
Robotics and Autonomous Systems 94 (2017) 1–11

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Generation of movements with boundary conditions based on
optimal control theory
Sebastian Herzog, Florentin Wörgötter, Tomas Kulvicius *
Department of Computational Neuroscience, University of Göttingen, Germany

h i g h l i g h t s

• Novel trajectory generation method for generalization of accurate movements with boundary conditions.
• Originates from optimal control theory and is based on a second order dynamic system.
• Has most of the properties of the state-of-the-art trajectory generation methods.
• Can reproduce trajectories with zero error.
• Has great potential for various robotic applications, especially, where high accuracy is required.

a r t i c l e i n f o

Article history:
Available online 27 April 2017

Keywords:
Dynamic movement primitives
Movement generalization
Accurate trajectory representation
Boundary conditions
Optimal control

a b s t r a c t

Trajectory generationmethods play an important role in robotics since they are essential for the execution
of actions. In this paper we present a novel trajectory generation method for generalization of accurate
movements with boundary conditions. Our approach originates from optimal control theory and is based
on a second order dynamic system. We evaluate our method and compare it to the state of the art
movement generation methods in both simulations and real robot experiments. We show that the new
method is very compact in its representation and can reproduce reference trajectories with zero error.
Moreover, it has most of the features of the state of the art movement generation methods such as
robustness to perturbations and generalization to new position and velocity boundary conditions. We
believe that, due to these features, our method may have potential for robotic applications where high
accuracy is required paired with flexibility, for example, in modern industrial robotic applications, where
more flexibility will be demanded as well as in medical robotics.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Many different robotic trajectory generation methods exist
ranging from the conventional methods such as splines [1,2] to the
state of the art methods such as dynamic movement primitives
and its modifications (DMPs, [3–8]), Gaussian mixture models
(GMMs, [9,10]), and a recent framework called probabilistic move-
ment primitives (PMPs, [11]). DMPs, GMMs and PMPs have some
advantages as compared to splines since they are robust to pertur-
bations, can generalize to new situations and can be augmented
by additional coupling terms and learning. DMPs and GMMs are
based on dynamic attractor systems and converge to the target
(end-point) asymptotically. This means that there will be always
a small error at the desired end-point of both position and velocity
profile which might be disadvantageous in applications where
high precision is required, e.g., in industrial or medical robotics.

* Corresponding author.
E-mail address: toku@mmmi.sdu.dk (T. Kulvicius).

The problem of errors at the boundary (position and velocity)
has been solved by the PMPs, however, due to their probabilistic
nature PMPs cannot represent the whole trajectory as accurate as
human demonstration, i.e., with zero error. Note that in general
DMPs, GMMs and PMPs are not meant to represent demonstrated
trajectories accurately but rather initialize and train a model to
reproduce similar trajectories.

Several recent approaches utilized optimal feedback control in
order to optimize robot motions [12,13]. Inspired by these ap-
proaches, we present a novel framework for trajectory generation
which has most of the features of the state of the art methods and
is, in addition, highly accurate. Here by ‘‘trajectory generation’’ we
mean that trajectories are generated on-line (similar to DMPs and
GMMs), also in cases where boundary conditions are changed. We
call our method Optimal Control Primitives (OCPs) as it originates
and is derived from the optimal control theory. The novelty of this
approach is a combination of a linear–quadratic regulator (LQR)
controller with a representation of trajectories utilizing Chebyshev
polynomials ([14], similar to splines but different from splines

http://dx.doi.org/10.1016/j.robot.2017.04.006
0921-8890/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.robot.2017.04.006
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2017.04.006&domain=pdf
mailto:toku@mmmi.sdu.dk
http://dx.doi.org/10.1016/j.robot.2017.04.006

2 S. Herzog et al. / Robotics and Autonomous Systems 94 (2017) 1–11

can also use polynomials of higher order). The advantage of the
LQR controller is that, different from a PID controller, it allows
controlling the deviation from a desired position trajectory as well
as the deviation from a desired velocity profile. We will show that
our method can reproduce demonstrated trajectories with zero
error and has most of the features of the state of the art methods
such as DMPs, GMMs and PMPs. Moreover, we will demonstrate
that our method has less error (deviation from the demonstrated
trajectory) as compared to DMPs and PMPs when generalizing to
new boundary conditions.

In [15] optimal control was used to derive control systems for
every part of a robot to perform a specific motion, e.g., rotate
or move a finger. Systems like this were extended to even more
complex systems by building skeleton models [16]. Such skeleton
models can be used for even very complex cases likemodelling and
identification of emotional movements [17]. In our study, instead
of building models for control of specific motions for particular
robots, we present a general framework for generation of on-line
trajectories (similar to DMPs, GMMs and PMPs) based on optimal
control theory (i.e., robot unspecific).

The paper is organized as follows. We first will start with a
formalism of our newmethodwhichwill be presented in Section 2.
Afterwards, in Section 3 we will present results from simulations
where we will evaluate and compare our method to DMPs and
PMPs. This will be followed by a validation and application of our
method in two robot experiments. Finally, we will discuss our
results and conclude our paper in Section 4.

2. Methods

We derive our trajectory generation method from optimal con-
trol theory where we assume a second-order control system with
a state vector x = [ξ, ξ̇]

T where ξ is the position and ξ̇ the velocity
and u is a control signal:

dξ
dt2

=
dξ̇
dt

= u. (1)

Note that a trajectory is determined by two variables; position
and velocity. To control the trajectory the velocity state can be
manipulated by changing u. Using Assumption 1 it is possible to
model the motion of an arbitrary particle in space controlled by a
force u(t) depending on the time t , which leads to the canonical
frame of a second-order control system, the double integrator:

ẋ = Ax(t) + Bu(t), (2)

where x(t) ∈ R2, u(t) ∈ R, and x(0) is given. Here, x = is the state
vector containing the position ξ and the velocity ξ̇ of a motion in a
one-dimensional space. Matrices A and B are defined as follows:

A =

[
0 1
0 0

]
and B =

[
0
1

]
.

We also require that |u(t)| ≤ umax, where umax is the maximal
acceleration, i.e., acceleration is bounded.

Therefore, the motion of the particle is treated as a movement
trajectorywhere the position and the velocity are coupled. To accu-
rately encode and reproduce a trajectory from human demonstra-
tion xr (here human demonstration serves as a reference trajectory
xr) we have to assure the following condition (known as trajectory
tracking problem [18,19]):

lim
t−>T

∥x(t) − xr (t)∥ = 0, (3)

where T is the terminal time (duration of the movement trajec-
tory). Here ∥.∥ is the Euclidean norm. In order to fulfil condition (3),
we have to appropriately choose u(t). For simplicity the time

parameter t will not be used in the following equations. Thus, to
fulfil (3) gain scheduled control is used such that

u = −K (x − xr). (4)

To acquire K the linear–quadratic regulator method (LQR) is
used with the gain scheduled control

u = −Kx (5)

and the cost function

Ĵ =
1
2

∫ T

0

(
xTQxx + uTQuu

)
dt +

1
2
xT (T)Px(T). (6)

Here, Qx ≥ 0, Qu ≥ 0, P ≥ 0 are symmetric, positive (semi-)
definite matrices. The Hamiltonian formulation for this is

H = xTQxx + uTQuu + λT (Ax + Bu) .

But instead of solving the Hamiltonian problem the algebraic Ric-
cati equation is considered

PA + ATP − PBQ−1
u BTP + Qx = 0, (7)

where

P =

[
a b
b c

]
,Qx =

[
q21 0
0 q22

]
and Qu = 1

are used to solve (7) such that

u = −Q−1
u BTPx, (8)

where

K := Q−1
u BTP =

[
q1

√
q22 + 2q1

]
. (9)

Setting K to (2) results in

ẋ = Ax + B(−K (x − xr))
= (A − BK)x + BKxr .

(10)

A detailed derivation of gain matrix K is given in the Appendix
A.

Since the dynamics of the system is given by (10) the choice of
q1, q2 is important. High values of q1 will result in a fast reaction
of the system in order to compensate deviations from the position
profile. This fast reaction can lead to jumps in the velocity profile,
e.g., see Fig. 6(b1). On the other hand, low values of q1 will result in
a slow reaction of the system which as a consequence will lead to
higher errors in tracking accuracy. In case of very short trajectories,
a too slow reaction of the system (very low values of q1) can even
lead to discontinuities.

By tuning the values q1, q2 it is possible to adjust the weighting
between the importance of position ξ and velocity ξ̇ . This may
be useful in cases where ξ̇ is not the derivative of ξ , i.e., if we
want to have a velocity profile different from the velocity profile
of the original trajectory. If q1 ≫ q2 then it would lead to a
trajectory where the position profile is more accurate than the
velocity profile, and vice versa, if q2 ≫ q1 then the system is
more accurate in reproducing velocity profile but would deviate
substantially from the position profile. An example of such a case is
shown in Fig. 1 where we can see that increasing q1 with respect to
q2 leads to a trajectory where the position profile is more accurate
than the velocity profile (see panel (a)), i.e., the system tries to
follow the given position profile and will be more inaccurate in
the velocity profile. Vice versa, if q2 ≫ q1 then the system is
more accurate in reproducing velocity profile but deviates from the
position profile (see panel (b)). Since in our other cases the velocity
profile ξ̇ is indeed the derivative of the position profile ξ , we used
q1 = q2 = 1, i.e., the tracker is supposed to track both position and
velocity accurately. Here, Qu acts as a stiffness parameter, where

S. Herzog et al. / Robotics and Autonomous Systems 94 (2017) 1–11 3

Fig. 1. Influence of parameters q1 and q2 on accuracy in reproduction of position
and velocity profiles: (a) q1 = 104 and q2 = 1, and (b) q1 = 1 and q2 = 104 . Herewe
used the X-profile of letter ’a’ (see Fig. 4) as reference trajectory. Note that in this
case the reference velocity is not the derivative of position profile (we generated
velocity profile manually).

Fig. 2. Influence of parameter Qu on accuracy in reproduction of position, velocity,
and acceleration profiles: : (a)Qu = 1 , and (b)Qu = 100. Herewe used the X-profile
of letter ‘a’ (see Fig. 4) as reference trajectory.

increasing this parameter leads to a stiffer behaviour of the control
u. It can be used to adjust the balance between tracking accuracy
and smoothness. A relatively small value of Qu indicates a strong
and strict controller, which may lead to a spiky trajectory, and vice
versa, a value above 1 leads to a less strict control behaviour which
may result in a smoother trajectory butwith bigger deviations from
reference trajectory. An example of such a case is shown in Fig. 2
where we can see that an increase in Qu value leads to smoother
but less accurate trajectories. In our case we used Qu = 1 in all
other experiments.

2.1. Trajectory representation

In the general case, as presented above, OCPs require a complete
reference trajectory in order to reproduce it, whereas DMPs, GMMs
and PMPs allow encoding motion by a set of parameters, where
the number of needed parameters is less than the number of
points in the reference trajectory [4,20,11]. In the following we
will formalize how an equally compact representation can also be
obtained for OCPs.

To get a compact representation of a trajectory x, u is reduced
to a discrete number of points u∗

= {u∗

1, u
∗

2, . . . , u
∗

T̂
} where T̂ ≪ T .

In addition, the system (2) is extended to

ẋ = Ax + Bφ(u), (11)

Fig. 3. An example of phase stopping: (a) position profile, (b) velocity profile, and
(c) phase variable τ .

where φ(.) is an arbitrary interpolation operator which is used to
reconstruct u from u∗.

In our case an interpolation using Chebyshev polynomials of the
First Kind was used [14]:

φ(u∗) =

N∑
k=0

ckTk(u∗),

where the coefficients ck will converge to ak =
2
π

∫ 1
−1

f (u∗)Tk(u∗)du∗

√
1−u∗2

as k → ∞. Here, Tk(u∗) = cos(k ∗ arccos(u∗)) is the Chebyshev
polynomial of kth order.

In case a higher compression is required, it may be necessary to
regularize u∗ in such a way that the error between the original u
and φ(u) is as small as possible. This can be achieved, for example,
by using a genetic algorithm [21].

In summary, to represent a trajectory in a compact form, instead
of Gaussian kernels as used in DMPs, GMMs and PMPs, we use
Chebyshev polynomials1 for which we only need to know N + 1
via points (sampled from the reference trajectory) if we need N
polynomials in order to reconstruct u∗.

In order to make the system only indirectly dependent on time
(phase based as in DMPs and PMPs [3,11]) and be able to represent
bothdiscrete andperiodicmovementswe replace the timevariable
t in (2) by a phase function τ (.). For generation of discrete motions
τ is simply a linear function

τ (t) = t.

In case of periodic (repetitive) movements one can use a simple
periodic function with respect to time τ (t) where T defines time of
one period:

τ (t) = t mod T ,

where mod denotes the modulo operation.
An example of phase stopping is shown in Fig. 3 where we

stopped phase variable τ be setting it to a constant value at approx.
0.13 s for some period of time and let the systemproceed as normal
at approx. 0.25 s (see panel (a)). One can see that the system is
stalled (velocity goes downand stays at zero) for that period of time
(see panel (b)) but recovers and follows the reference velocity pro-
file as soon as the phase variable has been ‘‘released’’. As expected,
there is no deviation from the position profile (see panel (a)). Note
that in the following experiments the phase variable is not altered
when generalizing to new boundary conditions.

2.2. Generalization

The ability to generalize to new situations, i.e., to new start-
and/or end-points is a relevant feature ofmodern trajectory gener-
ators. This generalization is implemented in the OCP framework in

1 A Matlab demo and source code of our framework can be downloaded from
http://www.dpi.physik.uni-goettingen.de/cns/index.php?page=optimal-control-
primitves.

http://www.dpi.physik.uni-goettingen.de/cns/index.php?page=optimal-control-primitves
http://www.dpi.physik.uni-goettingen.de/cns/index.php?page=optimal-control-primitves

4 S. Herzog et al. / Robotics and Autonomous Systems 94 (2017) 1–11

Fig. 4. Dataset used for comparison of different movement generation frameworks.

the followingway. In general, in order to generate a trajectorywith
new boundary conditions, e.g., with a new start-point x(0) = µ,
and a new end-point x(T) = ν the two point boundary value
problem has to be solved. In order to decrease computational cost
the initial value problem is solved two times, instead. For the new
start state the Eq. (10) is solved with a x(0) = µ and the known u
from (4). For the new terminal statewe set x(0) = ν and u becomes

û = uT , uT−1, . . . , u1. (12)

Let us define x(init) as the solution of (10) for the new initial state
and x(ter) as the solution for the new terminal state. Then, thewhole
solution for a trajectory with changed initial and terminal states
becomes

x = x(init)1 , . . . , x(init)
⌊T/2⌋, x

(ter)
⌊T/2⌋+1, . . . , x

(ter)
1 . (13)

Note that in case of very short trajectories with less then four
points, where

x(int)
⌊T/2⌋ − x(ter)

⌊T/2⌋+1 ≤ ∆x, (14)

with ∆x being the maximal allowed discontinuity, it is necessary
to solve the two point boundary problem like in [22]. However, this
was not necessary for any of our test cases as presented in the next
section.

3. Results

In the following we will compare the performance of our
framework to the performance of DMPs and PMPs with respect to
three aspects: (1) accuracy in reproduction of human trajectories,
(2) robustness to perturbations, and (3) position and velocity gen-
eralization.

For benchmarking and evaluation we used human handwritten
letters (see Fig. 4) as already used by some previous studies [4,8].
We used the same procedure in order to obtain letter samples as
used by Kulvicius et al. [8]. Data was collected by utilizing a pen
tablet (Wacom Intuos3 A3 Wide DTP) with a size of 48.8 cm ×

30.5 cm, resolution of 5080 lpi and a sampling rate of 200 Hz.
For comparison with DMPs we used a version of DMPs for

generation of hitting and batting movements [5] since it allows
generalization to both position and velocity boundary conditions.
For learning the weights of the Gaussian kernels we used the δ −

rule as described in Kulvicius et al. [8]. For comparison with PMPs
we used the framework presented in [11] and for learning PMP
weightswe used an expectationmaximization algorithm approach
were

w = (φTφ + Iϵy)−1(φTyref) (15)

with the basis matrix φ, identity matrix I , a regularization pa-
rameter ϵy to increase the condition number of the system and a
reference trajectory yref .

3.1. Trajectory reproduction

First of all we compare the performance of our framework
to DMPs and PMPs with respect to trajectory reproduction. For
qualitative comparisonwe use the letter ‘‘a’’ from the letter dataset
as shown in Fig. 4. Herewe analysed how the accuracy of trajectory
reproduction is influenced by the number of the basis functions
(Gaussian kernels in case of DMPs and PMPs, and Chebyshev poly-
nomials in case of OCPs) used to represent the trajectory. Note
that for DMPs and PMPs we used equally distributed kernels with
equal variance where the variance was tuned in order to get best
accuracy in trajectory reproduction. The results for reproduction
of a human motion trajectory are shown in Fig. 5 where we used
10, 15 and 20 basis functions. We can see that OCPs can reproduce
the reference trajectory more accurately than the other methods
when 15 and 20 basis functions are used. We also quantified the
movement reproduction property of the different approaches sta-
tistically where we used all 23 letters from the dataset (see Fig. 4).
We calculated the accuracy of trajectory reproduction for different
numbers of basis functions: 10, 12, 14. . .40. Statistics for all three
methods are presented in Fig. 5(d) where we can see that OCPs
require fewer basis function to reproduce trajectory accurately
as compared to DMPs and PMPs. In case of OCPs, it was already
possible to reproduce trajectories with zero error with 32 basis
functions, whereas for DMPs and PMPs the error drops around 35
basis functions and is below 0.1% for position and below 5% for
the velocity profile. Based on these results, in order to make a fair
comparison of the differentmethods, in the following experiments
we used 35 basis functions for all three methods.

3.2. Robustness to perturbations

Secondly, we looked at the behaviour of our trajectory gener-
ation method with respect to perturbation robustness where we
again compared our method against DMPs. We perturbed the sys-
tem at some arbitrary time by shifting the position profile in both
X and Y direction by 30%. The results of such a test are shown in
Fig. 6wherewe present the behaviour of DMPs in panel (a) and two
cases for the OCPs in panel (b): (1) without bounded acceleration
(OCP) and (2) with bounded acceleration (OCP bound). Allowing
the solver for the dynamic system to do arbitrary big steps for
the acceleration leads to an unbounded response, bounding the
acceleration by umax leads to the bounded response. Note that in
our case umax was set arbitrary for demonstration purposes only. In
general, it could be set to themaximumacceleration obtained from
the demonstration trajectory or it could be set to the maximum
allowed acceleration of the robot used. We can observe that in
case of unbounded acceleration theOCP systemproduces a velocity
jump,which is different from the behaviour of the DMP system and
might be even dangerous for robotic applications. This is due to the
fact that OCPs are optimal with respect to minimal position and
velocity deviation depending on the choice ofQu, where the system
tries to come back to the original trajectory, as soon as possible.
Such undesired jumps in the velocity profile can be avoided by
limiting themaximal acceleration umax. We can see that by limiting
acceleration (we set the value to the maximum acceleration of
the reference trajectory) we can obtain much smoother response
of the system. Moreover, we can also observe that the OCP sys-
tem converges to the original path much sooner as compared to
DMPs.

3.3. Position and velocity generalization

We also analysed how well can our trajectory generation
method generalize to new situations, i.e., when position or ve-
locity boundary conditions are changed. Here we compared the

S. Herzog et al. / Robotics and Autonomous Systems 94 (2017) 1–11 5

Fig. 5. Results for reproduction of human demonstration (reference) for (a) DMPs, (b) PMPs, and (c) OCPs. Position profiles are shown for each case. (d) Influence of the
number of basis functions on the accuracy of trajectory reproduction. Mean relative position (top) and velocity (bottom) error for the whole trajectory obtained from 23
letters.

Fig. 6. Comparison of robustness to perturbation between (a) DMPs, (b1) OCPs
without bounded acceleration (OCP), and (b2) with bounded acceleration (OCP
bound). Position (left) and velocity (right) profiles are shown for each case.

performance of our framework to both DMPs and PMPs. Note
that in case of PMPs it is rather control than generalization, since
one requires to recalculate kernel parameters whenever boundary
conditions are changed. First, we compared the behaviours of the
three systems when position boundary conditions are changed.
To do so, we changed the end-point position (for both X and Y
components) by relatively increasing the end-point value of the
reference trajectory by 30%. Note that in this case we kept the
velocity boundary conditions the same than those for the reference
trajectory. Qualitative results are presented in Fig. 7(a1–c1) where
we can see that performance of PMPs and OCPs is different from
that of DMPs. In case of DMPs we get much larger deviations from
the original trajectory (along the whole trajectory) as compared
to PMPs and OCPs where deviations are only at the end of the
trajectory. Statistics for the position generalization are shown in

Fig. 7(d1) where we show average relative position and velocity
error obtained from all 23 letters (see Fig. 4). In general, we can
observe that, when using DMPs, deviation from the reference tra-
jectory increase dramatically when increasing the change in end-
point position. Also, the deviation of the velocity profile is much
higher as compared to PMPs and OCPs. The results also demon-
strate that OCPs produce smaller deviations from the reference
trajectory (in both position and velocity profile) as those observed
with PMPs. Mean relative position error at the desired new end-
point for DMPs was 0.008%, whereas for PMPs and OCPs the error
was zero. This is due to the fact that DMPs converge to the end
point only asymptotically [4].

Similar to position generalization, we also performed a test
where we compared all three frameworks with respect to the
change of velocity boundary conditions. So, here we changed
the end-point velocity by scaling it relatively to the end-point
velocity of the human demonstration. End-point position was
kept unchanged. Qualitative results for the 30% end-point velocity
change are shown in Fig. 7(a2–c2) whereas statistics are shown
in Fig. 7(d2). Similar to the results obtained from position gen-
eralization we observe that DMPs result in much larger position
and velocity deviations as compared to PMPs and OCPs. Also as
in the previous case, OCPs outperform PMPs by producing only
deviations at the very end of the trajectory, which is necessary in
order to meet the new boundary conditions. Similar to the case of
position generalization, relative velocity error at the desired new
end-point for PMPs and DMPs was zero, whereas mean relative
velocity error at the desired new end-point for DMPs was 0.434%,
which again is due to the asymptotic convergence. We summarize
results for position and velocity generalization in Fig. 8(a) and (b),
respectively, where we show mean relative position and velocity
errors for the whole trajectory obtained from 23 letters. Results
demonstrate that OCPs outperform both DMPs and PMPs in that
the OCP-system can follow the reference trajectory better when
generalizing to new boundary conditions.

In addition, we also performed a test were we compared be-
haviour of all three methods when we changed both position and
velocity boundary conditions at the same time. As in the previous
cases we scaled both position and velocity end-points by 30%.
Results are presented in Fig. 7(a3–d3). As expected, we can see
that results are similar to those as already presented in Fig. 7(a1–
d1) and Fig. 7(a2–d2), where, as in previous cases, for DMPs we
obtain large deviations from the reference movement along the

6 S. Herzog et al. / Robotics and Autonomous Systems 94 (2017) 1–11

a1 a2 a3

b1 b2 b3

c1 c2 c3

d1 d2 d3

Fig. 7. Examples of (a1–c1) position and (a2–c2) velocity, and (a3–c3) position and velocity generalization for (a) DMPs, (b) PMPs and (c) OCPs. Here we changed position
and/or velocity at the end-point by 30%. Position (left) and velocity (right) profiles are shown for each case. The circles denote new end-points. (d) Statistics for (d1) position,
(d2) velocity, and (d3) position and velocity generalization. Mean relative position (top) and velocity (bottom) error are shown for each case. Error bars denote standard
deviation.

whole trajectory when boundary conditions are changed, whereas
PMPs and DMPs deviate from the reference movement only at the
end of the trajectory, with the advantage of OCPs in tracking the
trajectory more accurately as compared to PMPs. Mean relative
position and velocity error at the desired new end-point for DMPs
was 0.118% and 0.435%, respectively, whereas for PMPs and OCPs,
as in previous cases, the errors were zero.

We summarize results for position and velocity generalization
in Fig. 8 where we showmean relative position and velocity errors
for the whole trajectory obtained from 23 letters for all tree cases
as presented above: (1) change of position end-point (see panel
(a)), (2) change of the velocity end-point (see panel (b)), and
(3) change of the both position and velocity end-points (see panel
(c)). Results demonstrate that OCPs outperform both DMPs and
PMPs in that the OCP-system can follow the reference trajectory
better when generalizing to new boundary conditions.

3.4. Robot experiments

DMPs are currently probably still themostwidely used dynamic
and adaptive method for the generation of generalizable trajecto-
ries. Thus, we compared the performance of our approach against
DMPs where the differences between the systems becomes most
clearly visible. Performance differences of OCPs and PMP had been
quantified above in Figs. 5, 7 and 8.

For this, we compared performance of OCPs and DMPs in two
robot experiments: (1) a pouring task and (2) a via-point task,
where the task for the robot was to generalize to new situations

Fig. 8. Statistics for (a) position, (b) velocity and (c) both position and velocity
generalization. Mean relative position (left) and velocity (right) error for the whole
trajectory is shown for each case. Error bars denote confidence intervals (95%) of
mean, where p stands for the probability of the t-test (significance level α = 0.05).

S. Herzog et al. / Robotics and Autonomous Systems 94 (2017) 1–11 7

Fig. 9. Results from pouring experiment. (a,b) Resulting joint (position) trajectories for a new position end-point obtained with (a) DMPs and (b) OCPs. Note that here we
show only joint trajectories which differed from human demonstration. The circles denote new end-points. (c–e) Selected frames from action execution performed by (c) a
human, (d) a robot utilizing DMPs and (e) a robot utilizing OCPs.

based on a human demonstrated trajectory. For our experiments
we used a seven DOF ‘‘KUKA-LWR’’ robot-arm. Human trajectories
were recorded by using kinaesthetic guidance and were encoded
with DMPs and OCPs as described above.

In the first experiment, the pouring task, a human demon-
strated how to pour 50 ml of sand from a container containing
200ml of sand into an empty glass (see Fig. 9(c) and supplementary
video, Appendix B). The task for the robot, different from human
demonstration,was to empty the container completely, i.e., to pour
all the sand (200 ml) from the container into the glass. To do so,
obviously, the robot needed to tilt the container much more as
compared to human demonstration. In this case we performed
the task in joint-space were we manually set the end-points of
three joint position profiles in order to tilt the wrist as much
as to empty the glass completely. Note that different from other
approaches used in learning to pour tasks [23,24]we do not change
parameters (weights in case of DMPs) of the trajectory generation
method but only boundary conditions in order to generalize to the
new situation. The resulting trajectories for DMPs and OCPs are
shown in Fig. 9(a) and (b), respectively. We can see that in the case
of DMPs, as already demonstrated in Fig. 7(a1), the trajectory is
changed along the whole path when generalizing to new position
end-points. This leads to the fact that the robot starts tilting the
container too early and, as a consequence, spills some of the sand
on the table (see Fig. 9(d)). By contrast, OCPs change the trajectory
only at the end of the movement, which enables the robot to pour
the sand into the glass without spilling.

In the via-point task we were concerned with precision and
generalization to a new end-point velocity. In this scenario we
placed three bottles of different size on a table and put bottle caps
upside-down on the top of each of them. The task was to flick off
all caps from the bottles while moving from one bottle to the other
by hitting the caps with a pen which was held in the robot’s hand.
A human demonstration of such an action is shown in Fig. 10(c)
(see also supplementary video, Appendix B). In case of a human
demonstration the human stopped at the last bottle, i.e., at the
end of the motion the velocity was zero (see the reference velocity
profile in Fig. 10(a)). Different from this, the task for the robot
was to hit the cap of the last bottle with non-zero velocity. In

this case, we performed the action in Cartesian space where we
only changed end-point velocity of the X, Y and Z components. We
manually changed the end-point velocity for X, Y and Z component
to non-zero values. The new velocity at the end-point for OCPs
was 0.25 cm/s where for DMPs it was 0.02 cm/s. We could not
use higher velocities for DMPs since higher velocities produced too
large deviation from the reference trajectory (in position space)
and it was not possible to execute this with the robot due to
the physical constrains of the machine. Results of the via-point
task experiment are shown in Fig. 10 where we can see that in
case of DMPs, as already demonstrated in Fig. 7(a2), the position
profile deviates a lot when the end-point velocity is changed. In
this case the robot hits the bottles with the hand instead of the
pen. However, the robot was able tomeet the boundary conditions
at the end of the trajectory, which is consistent with the results
shown in Fig. 7(a2). Different from DMPs, OCPs deviated only at
the end of the trajectory (Fig. 10(b)), which is actually expected
and desired in order to meet new boundary velocity condition.
Here we show two versions of movement generalization with
OCPs: (1) OCPs without bounded acceleration (see Fig. 10(b1,e1)),
and (2) OCPs with bounded acceleration (see Fig. 10(b2,e2)). In
the case of unbounded acceleration, the robot makes a zig-zag
motion, i.e., stops before hitting the cap of the last bottle, moves
back a bit and then moves forward again (Fig. 10(b1,e1); see also
supplementary video, Appendix B). This is due to the fact that the
robot requires a larger distance in order to accelerate and produce
higher velocity at the end of themotion. In the case of bounded ac-
celeration, we only bounded the acceleration of the X-component
(in robot frame). Here, instead of going backward, the robot moves
upward and then downward in order to accelerate and produce
higher velocity at the end of the motion (Fig. 10(b2,e2); see also
supplementary video, Appendix B).

4. Discussion

In this paper we presented a novel trajectory generation
method for the generation of highly accurate movements with ar-
bitrary position and/or velocity boundary conditions. We showed
that the method is comparable to the state of the art methods

8 S. Herzog et al. / Robotics and Autonomous Systems 94 (2017) 1–11

a

b1

b2

c

d

e1

e2

Fig. 10. Results from the via-point task. (a,b) Resulting position and velocity trajectories (X, Y and Z in robot frame) for a new velocity end-point obtained with (a) DMPs,
(b1) OCPs without bounded acceleration (OCP), and (b2) OCPs with bounded acceleration (OCP bound). The circles denote new end-points. (c–e) Selected frames from action
execution performed by (c) a human, (d) a robot utilizing DMPs, (e1) a robot utilizing OCPs without bounded acceleration, and (e2) a robot utilizing OCPs with bounded
acceleration.

such as DMPs [4] and PMPs [11] in terms of features such as
compactness of trajectory representation, robustness to pertur-
bations, and generalization. Moreover, we showed that the new
method produces more accurate trajectories, i.e., it deviates less
from the demonstrated trajectory as compared to DMPs or PMPs
when generalizing to new boundary conditions. It is important
to note that, as already stated above, DMPs and PMPs are not
meant to represent trajectories accurately. This comparison is by
no means a devaluation of existing methods but rather shows
behavioural differences of different trajectory methods where in
some situations one method may be more preferable than the
others and vice versa. For example, there may be cases where
gradual transition from start-point to a newend-pointwill bemore
beneficial as compared to a change only at the end of the trajectory,
and vice versa.We demonstrated by two robot experiments that in
some situations the trajectories generated using the new method
can be beneficial as compared to trajectories generatedwith DMPs.
In general, the behaviour of OCPs is qualitatively similar to PMPs,

however, different from PMPs and DMPs, OCPs can achieve higher
accuracy in motion reproduction with fewer basis functions.

A comparison of DMPs, PMPs and OCPs in terms of features
is provided in Table 1, where we can see that all methods are
capable of position and velocity scaling, and generalization to
new boundary (position and velocity) conditions. However, PMPs
require an additional tracker on top of the trajectory generation
model, whereas DMPs and OCPs (similar to DMPs) have a built-in
tracker in themodel. In general, compact trajectory representation
with the OCP framework requires less parameters as compared
to DMPs and PMPs. For OCPs, if we want to represent a trajec-
tory with N polynomials, we only need to know the via points,
which in total leads to N + 1 parameters. For DMPs and PMPs
we would need for N Gaussian kernels in total 3N parameters
(mean, variance and weight for each Gaussian function). Only if
all kernels have the same width and are equidistantly distributed
one would also have N + 1 parameters, but many situations exist
(e.g., stiff systems)where the use of identical kernels is not optimal.
For comparison, GMMs in total require 4N parameters in order

S. Herzog et al. / Robotics and Autonomous Systems 94 (2017) 1–11 9

Table 1
Comparison of different movement generation frameworks with respect to their properties.

Property Splines DMPs GMMs PMPs OCPs

Time dependence Direct Indirect Independent Indirect Indirect

Built-in tracker - + + - +

Start- and end-point
position/velocity control +/+ +/+ +/- +/+ +/+

Via-point control + + + + +

Start- and end-point
position/velocity generalization -/- +/+ +/- -/-* +/+

Robustness to perturbations - + + -** +

Acceleration bounding - - - -** +

Number of parameters for
trajectory representation (min/max) N + 1 N + 1 / 3N 4N N + 1 / 3N Arbitrary***

N is the number of basis functions.
* PMPs require recalculation of kernel parameters if boundary conditions are changed.
** It is not possible without a built-in tracker.
*** Depends on the basis function.

to represent trajectory by a mixture of N 2D Gaussian kernels (in
GMMs movements are represented in a phase space of position
and velocity [20]). However, different from ourmethod, GMMs can
encode a set of several different trajectories, whereas our method
(as DMPs) encodes only a single trajectory.

As already stated in introduction our approach utilizes Linear–
Quadratic Regulator (LQR) control for tracking of trajectories. We
have chosen LQR for the following reasons. In general, as shown
in [25,26] and [27], LQR controller can be designed as a Propor-
tional Integral (PI) controller. Moreover, as demonstrated by [28],
the more specialized LQR controller has superior properties re-
garding oscillations as compared to a general Proportional Integral
Derivative (PID) controller. Thus, we utilized LQR and not standard
PID controller due to better tracking properties.

Our approach is similar to the one presented in [29], where
LQR controller is utilized to track a desired trajectory by a UAV.
Different from that approach, in our case, we used a more general
model, the double integrator with a mass equal to one. Since our
model is simpler, there is no need to reduce the dimensions of the
problem like it is done in [29], which allows a more intuitive use
of the controller and the parametrization. In addition, it is easier to
add further constrains if necessary.

It is important to stress that themain advantage of our approach
compared to other frameworks is that OCPs are not restricted with
respect the way a trajectory is encoded, i.e., it does not necessarily
have to be encoded with Chebyshev polynomials as shown in
this study. In our case, different from DMPs, PMPs and GMMs,
a trajectory is a (control-)signal, which means that one can use
and apply any kind of control theory and/or signal processing in
order to represent a trajectory. For example, a trajectory could be
represented by a parabola or a sine-wave, too. Also, in contrast to
spline based approaches like [30], the trajectory in our approach
is a continues function and allows to bound the maximal accel-
eration and change the start and terminal point. These properties
should also allow linking the OCP framework to existing control
frameworks like ZMP [31] as well as admittance or impedance
based control [32,33] much easier than for DMPs or PMPs. Future
investigation into this are planned but would exceed the scope of
this paper.

Common industrial applications, such as gluing or welding, of-
ten require highly exact position and velocity profiles for the to-be-
performed trajectory. For example, the robot should not decelerate
at corners, by which the gluing (or welding) track would become
uneven. The attractive features of our method – compactness and

high accuracy – could have a great potential especially for such
applications.

Acknowledgements

This research was partially supported by the funding from
BioRobotics Center, University of Southern Denmark (FORSK2020;
2014-2018). The research leading to these results has also re-
ceived funding from the European Community’s Seventh Frame-
work Programme FP7/2007-2013 (Programme and Theme: ICT-
2011.2.1, Cognitive Systems and Robotics) under grant agreement
no. 600578, ACAT.

Authors thank Mohamad Javad Aein for the help with robot
experiments.

Appendix A

In the following we will provide a detailed derivation of gain K
(see Eq. (4)).

To acquire K the linear–quadratic regulator method (LQR) is
used with the cost function

Ĵ =
1
2

∫ T

0

(
xTQxx + uTQuu

)
dt +

1
2
xT (T)Px(T). (A.1)

In order to solve cost function the Hamiltonian

H = xTQxx + uTQuu + λT (Ax + Bu)

should be solved. Instead of solving H directly the following con-
ditions

ẋ =

(
∂H
∂λ

)T

= Ax + Bu x(0) = x0 (A.2)

− λ̇ =

(
∂H
∂x

)T

= Qxx + ATλ λ(T) = P1x(T) (A.3)

0 =
∂H
∂u

= Qu + λTB (A.4)

can be deduced leading to

u = −Q−1
u BTλ. (A.5)

Substituting λ(t) = P(t)x(t) into the conditions we get

λ̇ = Ṗx + P ẋ = P(Ax − BQ−1
u BTP)x = Qxx + ATPx. (A.6)

To satisfy this equation a P(t) is needed such that

− Ṗ = PA + ATP − PBQ−1
u BTP + Qx P(T) = P1, (A.7)

10 S. Herzog et al. / Robotics and Autonomous Systems 94 (2017) 1–11

which can be rewritten as

PA + ATP − PBQ−1
u BTP + Qx = 0. (A.8)

This equation is called algebraic Riccati equation and is numerically
solvable, leading to the linear control law for the LQR problem

u = −Q−1
u BTPx (A.9)

with

Qx =

[
q21 0
0 q22

]
, Qu = 1.

and P represented symbolically as

P =

[
a b
c d

]
.

By setting all variables into the algebraic Riccati equation and solv-
ing for P this leads to

0 = PA + ATP − PBQ−1
u BTP + Qx

=

[
q21 − b2 a − bc
a − bc 2b + q22 − c2

]
. (A.10)

For three unknown variables this can be rewritten as

q21 − b2 = 0

a − bc = 0

2b + q22 − c2 = 0,

which leads to

q21 = b2

⇒ b = ±q1
H⇒ ±2q1 + q22 − c2 = 0

H⇒ c = ±

√
q22 ± 2q1.

Implying c > 0 and q1 > 0 we obtain

P =

⎡⎣q1
√
q22 + 2q1 q1

q1
√
q22 + 2q1

⎤⎦ . (A.11)

Finally we can compute the feedback gain matrix K :

K = Q−1
u BTP =

[
q1

√
q22 + 2q1

]
. (A.12)

In our frameworkwe use the LQR feedback controller for reference
tracking, where the reference input xr is known. In order to track
the reference trajectory accurately we have to satisfy the following
error condition limt−>T∥x− xr∥ = 0 or be minimal. For the closed
loop system our control is u = −K (x − xr) and by setting it into
Eq. (2) this leads to

ẋ = Ax + Bu

= Ax + B(−K (x − xr))
= Ax − BKxr + BKx

= (A − BK)x + BKxr =

[
0 0

q1
√
q22 − 2q1

][
ξ

ξ̇

]

+

[
0 1

q1
√
q22 − 2q1

][
ξr
ξ̇r

]
.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.robot.2017.04.006.

References

[1] R.H. Castain, R.P. Paul, An on-line dynamic trajectory generator, Int. J. Robot.
Res. 3 (1) (1984) 68–72.

[2] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, Planning and
Control, Springer Publishing Company, 2009.

[3] J.A. Ijspeert, J. Nakanishi, S. Schaal, Movement imitation with nonlinear dy-
namical systems in humanoid robots, in: Proc. 2002 IEEE Int. Conf. Robotics
and Automation, 2002, pp. 1398–1403.

[4] J.A. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Dynamical move-
ment primitives: Learning attractor models for motor behaviors, Neural Com-
put. (ISSN: 0899-7667) 25 (2) (2013) 328–373.

[5] J. Kober, K. Mülling, O. Krömer, C.H. Lampert, B. Schölkopf, J. Peters, Movement
templates for learning of hitting and batting, in: Proc. 2010 IEEE Int. Conf.
Robotics and Automation, 2010, pp. 1–6.

[6] B. Nemec, A. Ude, Action sequencing using dynamic movement primitives,
Robotica 30 (5) (2012) 837–846.

[7] K. Ning, T. Kulvicius, M. Tamosiunaite, F. Wörgötter, A novel trajectory gener-
ation method for robot control, J. Intell. Robot. Syst. 68 (2) (2012) 165–184.

[8] T. Kulvicius, K.J. Ning, M. Tamosiunaite, F. Wörgötter, Joining movement se-
quences: Modified dynamic movement primitives for robotics applications
exemplified on handwriting, IEEE Trans. Robot. 28 (1) (2012) 145–157.

[9] S.M. Khansari-Zadeh, A. Billard, BM: An iterative method to learn stable non-
linear dynamical systems with gaussian mixture models, in: Proc. 2010 IEEE
Int. Conf. Robotics and Automation, 2010, pp. 2381–2388.

[10] S.-M. Khansari-Zadeh, A. Billard, A dynamical system approach to realtime
obstacle avoidance, Auton. Robots 32 (2012) 433–454.

[11] A. Paraschos, C. Daniel, J. Peters, G. Neumann, Probabilistic movement primi-
tives, in: C. Burges, L. Bottou, M.Welling, Z. Ghahramani, K. Weinberger (Eds.),
Advances inNeural Information Processing Systems, vol. 26, CurranAssociates,
Inc., 2013, pp. 2616–2624.

[12] J.R.Medina, D. Lee, S. Hirche, Risk-sensitive optimal feedback control for haptic
assistance, in: Proc. IEEE Int. Conf. Robotics and Automation, 2012.

[13] S. Calinon, D. Bruno, D.G. Caldwell, A task-parameterized probabilistic model
with minimal intervention control, in: Proc. IEEE Int. Conf. Robotics and Au-
tomation, 2014, pp. 3339–3344.

[14] U.W. Hochstrasser, Orthogonal polynomials, in: Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables, New York, Dover,
1972.

[15] M. Steinbach, H. Bock, R. Longman, Time-optimal extension and retraction of
robots: Numerical analysis of the switching structure, J. Optim. Theory Appl.
84 (3) (1995) 589–616.

[16] M.C. Steinbach, H.G. Bock, G.V. Kostin, R.W. Longman, Mathematical optimiza-
tion in robotics: towards automated high-speed motion planning, Surv. Math.
Ind. 7 (4) (1997) 303–340.

[17] M.L. Felis, K. Mombaur, H. Kadone, A. Berthoz, Modeling and identification of
emotional aspects of locomotion, J. Comput. Sci. 4 (4) (2013) 255–261.

[18] K.J. Aström, R.M.Murray, Feedback Systems: An Introduction for Scientists and
Engineers, Princeton University Press, 2008.

[19] A. Ratajczak, Trajectory reproduction and trajectory tracking problem for the
nonholonomic systems, Bull. Pol. Acad. Sci. Tech. Sci. 64 (1) (2016) 63–70.

[20] S.M. Khansari-Zadeh, A. Billard, Learning stable non-linear dynamical systems
with gaussian mixture models, IEEE Trans. Robot. 27 (2011) 943–957.

[21] M. Mitchell, An Introduction to Genetic Algorithms (Complex Adaptive Sys-
tems), A Bradford Book, ISBN: 9780262631853, 1998.

[22] R.W. Holsapple, R. Venkataraman, D. Doman, New, fast numerical method
for solving two-point boundary-value problems, J. Guid. Control Dyn. 27 (2)
(2004) 301–304.

[23] M. Tamosiunaite, B. Nemec, A. Ude, F. Wörgötter, Learning to pour combining
goal and shape learning for dynamicmovement primitives, Robot. Auton. Syst.
59 (11) (2011) 910–922.

[24] A. Nemec, R. Vuga, A. Ude, Efficient sensorimotor learning from multiple
demonstrations, Adv. Robot. 27 (13) (2013) 1023–1031.

[25] W.S. Levine, The control handbook, in: The Electrical Engineering Handbook
Series, CRC Press New York, Boca Raton (Fl.), ISBN: 0-8493-8570-9, 1996.

[26] J.-B. He, Q.-G. Wang, T.-H. Lee, PI/PID controller tuning via LQR approach,
in: Decision and Control, 1998. Proceedings of the 37th IEEE Conference on,
vol. 1, 1998, pp. 1177–1182.

[27] N. Kumari, A.N. Jha, Automatic generation control using LQRbased PI controller
for multi area interconnected power system, Adv. Electron. Electr. Eng. 4 (2)
(2014).

http://dx.doi.org/10.1016/j.robot.2017.04.006
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb1
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb1
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb1
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb2
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb2
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb2
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb3
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb3
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb3
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb3
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb3
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb4
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb4
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb4
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb4
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb4
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb5
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb5
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb5
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb5
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb5
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb6
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb6
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb6
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb7
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb7
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb7
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb8
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb8
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb8
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb8
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb8
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb9
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb9
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb9
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb9
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb9
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb10
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb10
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb10
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb11
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb11
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb11
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb11
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb11
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb11
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb11
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb12
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb12
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb12
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb13
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb13
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb13
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb13
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb13
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb14
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb14
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb14
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb14
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb14
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb15
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb15
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb15
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb15
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb15
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb16
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb16
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb16
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb16
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb16
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb17
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb17
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb17
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb18
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb18
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb18
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb19
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb19
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb19
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb20
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb20
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb20
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb21
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb21
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb21
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb22
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb22
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb22
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb22
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb22
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb23
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb23
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb23
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb23
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb23
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb24
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb24
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb24
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb25
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb25
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb25
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb26
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb26
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb26
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb26
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb26
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb27
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb27
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb27
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb27
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb27

S. Herzog et al. / Robotics and Autonomous Systems 94 (2017) 1–11 11

[28] A. Jose, C. Augustine, S.M. Malola, K. Chacko, et al., Performance study of PID
controller and LQR technique for inverted pendulum, World J. Eng. Technol.
3 (02) (2015) 76.

[29] I.D. Cowling, W.J. F., A.K. Cooke, Optimal trajectory planning and LQR control
for a quadrotor UAV, in: UKACC International Conference on Control, 2006.

[30] M. Egerstedt, C.F. Martin, Optimal trajectory planning and smoothing splines,
Automatica 37 (7) (2001) 1057–1064.

[31] M. Vukobratović, B. Borovac, Zero-Moment Point - Thirty Five Years of its Life,
Int. J. Hum. Rob. 1 (1) (2005) 157–173.

[32] N. Hogan, Impedance control: An approach to manipulation, in: American
Control Conference, 1984, 1984, pp. 304–313.

[33] C. Ott, R. Mukherjee, Y. Nakamura, Unified impedance and admittance control,
in: Proc. 2010 IEEE Int. Conf. Robotics and Automation, 2010, pp. 554–561.

Sebastian Herzog studied computational neuroscience
and mathematics at the University of Göttingen, Ger-
many. His current research interests are robotics, artifi-
cial intelligence, machine learning, nonlinear dynamics,
self-organization, computational fluid dynamics, quantum
mechanics, information theory and data assimilation.

Florentin Wörgötter has studied biology and mathemat-
ics at the University of Düsseldorf, Germany. He received
the Ph.D. degree for work on the visual cortex from the
University of Essen, Germany, in 1988. From 1988 to 1990,
hewas engaged in computational studies with the Califor-
nia Institute of Technology, Pasadena, CA, USA. Between
1990 and 2000, he was a Researcher at the University of
Bochum, Germany, where he was investigating the ex-
perimental and computational neuroscience of the visual
system. From 2000 to 2005, he was a Professor of com-
putational neurosciencewith the Psychology Department,

University of Stirling, U.K., where his interests strongly turned towards Learning
in Neurons. Since July 2005, he has been the Head of the Computational Neu-
roscience Department at the Bernstein Center for Computational Neuroscience,
Inst. Physics 3, University of Göttingen, Germany. His current research interests
include information processing in closed-loop perceptionaction systems, sensory
processing, motor control, and learning/plasticity, which are tested in different
robotic implementations.

Tomas Kulvicius received his Ph.D. degree in Computer
Science (2010) from theUniversity of Göttingen, Germany.
In his Ph.D. thesis he investigated development of recep-
tive fields in closed loop learning systems. From 2010 to
2015, he was a Researcher at the University of Göttingen
where he worked on trajectory generation and motion
control for robotic manipulators. From 2015 to 2017, he
was appointed as an Assistant Professor at the Centre for
BioRobotics, University of Southern Denmark. Currently
he is a Research Assistant at the University of Göttin-
gen, Germany. His research interests include modelling of

closed-loop behavioural systems, robotics, artificial intelligence, machine learning
algorithms, movement generation and trajectory planning.

http://refhub.elsevier.com/S0921-8890(16)30096-3/sb28
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb28
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb28
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb28
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb28
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb29
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb29
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb29
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb30
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb30
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb30
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb31
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb31
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb31
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb32
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb32
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb32
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb33
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb33
http://refhub.elsevier.com/S0921-8890(16)30096-3/sb33

	Generation of movements with boundary conditions based on optimal control theory
	Introduction
	Methods
	Trajectory representation
	Generalization

	Results
	Trajectory reproduction
	Robustness to perturbations
	Position and velocity generalization
	Robot experiments

	Discussion
	Acknowledgements
	Appendix A
	Supplementary data
	References

