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Self-organization, especially in the framework of embodiment in biologically inspired
robots, allows the acquisition of behavioral primitives by autonomous robots themselves.
However, it is an open question how self-organization of basic motor primitives and goal-
orientation can be combined, which is a prerequisite for the usefulness of such systems. In
the paper at hand we propose a goal-orientation framework allowing the combination of
self-organization and goal-orientation for the control of autonomous robots in a mutually
independent fashion. Self-organization based motor primitives are employed to achieve a
given goal. This requires less initial knowledge about the properties of robot and environ-
ment and increases adaptivity of the overall system. A combination of self-organization
and reward-based learning seems thus a promising route for the development of adaptive
learning systems.
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1. Introduction

Manually preprogrammed (primitive) behaviors, as widely used for the control
of autonomous robots, require detailed knowledge about the robotic system and
the field of application, especially when considering that the complexity of future
devices will further increase. If autonomous robots could acquire a repertoire of
behaviors by themselves these efforts could be drastically reduced. Self-organization,
especially in the framework of embodiment in biologically inspired robots, offers a
promising route to the generation of behavioral repertoires which are adapted to
the properties of the robotic device and its environment [20, 13, 16].
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An open question is how self-organization of basic motor primitives and goal-
orientation can be combined, which is a prerequisite for the usefulness of such
systems. This is the key question in guided self-organization [11, 17].

In the work at hand, we will utilize homeokinesis [2] for the generation of behav-
ioral primitives. In previous works it could be shown that the error function used
in homeokinetic control can be directly modulated, based on a given reward [11]
or context information [6]. Furthermore, the parameters of the controller can be
adapted in order to minimize objective functions for self-organization and goal ori-
entation (problem-specific error functions) in parallel [10]. However, in order to not
vitiate self-organization or goal-orientation it is important to find the right balance
between them, since both depend on the same parameters.

Here we propose a general framework (i.e., also applicable to other controller)
for a more independent combination of self-organization and goal orientation. Self-
organization will be used to generate body- and environment-related activity in
robotic devices. Once this has been achieved pre- and post-processing of sensor val-
ues and motor commands, respectively, are used in order to achieve goal-oriented
behaviors. This pre- and post-processing framework allows a decoupling of the gen-
eration of primitive behaviors and goal orientation. Hence mutual interference of
self-organization and goal-orientation parameters is drastically reduced. Further-
more changes in the robot’s properties (e.g., by way of defects) can be overcome
by the self-organization approach and will have less influence on the goal-oriented
behaviors than in the usual case where predefined behaviors are used to achieve
a goal.

In the next section, the homeokinetic principle will be shortly described before
introducing the pre- and post-processing framework in Sec. 3. Two case studies,
with a simulated anthropomorphic hand and a simulated four-wheeled robot, will
be presented in Secs. 4 and 5, respectively. Results are summarized and discussed
in Sec. 6.

2. The Homeokinetic Principle

Homeokinesis [2, 4] is a general domain invariant principle for the generation of
primitive behaviors in autonomous robots based on a dynamical systems formula-
tion [14, 18]. Instead of a designer-provided objective function measuring the dis-
tance between the current and a desired behavior, its objective function is derived
from the dynamics of the system itself. Based on predictability, in terms of an
internal representation of its current behavior, and sensitivity to sensor values this
objective aims at smooth and predictable kinetic regimes. Hence, there is no desired
behavior, reference value or goal fulfilled by the robot from the point of view of an
external observer. From the general principle, simple learning rules for the param-
eters of a closed-loop robot controller can be derived. Homeokinesis will now be
briefly discussed, for more details see e.g., Refs. [3] and [7].
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Homeokinetic control is defined by a function K mapping the sensory input
xC

t ∈ R
l to the motor values yC ∈ R

k: yC = K(xC), where all variables refer
to time step t and the superscript C indicates that the sensor and motor values
are provided to or generated by the controller, respectively. For simplicity xC , yC

will be used as x, y for the remainder of this section. Sensor values and motor
commands are assumed to be in the range [−1, 1]. The controller withKi(x) = g(zi),
i = 1, . . . , k, where zi =

∑
j cijxj + hi, j = 1, . . . , l, is adaptive and depends on a

set of adjustable parameters cij and hi. In the work at hand g(·) = tanh(·) is used.
An internal model F : R

l×R
k → R

l is used to predict the sensory input of the next
time step based on the current sensory information and the last motor command:
xt+1 = F (xt, yt) + ξt. The difference between the predicted and the true sensor
value is the modeling error ξ, which is used to train the model F by supervised
learning using an online gradient descent. The task of the model is to roughly
reflect the momentary relation between sensor values and motor commands. In this
study, the internal model is implemented as a linear model with parameters aji:
xt+1,j =

∑
i ajiyt,i + ξt,j , j = 1, . . . , l and i = 1, . . . , k. Using this equation for

the internal model we can write the sensorimotor loop in closed form as xt+1 =
ψ(xt) + ξt, where the dynamics of the system is expressed by the loop function
ψj(xt) =

∑
i ajiKi(xt), which depends on the parameters of both the model and

the controller.
The controller parameters are adapted by an online gradient descent in order to

minimize the so called Time Loop Error Et = ||xt−xP
t ||2. The reconstructed sensor

value xP is calculated based on the inverse of the loop function: xP
t = ψ−1(xt+1).

Note, since ψ is not always invertible, xP
t cannot be exactly calculated in all cases,

which can be overcome by a convenient regularization. The difference between xt

and xP
t is thus the error arising in a time loop. Using gradient descent with a learn-

ing rate ε, the parameters of the controller follow the dynamics ∆ct = −ε∂Et

∂ct
(xt, ct),

∆ht = −ε∂Et

∂ht
(xt, ht). These parameter dynamics do not accomplish a learned sys-

tem in the sense of a final constellation of parameters, instead the dynamics of
model and controller parameters are essential for the behavior of the robot. Mini-
mizing E is on the one hand seen to increase the sensitivity to the sensor values,
which is the source of activity and explorative behaviors in the controlled systems.
On the other hand, the exploration is moderated with respect to smoothness of the
generated behaviors, since E is also small if the prediction error is small. The gen-
erated behaviors are thus a compromise between the two opposing goals: sensitivity
and predictability.

3. Pre- and Post-Processing Framework

The paper at hand proposes a possibility to generate goal-oriented behaviors based
on self-organized, and hence goal-free, systems. The goal orientation is realized
by a pre- and post-processing framework. Basic motor primitives generated by a
controller can be modified in order to achieve a given goal. The basic idea is that
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the “wires” between robot and controller are cut and the pre- and post-processing
are plugged in. Since only the sensor values and motor commands but no internal
parameters of the controller are modulated the principle can be applied to basically
every controller. Eventually, the pre- and post-processing has to be provided with
some context information about the goal, e.g., the direction to the goal.

Let us consider a robot that provides at each instant of time, t = 0, 1, . . ., a vector
of sensor values xR

t ∈ R
l. The robot is controlled by the motor values yR

t ∈ R
k. The

superscript R indicates that the sensor and motor values are gathered/executed by
the robot. The controller generates in each time step a vector of motor commands
yC

t ∈ R
k based on the sensory input xC

t ∈ R
l. We assume the same number of

sensor and motor values at the robot and the controller and a direct connection
from xR

i to xC
i and yC

i to yR
i .

The post processing is a mapping M : R
k → R

k, which depends on the parame-
ter vectors p, q ∈ R

k (elements of p being larger than zero) defining a linear mapping
of the motor command before it is executed by the robotic system: yR = M(yC)
with

yR
t,i = piy

C
t,i + qi, pi > 0 for all actuators i. (1)

The parameters p allow a scaling of the amplitude of the motor command, while q
defines a shift of the center of motion of the self-organizing control for the respective
degree of freedom.

The task of the pre-processing is to compensate the modulation of the post-
processing in the sensor space, where an additional factor, the response strength of
the sensors, has to be considered. The pre-processing is a mapping N : R

l → R
l

with:

xC
t,i =

k∑
s=0

(
vis

xR
t,i −

∑k
j=0 bijqi

ps

)
, i = 1, . . . , l, (2)

where vis =
yC

t−1,spsbis
P

k
j=0 yC

t−1,jpjbij
reflects the relative contribution of the post-processed

motor commands yC
t−1,s to the sensor value xR

t,i, which is required to compensate
the scaling parameters ps of the post-processing properly. p and q are known from
Eq. (1) and b is a matrix representing the response strength of the sensors to the
corresponding motors. The latter can be obtained from a model G : R

l × R
k → R

l

mapping sensor values and motor command at time t to the sensor values at time
t+1 with xR

t+1 = G(xR
t , y

R
t )+ζ. The difference ζ between actual and predicted sensor

value can be used to train G by supervised learning with an online gradient descent.
G is similar to the internal model F introduced in Sec. 2. However, F operates on
the sensor values xC and motor commands yC delivered to and obtained from
the controller, while G operates on the sensor values xR and motor commands
yR directly received from and sent to the robot. With this in mind and also for
generality (e.g., using a different controller instead of homeokinetic control) separate
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models are used. G can already be adapted when the pre- and post-processing are
not active, e.g., when the self-organizing control is in its initial phase.

Assuming an ideal sensor xR
t+1,0 measuring a sum of the results of immediately

executed motor commands yR
t,0 and yR

t,1 with a response strength of e.g., 0.8 and
0.9, respectively (xR

t+1,0 = 0.8yR
t,0 + 0.9yR

t,1). From Eqs. (1) and (2) we find

xC
t+1,0 =

1∑
s=0

(
v0s

xR
t+1,0 −

∑1
j=0 b0jqj

ps

)
with v0s =

yC
t,spsb0s∑1

j=0 y
C
t,jpjb0j

=
1∑

s=0

(
yC

t,spsb0s∑1
j=0 y

C
t,jpjb0j

0.8(p0y
C
t,0 + q0) + 0.9(p1y

C
t,1 + q1) −

∑1
j=0 b0jqj

ps

)

and assuming b00 = 0.8 and b01 = 0.9 we get

= b00y
C
t,0 + b01y

C
t,1.

Hence, with a conveniently learned b, there is no influence caused by the pre- and
post-processing from the point of view of the controller.

If there is no direct relation between sensory signals and motor commands a
more complex predictor might be necessary. However, in the reminder of this work
we used an even simpler predictor, assuming that sensor xR

i is measuring a quantity
controlled by motor yR

i , for i = 0, . . . , l, and that this wiring is known beforehand.
Then Eq. (2) simplifies to

xC
i =

xR
i − biqi
pi

, i = 1, . . . , l, (3)

where b is a vector now, representing the response strength of a sensor to the
corresponding motor.

The parameters p, q of the pre- and post-processing can be set by hand or
adapted by a learning paradigm as shown in two case studies, a simulated artificial
hand Sec. 4, and a four wheeled robot Sec. 5, respectively.

4. Case Study 1: Guiding Object Manipulation
of an Anthropomorphic Hand

Self-organized finger movements of a simulated anthropomorphic hand show inter-
esting behaviors with respect to object manipulation and rich tactile information
can be gathered from such manipulations. However, objects need to be grasped or
placed in the hand, e.g., dropped onto the palm of the horizontal (open) hand. With
a goal-free control of the fingers this becomes difficult, since there is no preference
for an open hand. Hence, objects are often placed on the moving fingers and slide
down without actually being manipulated. The framework proposed here allows to
open the hand temporarily in order to properly place objects in the hand, but does
not disturb the self-organizing controller.
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4.1. Setup

We programmed a model of a human hand with 15 degrees of freedom in a physics
simulation environment [12], see Fig. 1. All joints are controlled by bidirectional
motors that mimic the interplay between flexor and extensor muscles. The effect
of a motor action is measured by angular position sensors, which serve as input to
the homeokinetic controller. The controller perceives sensor values and generates a
new motor command every 0.1 s. The learning rate is set to ε = 0.01. Controller
outputs are averaged over 20 time steps to favor lower-frequency behaviors, as these
are more appropriate for object manipulation.

With this setup vivid movements of the fingers are generated which can be
interpreted as an exploration of the dynamical range. If an object is present in
the hand, the fingers show object manipulation sequences where different ways
of manipulation are generated and tactile information can be explored. However,
dropping a new object in the hand does rarely work, because the homeokinetic
control has no preference for opening the hand. So we introduce the proposed
framework in order to open the hand temporarily before a new object is dropped
onto the palm. A sensor indicating the presence of an object in the hand is available
to the pre- and post-processing to trigger the opening. During normal movement the
parameters of the pre- and post-processing are manually set to pi = 1 and qi = 0,
i = 1, . . . , 15, causing no change compared to a system without this framework.
When no object is present in the hand and a new object should be dropped in the
hand, the parameters change to pi = 0.4 and the bias to qi = −0.4 using a smooth
ramp function. This decreases the range of the joint movements and shifts the center
of the movements toward an open hand posture. If an object is present in the hand
again, the parameters change back to the initial values pi = 1 and qi = 0, i =
1, . . . , 15 (using a ramp function). The vector b representing the response strength
of the sensors (see Sec. 3) is obtained by supervised learning of a simple linear
predictor G(xR

t , y
R
t ) = byR

t . The adaptation of this predictor and the adaptation of
the homeokinetic controller going on during the whole time of the experiment.

4.2. Results

The system with the proposed framework was tested by dropping objects onto
the palm and we compared the number of successfully placed objects to a pure
homeokinetic system. After the homeokinetic control was settled, new objects were
dropped from above the palm as soon as there was no object in the hand. Ten
objects were dropped in one trial. For each setup (with/without framework) ten
trials were executed.

Using homeokinetic control in the mean 5.5 out of 10 objects could be success-
fully placed onto the palm, as shown in Fig. 1. In the other cases at least one finger
blocked the path so that the object could not be properly placed. With the addi-
tional framework in the mean 9.8 out of 10 objects could be successfully dropped
onto the palm.
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Fig. 1. (Color online) Top left: Number of successfully placed objects in the mean over ten trials
with and without the proposed framework. Ten objects were dropped in each trial. Error bars
represent the standard deviation. Top right: Simulated anthropomorphic hand manipulating a
spherical object. Bottom: Representative example (distal interphalangeal joint of index finger)
of a parameter of the internal model before and during usage of the pre- and post-processing
framework.

To check the influence of the pre- and post-processing on the controller the
parameters a of the internal model, representing the relations of sensor values (xC)
and motor commands (yC) from the point of view of the homeokinetic system,
were investigated. The parameter development three minutes before activation of
the pre- and post-processing and three minutes after activation, was compared. To
minimize disturbances of the model, objects were not dropped onto the palm dur-
ing this time. It could be observed that the mean values of the model parameters
stayed the same while the standard deviation increases, see Fig. 1 for a represen-
tative example. Hence, there is only small influence on the self-organizing control
in the current realization. The self-organizing controller still generates coordinated
movements of the controlled degrees of freedom which appear and decay, showing
that the exploration of the behavioral repertoire of the robotic system still contin-
ues like without using the proposed framework. Given the simple way b (the model
parameter of the pre- and post-processing, representing the relations of the sensor
values (xR) and the motor commands (yR) from the point of view of the robot)
was obtained, less influential setups are possible when employing more sophisticated
predictors G(xR

t , y
R
t ). Note that, changes in the model parameters can also occur if

the behavior of the self-organizing system changes over time (e.g., coordination of
degrees of freedom, resulting in decreased correlation (as obtained from the internal
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model) between motor and attached sensor, while the correlation with a not con-
nected sensor increases). These cases were not considered here. Note furthermore
that the influence on the controller arises only from changes of the parameters q.
Modulations caused by the scaling parameters p can be completely counterbalanced
by the pre-processing because there is no dependence on the response factor b.

These results show that the proposed framework is able to guide the behavior
of the self-organizing system, while only slightly influencing the latter, as shown by
way of internal model parameters. Hence, the object manipulation is not degraded.

5. Case Study 2: Goal-Orientation for a Wheeled Robot

The proposed mechanism for the generation of goal-oriented behaviors based on
self-organized systems will be investigated for the case of a four-wheeled robot in
this section. The parameters of the pre- and post-processing can be predefined as
described in the previous section. It is also possible to adapt them online. In this
case study an example of the latter case will be shown, where reinforcement learning
[23, 19] acts on the parameters of the proposed framework in order to guide the
self-organized system in a navigation task with a simulated four-wheeled robot.

5.1. Setup

Experiments were conducted in the physics simulation environment already used
in the previous experiment [12]. The used robot has a capsule as body (length 0.4
units) with four wheels attached, see Fig. 2. The environment consists of a square
arena (side length 32 units) with a wall as boundary and four positions defining
a sequence of goals for the goal-oriented behavior of the robot, see e.g., Fig. 3.
The wheel velocities are controlled independently according to the motor command
yR

t ∈ R
4. The vector of sensor values xR

t ∈ R
5 consists of four measured wheel

velocities (xR
0 , . . . , x

R
3 ) and the angle between forward direction of motion and goal

location (xR
4 ). The angle was preprocessed to start with 0◦ in front and go up to

an absolute value of 180◦ at the rear of the robot, on the right with positive and on
the left with negative sign, all with respect to the forward direction, see Fig. 2(left).

Each wheel of the robot is controlled by an individual homeokinetic controller.
Hence a coordination of the wheels, which is required for locomotion (at least of
the two wheels on one side), can only occur through the environment. The learning
rate is set to ε = 0.1 and the bias is set to hi = 0 to favor continuous locomotion.
Note that, the probability for the generation of forward or backward movement by
the self-organizing controller is still equal. The controller perceives sensor values
and issues a new motor command every 0.1 s.

Reinforcement learning is used for the parameter adaptation of pre- and post-
processing. In this study, Q-Learning [22, 21] was chosen in order to emphasize the
framework and not the details of a complex learning mechanism. Q-learning is a
unifying algorithm for simultaneous value function and policy optimization. It has
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been widely used for the control of autonomous robots [15, 1, 5, 8, 9] since no robot–
world interaction model is required for behavior generation. Here the simplest form,
one-step Q-learning, is used. It is defined by

Qt(s, a) =




(1 − βt)Qt−1(s, a) if s = st and a = at

+βt(rt) + γmaxa(Qt−1(st+1, a))
Qt−1(s, a) otherwise,

where Qt(s, a) is an element of the learned action-value table, storing the utility of
executing the action a in the situation s; r being the reward for the executed action;
β and γ being the learning rate and discount factor, both positive and smaller than
one; t indicates the current time step. Since the reward for an executed action in
a given state is stored in the corresponding Q-value and, in dependence on the
discount factor, further propagated through the Q-table a “utility landscape” is
generated. Selecting actions in order to ascend this landscape with a greedy behavior
policy π(s) = argmaxaQ(s, a) leads to the achievement of the goal (defined by a
positive reward), if the Q-table was properly learned. To ensure this, usually an
exploration rate is introduced, defining a probability for the execution of a randomly
selected action in a given state, in order to visit all state action pairs, not only those
receiving high utility values during the first updates.

The sensory information provided by the robot is used for the calculation of the
current state and the reward of the Q-learner. The learner has six states, defined
by the direction of motion (measured wheel velocities) and the angle α (α = xR4)
between the robot’s forward direction and the direction to the goal:

s0: goal at the left side (−175◦ < α < −5◦),
s1: goal directly in front (−5◦ < α < 5◦) and moving forward,
s2:goal directly in front (−5◦ < α < 5◦) and moving backward,
s3: goal at the right side (5◦ < α < 175◦),
s4: goal directly behind (α > 175◦ or α < −175◦) and moving forward,
s5: goal directly behind (α > 175◦ or α < −175◦) and moving backward,

see also Fig. 2 (left). Actions of the Q-Learner are braking and not braking the
wheels, realized as parameter settings of the pre- and post-processing (pi = 0.5 or
pi = 1). Hence, in every state 16 actions are possible, reflecting all combinations
of the two possible actions per wheel. In each time step the reward rt is defined
as rt = −1 if the goal moves to a side (αt < −6◦ and αt < αt−1, or αt > 6◦ and
αt > αt−1) and rt = 0 otherwise. An additional penalty of −0.3 is added in each
time step in which a brake action is used.

With this setup and the discount factor γ = 0.9, an exploration rate of 0.5 and
the learning rate β = 0.1 the experimental runs were started. During the first minute
the goal-oriented control was not active (pi = 1 for all i), to allow the generation of
activity by the self-organizing control. During the next five minutes the Q-learner
was updated (five times per second). Every 50 s (or whenever the currently active
goal was reached) a new goal was activated. In the last two-and-a-half minutes of
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Fig. 2. (Color online) Left: The states of the Q-Learner indicated in a top view of the robot.
Right: Mean and standard deviation of the number of visited goals with and without the proposed
framework in 25 trials of ten minutes each.

the learning period the learning and exploration rate were linearly decreased to
zero and kept zero. Hence, from this point on only a greedy action selection was
used for the remainder of the experimental run. The adaptation processes of the
slef-organizing controller and the model of the pre- and post-processing are active
during the whole time of the experiment.

One experimental run consists of adaptation (only homeokinetic control active),
learning (Q-Learning active) and the execution of the learned task (Q-Learner with
greedy behavior policy, no learning) in three conditions. The first task (normal
case) is to let the robot follow a sequence of goal positions for 10 min. A new goal
is activated when the currently active goal is reached. The total number of visited
goals is counted. The second task (obstacle case) is like the first, but obstacles
are added on the paths between the goals. The third task (defective case) is also
like the first, but just before the execution of the task (the Q-Learner has learned
already) the robot’s properties are manipulated. The sense of direction of one motor
is inverted, mimicking a system defect. Hence, in order to drive straight, the motor
command yR has to consist of three values with the same sign and one value with
opposite sign. For both controller setups (with/without proposed framework) 25
experimental runs were conducted.

5.2. Results

During the adaptation process at the beginning of the experiments homeokinesis
was able to generate active behaviors of the robot. This requires coordination of
the motor commands since at least two wheels on one side of the robot have to have
motor commands with the same sign to bring the robot into motion. The ability to
coordinate different wheels is a result of the sensitivity to sensor values, generated
by the homeokinetic principle.

After learning, the Q-learners were able to set the parameters of the pre- and
post-processing framework properly in order to achieve goal-orientation. The num-
bers of visited goals for the three conditions for homeokinetic control with and
without the proposed framework are shown in Fig. 2. In the normal case homeoki-
netic control visited 1.8 goals in the mean, since goals are only visited by chance.
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Fig. 3. (Color online) Traces of the robot, black dots represent the sequence of goals: 0, 1, 2, 3,
0 and so on (robot size scaled up for visibility). Left: pure homeokinetic control in normal case,
Center: homeokinetic control with proposed framework in normal case and (right) in case with
obstacles added.

It is in the nature of the homeokinetic approach that it is not focusing on the
goal (and in this case can not even perceive it), which leads to the low number of
1.8 visited goals in the mean in the normal case. Even though the proposed pre-
and post-processing framework is based on homeokinetic control, it clearly shows
goal-oriented behavior which manifests in 25.8 goals visited in the mean. With addi-
tional obstacles on the path between the goals (obstacle case) the mean number
of visited goals drops slightly. The homeokinetic control reacts to collision situa-
tions by inverting the direction of motion of the robot (see Fig. 3). However, with
the proposed framework still 19.5 goals could be visited, with pure homeokinetic
control 1.6 goals. In the defective case both systems visit in the mean nearly the
same number of goals as in the normal case (2.3 and 26.2, respectively), since the
underlying self-organization process can adapt the motor command to the “defect”
wheel in order to keep the system active. This is caused by the internal parameter
dynamics of the homeokinetic controller.

Sample traces of the robot controlled with and without the proposed framework
in the normal case and with added obstacles are depicted in Fig. 3. For the proposed
framework deviations from an ideal trajectory (e.g., straight lines to the goal) can
be clearly seen. These are caused by the dynamics of the self-organizing control
and the sensory noise (added in all simulations to achieve more realistic sensor
readings). However, the robot shows very strong goal directed behavior compared
to pure homeokinetic control. The results show that, by combining self-organization
and learning paradigms, robust and adaptive (with respect to changes of the robot
and in the environment), body and environment related systems with goal-oriented
behavior can be achieved.

6. Conclusion

Self-organization allows the adaptation of a controller to the properties of a given
system. This way body- and environment related basic behaviors can be generated
without requiring detailed knowledge about the robot or its environment. However,
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desired behaviors from the point of view of an external observer can usually not be
achieved (over longer timescales), since a treatment of desired values is missing.

This paper proposes a framework for the guidance of self-organized basic motor
primitives in order to achieve a goal. In the first case study it was shown that
guidance of an anthropomorphic hand controlled by the homeokinetic principle is
possible. In order to drop objects onto the palm the hand was temporarily opened
by appropriately setting the parameters of the framework. Even a linear model, as
part of the pre- and post-processing, can thereby provide the necessary information
about the response strength of the sensor. However, the latter is only required if,
additionally to the scaling, also the center of the joint motion is modulated. In the
second case study goal navigation in a self-organization based four wheeled robot
could be achieved by learning the framework parameters using Q-Learning. The
learned system showed adaptability to changes of the robot (defective case) and
the environment (obstacle case).

The (successful) adaptation to changes is of cause limited to scenarios which the
self-organization paradigm, or the used controller in general, can handle. However,
if for example pure Q-Learning with manually predefined actions should be applied
to the setup used here, the robot would with high probability already get stuck
at the walls in the beginning of the learning period and not learn a proper Q-
table, except if additional states for these situations are introduced (and additional
sensor values provided to the Q-Learner). Two short thought experiment using Q-
Learning without self-organizing control will make this more clear. The task stays
the same: obstacle avoidance and goal-navigation with a four-wheeled robot. In
a first scenario six predefined behavioral primitives (move straight ahead, move
straight back, turn left and turn right while driving forwards, and turn left and
turn right while driving backwards) are used. Compared to the state-action space
using the pre- and post-processing framework, at least one additional velocity-based
sensor/state is required to allow the system to cope with obstacles. The resulting
state-action space would have 56 elements (7 states × 6 actions). Such a system
should have a bit shorter learning time than the pre- and post-processing framework
(which has a state-action space with 96 elements), but requires pre-knowledge of
the actuation system and can not deal with the defective case, even not when the
Q-Learner is relearned. The predefined primitives simply do not work anymore in
the defective case. In a second scenario the motor signals are directly used as actions
of the Q-Learner. This would drastically increase the size of the state-action space.
Assuming four action per wheel (low and high forward and backward velocity)
results in 256 actions. Taking only the seven states from the previous scenario (and
not all sensors seperately) generates a state-action space with 1792 elements. In
this scenario, learning would take much longer than with the proposed method.
Furthermore, the defective case can only be solved by re-learning the Q-Learner,
because a different action has to be chosen for the defect wheel. The proposed
mechanism can deal with the defective case without re-learning of the Q-Learner,
because the self-organizing controller with its ongoing adaptation process solves this
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problem following its intrinsic objective function. Using a controller with predefined
primitives, able to go straight and reverse its velocity when it hits an obstacle,
instead of the homeokinetic controller in this framework, it would be possible to
achieve the goal-orientation, but the adaptation to the defective case is not possible,
since the internal adaptation process of the self-organizing controller is missing.

Compared to existing methods of guided self-organization [11, 6, 10] the
proposed framework has the benefit of decoupling self-organization and goal-
orientation. On the one hand this means that the internal dynamics of the controller
cannot be stimulated to stay in or go to specific regimes, but on the other hand a
goal-oriented behavior of the system can be achieved and a mutual interference of
self-organization and goal-orientation parameters is strongly reduced. The frame-
work parameters can be predefined or adapted/learned with basically any approach.

Furthermore, the proposed system can also be applied to other intrinsically
motivated systems (or predefined controller), since the modulation of inputs and
outputs is done in a transparent way from the point of view of the self-organizing
controller. Limitations are only reached, if the intrinsically motivated controller
already generates complex behaviors which impair the goal-oriented behavior gen-
eration.

The presented approach provides a possibility to combine self-organization and
goal-orientation for the control of autonomous robots in an independent fashion.
Self-organization based basic motor primitives can be used to achieve a given goal.
This requires less initial knowledge about the properties of robot and environment
and allows adaptation to changes of the robot’s morphology without relearning or
adaptation of the goal-oriented behavior. A combination of self-organization and
reward-based learning seems thus a promising route for the development of adaptive
learning systems.
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