore, rich semantic relations between these descriptors and
the groups are defined. The descriptors describe local information in terms of
multiple visual modalities (2D and 3D position and orientation, colour as well
as contrast transition). Moreover, there is a set of semantic relations defined
between them such as the Euclidean distance in 2D and 3D as well as parallelism,
co-planarity and co-colority (i.e., sharing similar colour structure).

Scenes become represented as a set of labeled graphs, whose nodes are labeled
by properties of local descriptors, groups and areas thereof and edges between
the nodes represent the semantic relations between the nodes in the graphs.



Idealized graphs can be defined or learned from scene structures such as road
lanes and can be efficiently matched with the extracted scene graphs by making
use of the rich semantics.

From a cognitive point of view, it is important to have a representation that
allows for an efficient storage of information as well as for reasoning processes
on visual scenes. From a storage point of view, it is not convenient to memorize
information on a very low and local level since it would require a large amount of
memory. Also it would be much more difficult for learning processes to make use
of relevant semantics. As a consequence, the very condensed graph representation
is much more suitable for memorizing objects.

We present two applications of our hierarchical framework: As a first appli-
cation, we show how a street structure can be characterized by both its appear-
ance and relations between its sub-components. Here, the matching process is
governed by Bayesian reasoning based on local descriptors and semantic rela-
tions between them, which are controlled by prior probabilities. Moreover, this
Bayesian reasoning process makes explicit the relative importance of the different
cues and relations opening the way for the learning of sparse graph structures.
In terms of semantic reasoning, we can show that, by means of the semantic
relations, it is possible to mediate between textual descriptions of scene struc-
tures (e.g., the lanes) and visual detection as examplified. Such graphs can be
idealized (or, generalized) either through learning or can be provided as world
knowledge, and be used for matching (see section 4.1).

The second application is based on [1], and illustrates how the approach
presented herein embeds in a robotic scenario. In this scenario, groups of visual
features fulfilling certain semantic relations can be associated to grasping actions,
allowing for the grasping of objects without using any model knowledge.

The use of hierarchical representations, mostly graphs, is commonplace for
scene representation. For example, scene graphs and spatial relationship graphs
are heavily used in Computer Graphics for representing 3D world and scenes
[2]; such graphs are designed mostly for rendering purposes, and they are not
sufficient for covering the 2D properties of scenes. Relative Neighborhood Graphs,
introduced by [3], are used in Computer Vision studies for representation of
structured entities [4]. A similar graphical structure called Region Adjacency
Graph is used for region-based representation of objects or scenes [5, 6]. There
exist a variety of similar graphical representations and we refer the interested
reader to [7].

Our contribution in this paper is the introduction of a hierarchical vision
system that allows for semantic reasoning based on rich descriptors and their
relations. This vision system covers not only the appearance aspects but also the
geometrical properties of the scene, which allows for doing reasoning in both 2D
and 3D world. In particular, it allows for the step-wise translation of a textual
description of an object to a visual representation that can be used for localizing
a certain structure in a visual scene.

The paper is structured as follows: In section 2, the visual scene represen-
tation is introduced. In section 3, we describe the embedding of the visual rep-



resentation in graphs. We then describe the two applications in section 4. We
introduce the algorithm for the detection of a lane structure in section 4. An-
other application in the context of vision based grasping is described in section
4.2. In section 5, we discuss the potential of this approach in terms of a cognitive
system architecture.

2 Hierarchical Architecture

We represent scenes with a three-level architecture of visual entities (see figure
1) of increasing richness and semantic. In the following subsections, we intro-
duce the different levels of this hierarchical representation in order of increasing
complexity, starting from the lowest level.
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Fig. 1. An overview of the hierarchical architecture introduced in this paper. The
visual entities denote the nodes of the graphical representation, and the red edges,
which correspond to perceptual grouping and correspondence relations, are the links
between the nodes. Higher levels in the hierarchy correspond to more symbolic, more
spacious and more descriptive visual entities. See the text for more details and figure
6 for examples of the different levels of the hierarchical architecture.

2.1 Linear and non-linear filtering

At the first level, we apply a combination of linear and non-linear filtering op-
erations to extract pixel-wise signal information in terms of local magnitude,
orientation, phase [8] as well as optical flow [9] — for details see [10, 11].



2.2 Symbolic Representation in 2D

The transition to a local symbolic description is done at the second level (the
“Symbolic Representation in 2D” layer in figure 6) where local image patches are
described by the so-called multi-modal primitives [12]. The primitives provide a
condensed semantic description of the local (spatial-temporal) signal in terms of
image orientation, phase, colour and optic flow. The difference to the first level
is that the information is sparsified, highly condensed and associated to dis-
crete positions with sub-pixel accuracy. Figure 2 shows extracted 2D primitives
(denoted as π) for an example scene.

(a) (b) (c)

Fig. 2. (a) Representation and attributes of a 2D primitive where (1) orientation of
the primitive, (2) the phase, (3) the color and (4) the optic flow and reconstruction of
a 3D primitive. (b) A sample scene and a closer view for the region of interest. (c)
Extracted 2D primitives for the example scene in (b).

At this level, the information is sparsely coded such that interaction processes
between visual events can be modeled more efficiently than at the pixel level (for
a detailed description of these interaction processes see, e.g., [13]). Already at
this level, semantic relations between local 2D primitives can be defined. Besides
the 2D distance, primitives allow collinearity and co-colourity relations to be
defined between them: Two primitives are collinear if they are part of the same
line (figure 3(a) and 4(f)). Two primitives, on the other hand, are co-colour if
the colours of their sides that face each other are similar (figures 3(c) and 4(e)).
See [14] for more information about the definition of these relations.

The 2D descriptors naturally organize themselves along contours and the se-
mantic description is highly correlated along such a contour (e.g., 2D orientation
varies smoothly and in general colour, phase and optic flow are similar for the
primitives on the contour). Hence, it is natural to condense the information of
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Fig. 3. Illustration of the perceptual relations between primitives. (a) Collinearity of
two 2D primitives. (b) Co–planarity of two 3D primitives Πi and Πj . (c) Co–colority
of three 2D primitives πi, πj and πk. In this example, πi and πj are cocolor, so are πi

and πk; however, πj and πk are not cocolor. (d) Normal distance between Πi and Πj

is 0 if Πj is outside the cylindrical volume surrounding Πi and defined otherwise as
the distance between Πj and the line created from the location of Πi which goes in
the direction of Πis orientation vector.

the primitives organized along a contour in the form of a more abstract parame-
terization in terms of unified appearance based descriptors as well as a NURBS
(Non-Uniform Rational B-Splines [15]) representation of the geometry of the
contours (see figure 5). By this, we reduce the number of bits used to represent
a scene further as well as the number of second order relations of visual events.
The latter point is in particular relevant, when we want to code objects with
these relations.

2.3 Symbolic Representation in 3D

Using the corresponding 2D primitives in the left and right image, 3D primitives
can be reconstructed (denoted by Πj). At the third level, the reconstructed 3D
primitives inherit the appearance based properties of the 2D primitives (phase
and colour) and extend the 2D position and 2D orientation to 3D (see figure
2). Moreover, the semantic relations between 2D primitives can be extended to
the 3D primitives and also further enriched by particular 3D relations such as
co-planarity or 3D properties such as in-ground-plane (see figures 3 and 4). Co-
planarity refers to the being-on-the-same-plane relation between two 3D primi-
tives or 3D contours (figures 3(b) and 4(d)). See [14] for more information about
the definition of co-planarity. In-ground-plane relation, on the other hand, cor-
responds to all 3D entities that are in the ground plane (figure 4(c)). The 2D
contour representation becomes also extended to 3D contours by connecting 3D
primitives that are linked together. NURBS are fitted to the 3D contours as in
2D to obtain a global mathematical description of the 3D contours. In addition,
the NURBS parametrization can be used to increase the precision of the local
feature extraction process (see figure 5).



(a) Input Image (b) Colour (c) In-ground-plane

(d) Co-planarity (e) Co-colourity (f) Collinearity

(g) Parallelism (h) Proximity (i) Normal distance

Fig. 4. A set of 2D and 3D relations for the visual entities extracted from an example
scene whose left view is provided in (a). (b) Primitives which are black. (c) 3D primitives
which satisfy the ”ground-plane” relation. (d-g) Connects the 3D primitives that are
respectively co-planar, co-colour, collinear and parallel to a selected 3D primitive. (h)
Connects the 3D primitives that are of a given 3D distance to a selected 3D primitive.
(i) Connects the 3D primitives whose normal distance to a selected 3D primitive equals
a given value.

Note that this process is not a pure bottom-up process, as it involves correc-
tive feedback mechanisms at various levels. These are described in more detail
in, e.g., [13, 16].

3 Semantic Graphs

The hierarchy of representations discussed above provides us with a number of
2D and 3D local entities that are linked to more global entities. These entities are
semantically rich as such, and in addition there exist semantic relations between
them. Because of this linkage, we suggest that labeled graphs are the suitable



Fig. 5. Position and orientation correction of 3D primitives by using NURBS. After
fitting NURBS (represented as green lines) to groups of primitives (represented as
black lines), position and orientation of each primitive is recalculated. The procedure
is shown on a good reconstruction (middle road marker) as well as a bad one (left lane
marker).

representational framework for representing scenes. In these graphs, the nodes
represent different visual entities such as primitives, contours and areas with
their first order properties while the links represent the semantic relations. Note
that actually we have a set of labeled graphs, which are linked to each other and
with this linkage, they cover the 2D and 3D aspects of a scene (see figure 6) since
each relation naturally defines a sub-graph, covering a structure in a scene.

In processing of information across the different levels, the semantic richness
of information increases from level to level. However, it is important to point
out that with this increase of semantical richness, also the likelihood of errors
in the processing increases due to loss of valuable information or introduction of
noise through thresholding. In addition, the uncertainty of visual information, in
particular in the 3D domain, might also make any reasoning uncertain. Hence,
we intend to be able to use the extracted information on all levels according
to the current task and uncertainties of information at the different levels. In
addition, spatial–temporal processes are defined that increase the stability and
the certainty of information by spatial-temporal predictions [13]. The proposed
hierarchy allows for processes that transfer information from the symbolic level
to the signal level to recover weak information in so-called signal-symbol loops
(see [16]). Such loops are essentially feedback mechanisms that carry the results
of symbolic processing to the signal level.

4 Applications

In this section, we give two applications of the semantic reasoning process. First,
we show how a lane structure can be described by the semantic descriptors and
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Fig. 6. A multi-level graph structure. For clarity, only a subset of the links is drawn,
and the links corresponding to different relations such as parallelism and co-colority
between 2D or 3D entities are skipped. “Image and Filters” (IF) layer is the input image
which contains pixels as the nodes of the graph. “Symbolic Representation in 2D” (SR-
2D) layer contains the 2D primitives. The links between the IF layer and the SR-2D
layer correspond to ”part-of” relations between pixels and primitives. “2D Contours
and Areas” (CA-2D) layer contains image areas (each area is drawn in a different color)
and 2D contours (in black). The neighborhood relations between two areas and between
an area and a contour are drawn respectively in blue and red. The links between the
SR-2D layer and the CA-2D layer correspond to ”part-of” relations between primitives,
and areas and contours. The “Symbolic Representation in 3D and 3D Contours” (SRC-
3D) layer includes 3D contours in black (the 3D surfaces are skipped for clarity), and
the links in red and light green between the 3D contours respectively denote coplanarity
and cocolority relations between the contours. The links between the CA-2D layer and
the SRC-3D layer are ”projection” relations between the 2D and 3D contours.



their relations in a Bayesian framework (section 4.1). Then we describe another
application in a robotic context (section 4.2).

4.1 Lane finding using Bayesian Reasoning

A lane in our lab environment (see figure 4(a)) can be characterized by the colour
and the width of the lane marker, which is known also to be in the ground plane,
as well as by its distance to the other lane marker. As a textual description of
the lane one could state:

A lane consists of two lane markers with distance dfar which are both in
the ground plane. A lane marker has a width dnear and has the colour
’black’.

An idealized representation of this textual description in a graph is shown
in figure 7. The representation introduced in the last two sections allows for
directly applying the terms used in the textual description. Colour and ’being
in ground plane’ are first order attributes of primitives and groups while the
term ’distance’ corresponds to the relation ’normal distance’ (figure 3). Hence,
the textual description can be easily translated in our visual representations.
However, there are two problems we have to face: First, a lane is not described
by one property, or relation, but by a number of properties. Therefore, these dif-
ferent cues need to be combined. Second, scene interpretation processes have to
face uncertainties in the feature extraction process. Reasons for the uncertainties
are, for example, noise in the recording process, limited resolution as well as the
correspondence problem in the stereo reconstruction.

Fig. 7. A graph showing an idealized representation of the lane in our lab environment.



To merge the different cues as well as to deal with uncertainties, we make use
of a Bayesian framework. The advantage of Bayesian reasoning is that it allows:

– making explicit statements about the relevance of properties for a certain
object,

– introduction of learning in terms of prior and conditional probabilities, and
– assessing the relative importance of each type of relation for the detection

of a given object, using the conditional probabilities.

Bayes formula (e.g., see [17]) enables to infer the probability of an unknown
event conditioned to other observable events and to prior likelihoods. Let P (eΠi )
be the prior probability of the occurrence of an event eΠi (e.g., the probabil-
ity that any primitive lies in the ground plane). Then, P (eΠi |Π ∈ O) is the
conditional probability of the visual event ei given an object O.

Our aim is to compute the likelihood of a primitive Π being part of an object
O given a number of visual events relating to the primitive:

P (Π ∈ O|eΠ1 , . . . , eΠn ). (1)

According to Bayes formula, equation 1 can be expanded to:

P (eΠ1 , . . . , e
Π
n |Π ∈ O)P (Π ∈ O)

P (eΠ1 , . . . , eΠn |Π ∈ O)P (Π ∈ O) + P (eΠ1 , . . . , eΠn |Π¬ ∈ O)P (Π¬ ∈ O)
. (2)

In this work we assume independence between eΠ1 , . . . , e
Π
n (we intend to in-

vestigate to what degree this assumption holds in a future work). If eΠ1 , . . . , e
Π
n

are independent then P (eΠ1 , . . . , e
Π
n |Π ∈ O) can be written as:

P (eΠ1 , . . . , e
Π
n |Π ∈ O) = P (eΠ1 |Π ∈ O) · . . . · P (eΠn )|Π ∈ O), (3)

and

P (eΠ1 , . . . , e
Π
n |Π¬ ∈ O) = P (eΠ1 |Π¬ ∈ O) · . . . · P (eΠn |Π¬ ∈ O), (4)

and the formula (2) becomes rather easy.
Using this framework for detecting lanes, we first need to compute prior

probabilities. This is done by hand selecting the 3D primitives being part of a
lane in a range of scenes and calculating the relevant relations for these selections.
The results are shown in table 1. The numbers reveal that ‘being in ground plane’
and ‘near normal distance’ are the strongest relations as they show the largest
difference in probability between the conditions ‘in lane’ and ‘not in lane’.

Figure 8 shows the results of using the Bayesian framework with the com-
puted prior probabilities in two different scenarios: our indoor lab environment
and an outdoor scene. The same prior probabilities were used in both scenarios,
but for the outdoor scene, the values and thresholds of the relations underlying
the probabilities had to be changed to fit the color and dimensions of a real lane.



Table 1. Prior probabilities.

Type Probability

P (Π in lane) 0.44792
P (Π not in lane) 0.55208

P (Π being black) 0.70058
P (Π being black | Π in lane) 0.97959
P (Π being black | Π not in lane) 0.47391

P (Π in ground plane) 0.49925
P (Π in ground plane | Π in lane) 0.95960
P (Π in ground plane | Π not in lane) 0.12543

P (Π has normal distance dfar) 0.35943
P (Π has normal distance dfar | Π in lane) 0.66433
P (Π has normal distance dfar | Π not in lane) 0.11131

P (Π has normal distance dnear) 0.41015
P (Π has normal distance dnear | Π in lane) 0.86170
P (Π has normal distance dnear | Π not in lane) 0.04377

4.2 Associating Actions to Co-planar Groups

To underline the embedding and strength of our approach of utilizing semantic
relations between visual events in the hierarchical representation described in
section 2, we briefly present new results on an application that has been described
in more detail in [1]. In this application, relations between primitives (or groups)
become associated to actions. In figure 9 (left bottom), a grasping hypothesis
connected to a co-planar pair of primitives is shown. Hence, the co-planarity
graph shown in figure 9 (right), corresponding to the white butter dish, can be
associated to grasping hypotheses (as indicated in the middle of the figure). In
[18], we could show that by such a simple mechanism, objects in rather complex
scenes can be grasped with a high success rate. In figure 10 (left), a scene with
a number of objects is shown. Using the grasping reflex described in 9, it was
possible to clean the scene (after approximately 30 grasping attempts) except
one object for which the system’s embodiment precluded grasping (i.e., the two
finger grasper attachment of the robot could not grasp the round can in any
way).

5 Discussion

In this work, we introduced a hierarchical representation of semantically rich
descriptors and their relations, and argued that labeled graphs are a suitable
framework for scene representation, enabling cue merging and action associa-
tion. Within this representation, Bayesian reasoning has been applied for effi-
cient cue-merging, allowing for relating textual descriptions to extracted visual
information. We also outlined that in such a framework feedback mechanisms
at different levels can be used to disambiguate the information, in particular
through feedback between the symbolic and signal level.



(a) Original indoor image (b) Extracted primitives (c) Selected primitives

(d) Original outdoor image (e) Extracted primitives (f) Selected primitives

Fig. 8. Extracting the lane in two scenarios: (a-c) showing our indoor lab environment
and (d-f) showing an outdoor scenario.

In our current work, we are aiming at the development of efficient match-
ing strategies that realize the full potential of our representations. In particular,
we are interested in structures that cannot be completely defined by their ap-
pearance only (as for example in the case of street signs) but by the relations of
sub-structures to each other (as, for example, in case of the task of distinguishing
different kinds of road structures such a motorways, crossings, motorway exits
but also in other more general object categorization tasks).
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