
Optimal trajectory generation for generalization of discrete movements
with boundary conditions

Sebastian Herzog1, Florentin Wörgötter1, and Tomas Kulvicius2

Abstract— Trajectory generation methods play an important
role in robotics since they are essential for the execution of
actions. In this paper we present a novel trajectory gener-
ation method for generalization of accurate movements with
boundary conditions. Our approach originates from optimal
control theory and is based on a second order dynamic system.
We evaluate our method and compare it to state-of-the-art
movement generation methods in both simulations and a real
robot experiment. We show that the new method is very
compact in its representation and can reproduce demonstrated
trajectories with zero error. Moreover, it has most of the
properties of the state-of-the-art trajectory generation methods
such as robustness to perturbations and generalisation to new
boundary position and velocity conditions. We believe that, due
to these features, our method has great potential for various
robotic applications, especially, where high accuracy is required,
for example, in industrial and medical robotics.

I. INTRODUCTION

Trajectory generation methods play an important role in
robotics and many different methods exist ranging from
conventional methods such as splines [1] to more dynamic
approaches such as dynamic movement primitives (DMPs,
[2]), Gaussian mixture models (GMMs, [3]), and a recent
framework called probabilistic movement primitives (PMPs,
[4]). DMPs, GMMs and PMPs have some advantages as
compared to splines since they are robust to perturbations,
can generalize to new situations and can be extended by
additional coupling terms and learning. DMPs and GMMs
are based on dynamic attractor systems and converge to the
target (end-point) asymptotically. This means that there will
be always a small error at the desired end-point of both,
position and velocity profiles, which might be disadvanta-
geous in applications where high precision is required, e.g.,
in industrial or medical robotics. The problem of position
and velocity errors at the end points has been solved by the
recent PMP approach. However, due to their probabilistic
nature PMPs can not reproduce a demonstrated trajectory
with zero error. Note that DMPs, GMMs and PMPs are not
meant to represent demonstrated trajectories precisely but
rather use those for initialisation of a model and learning.

*The research leading to these results has received funding from the
European Communitys Seventh Framework Programme FP7/2007-2013
(Programme and Theme: ICT- 2011.2.1, Cognitive Systems and Robotics)
under grant agreement no. 600578, ACAT. This work was also partially
supported by funding from Centre for BioRotics, University of Southern
Denmark.

1Sebastian Herzog and Florentin Wörgötter are with the Department of
Computational Neuroscience, University of Göttingen, Germany

2Tomas Kulvicius is with the Centre for BioRobotics, University of
Southern Denmark, Odense, Denmark toku@mmmi.sdu.dk

In this paper we present a novel framework for the
generation of movement primitives with boundary position
and velocity conditions. We call our method Optimal Control
Primitives (OCPs) as the framework originates and is derived
from optimal control theory. The novelty of this approach is a
combination of a linear-quadratic regulator (LQR) controller
with a representation of trajectories utilising Chebyshev
polynomials (different from splines can also use polynomials
of higher order). We will show that our method can reproduce
demonstrated trajectories with zero error and has most of the
features of the state of the art methods such as DMPs, GMMs
and PMPs. Moreover, we will demonstrate that our method
has less error (deviation from the demonstrated trajectory)
as compared to DMPs and PMPs when generalising to
new boundary conditions, which might be advantageous for
industrial or medical robotics applications.

The paper is organized as follows. We first will start by
describing the formalism of our new method, which will
be presented in Section II. Afterwards, in Section III we
will present results from simulations where we will evaluate
and compare our method to DMPs and PMPs. This will be
followed by a validation and application of our method in
a robot experiment. Finally, we will discuss our results and
conclude our paper in Section IV.

II. METHODS

A. Formalism of Trajectory Representation

We derive our trajectory generation method from optimal
control theory where we assume a second-order control
system with a state vector x and a control signal u:

ẍ = u, (1)

Using assumption (1) it is possible to model the motion
of an arbitrary particle in space controlled by a force u(t)
depending on the time t, which leads to the canonical frame
of a second-order control system, the double integrator:

ẋ = Ax(t) +Bu(t), (2)

where x(t) ∈ R2, u(t) ∈ R, and x(0) is given. Here, x =
[ξ, ξ̇]T is the state vector containing the position ξ and the
velocity ξ̇ of a motion in a one-dimensional space. Matrices
A and B are defined as follows:

A =

[
0 1

0 0

]
and B =

[
0

1

]
.

We also require that |u(t)| ≤ umax, where umax is the
maximal acceleration, i.e., acceleration is bounded.

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Daejeon Convention Center
October 9-14, 2016, Daejeon, Korea

978-1-5090-3762-9/16/$31.00 ©2016 IEEE 3143

Therefore, the motion of the particle |u(t)| is treated as a
movement trajectory where the position and the velocity are
coupled. To accurately encode and reproduce a trajectory
from human demonstration (xr) we have to assure the
following condition:

lim
t−>T

‖x(t)− xr(t)‖ = 0, (3)

where T is the terminal time (duration of the movement
trajectory). Here ‖.‖ is the Euclidean norm. In order to
fulfil the above given condition (3), we have to appropriately
choose u(t). For simplicity the time parameter t will not
be used in the following equations. Thus, to fulfil (3) gain-
scheduled control is used such that

u = −K(x− xr). (4)

To acquire K the linear-quadratic regulator method (LQR)
is used, with the cost function

Ĵ =
1

2

∫ T

0

(
xTQxx + uTQuu

)
dt+

1

2
xT (T)Px(T). (5)

Here, Qx ≥ 0, Qu ≥ 0, P ≥ 0 are symmetric, positive
(semi-) definite matrices. The Hamiltonian formulation for
this is

H = xTQxx + uTQuu + λT (Ax +Bu) .

But instead of solving the Hamiltonian problem the algebraic
Riccati equation is considered

PA+ATP − PBQ−1u BTP +Qx = 0, (6)

where

P =

[
a b
b c

]
, Qx =

[
q21 0
0 q22

]
and Qu = 1

are used to solve (6) such that

u = −Q−1u BTPx. (7)

Setting

K := Q−1u BTP =
[
q1

√
q22 + 2q1

]
(8)

gain-scheduled control is achieved

u = −Kx

and for tracking a reference signal xr with the condition (3)

u = −K(x− xr). (9)

Applying this to (2) results in

ẋ = Ax +B(−K(x− xr))
= (A−BK)x +BKxr.

(10)

By tuning the values q1, q2 it is possible to adjust the
weighting between the importance of position ξ and velocity
ξ̇. This is useful in cases where ξ̇ is not the derivative of
ξ, i.e., if we want to have a velocity profile different from
the velocity profile of the original trajectory. For example,
increasing q2 with respect to q1 leads to a trajectory where
the velocity profile is more accurate than the position profile,

i.e., the system would try to follow a given velocity profile
and would be more inaccurate in the position profile. Since
in our case the velocity profile ξ̇ is indeed the derivative of
the position profile ξ, we used q1 = q2 = 1, i.e., we set equal
weights for the position and velocity tracking. Here, Qu = 1
acts as a stiffness parameter, where increasing this parameter
leads to a stiffer behaviour of the control u. It can be used
to adjust the balance between tracking and smoothness. A
small value (less than 1) for u indicates a strong and strict
controller, which may lead to a spiky trajectory, and vice
versa, a value above 1 leads to a less strict control behaviour
which may result in a smoother trajectory but with bigger
deviations. Note that solution of the controller is not exact,
however, it is easy to implement. In order to obtain an exact
solution the infinite-horizon LQ tracker can be used [5].

B. Compact Trajectory Representation

In the general case, as presented above, OCPs require
a complete reference (demonstrated) trajectory in order to
reproduce it, whereas DMPs, GMMs and PMPs allow en-
coding motion by a set of parameters, where the number of
needed parameters is less than the number of points in the
demonstrated trajectory [2], [3], [4]. In the following we will
formalise how an equally compact representation can also be
obtained for OCPs.

To obtain a compact representation of a trajectory x =
{x1, x2, . . . , xn}, where n is the number of samples, we
represent u by a number of interpolation nodes u∗ =
{u∗1, u∗2, . . . , u∗n̂} where n̂� n. By replacing u with φ(u∗),
the system (2) becomes

ẋ = Ax +Bφ(u∗), (11)

where φ(.) is an arbitrary interpolation operator (φ(u∗) = u).
In our case an interpolation using Chebyshev polynomials of
the First Kind was used [6]:

φ(u∗) =
N∑
k=0

ckTk(u
∗),

where the coefficients ck will converge to ak =
2
π

∫ 1

−1
f(u∗)Tk(u

∗)du∗
√
1−u∗2

as k → ∞. Here, Tk(u∗) = cos(k ∗
arccos(u∗)) is the Chebyshev polynomial of k-th order.

In summary, to represent a trajectory in a compact form,
instead of Gaussian kernels as used in DMPs, GMMs and
PMPs, we use Chebyshev polynomials for which we only
need to know p + 1 via points (sampled from the demon-
strated trajectory) if we need p polynomials in order to
reconstruct u∗ 1.

C. Generalization

The ability to generalize to new situations, i.e., to new
start- and/or end-points is a relevant feature of modern
trajectory generators. This generalization is implemented in
the OCP framework in the following way. In general, in

1A Matlab demo and source code of our framework can be downloaded
from http://www.dpi.physik.uni-goettingen.de/cns/index.php?page=optimal-
control-primitves

3144

order to generate a trajectory with new boundary conditions,
e.g., with a new start-point x(0) = µ, and a new end-point
x(n) = ν the two point boundary value problem has to be
solved. In order to decrease computational cost the initial
value problem is solved two times, instead. For the new
start state the equation (10) is solved with a x(0) = µ and
the known u from (4). For the new terminal state we set
x(0) = ν and u becomes

û = un, un−1, . . . , u1. (12)

Let us define x(init) as the solution of (10) for the new initial
state and x(ter) as the solution for the new terminal state.
Then, the whole solution for a trajectory with changed initial
and terminal states becomes

x = x
(init)
1 , . . . , x

(init)
bn/2c, x

(ter)
bn/2c+1, . . . , x

(ter)
1 . (13)

2 cm

Fig. 1. Data set used for comparison of different movement generation
frameworks.

III. RESULTS

In the following we will compare the performance of
our framework to the performance of DMPs and PMPs
with respect to three aspects: 1) accuracy in reproduction
of human trajectories, 2) robustness to perturbations, and 3)
position and velocity generalization. For benchmarking and
evaluation we used human handwritten letters (see Fig. 1)
as already used by some previous studies [2], [7]. We used
the same procedure in order to obtain letter samples as used
by Kulvicius et al. [7]. Data was collected by utilising a pen
tablet (Wacom Intuos3 A3 Wide DTP) with a size of 48.8
cm × 30.5 cm, resolution of 5080 lpi and a sampling rate
of 200 Hz.

For comparison with DMPs we used a version of DMPs
for generation of hitting and batting movements [8] since it
allows generalization to both position and velocity boundary
conditions. For learning the weights of the Gaussian kernels
we used the δ−rule as described in Kulvicius et al. [7]. For
comparison with PMPs we used the framework presented in
[4] and for learning PMP weights we used an expectation
maximization algorithm.

A. Trajectory Reproduction

First of all we compare the performance of our framework
to DMPs and PMPs with respect to trajectory reproduction.
For qualitative comparison we use the letter ”a” from the
letter dataset as shown in Fig. 1. Here we analysed how
the accuracy of trajectory reproduction is influenced by the
number of the basis functions (Gaussian kernels in case of
DMPs and PMPs, and Chebyshev polynomials in case of
OCPs) used to represent the trajectory. Note that for DMPs

(a)

(b)

(c)

10 basis functions 15 basis functions 20 basis functions

0 0.5 1 1.5
0

0.5

1

1.5

Y
 -

 p
o
s.

 [
cm

]

0 0.5 1 1.5
0

0.5

1

1.5

Y
 -

 p
o
s.

 [
c
m

]

0 0.5 1 1.5
0

0.5

1

1.5

Y
 -

 p
o
s.

 [
cm

]

X - pos. [cm]

0 0.5 1 1.5
0

0.5

1

1.5

0 0.5 1 1.5
0

0.5

1

1.5

0 0.5 1 1.5
0

0.5

1

1.5

X - pos. [cm]

0 0.5 1 1.5
0

0.5

1

1.5

0 0.5 1 1.5
0

0.5

1

1.5

0 0.5 1 1.5
0

0.5

1

1.5

X - pos. [cm]

reference
DMP

reference
PMP

reference
OCP

(d)

DMP

DMP

PMP

PMP

OCP

OCP

5.0

Number of basis functions

R
e
l.

p
o
s.

 e
rr

 [
%

]
R

e
l.

v
e
l.
 e

rr
 [
%

]

10 20 30 40
0

0.5

1

1.5

2

10 20 30 40
0

5

10

//

Fig. 2. Results for reproduction of human demonstration (reference) for
(a) DMPs, (b) PMPs, and (c) OCPs. Position profiles are shown for each
case. (d) Influence of the number of basis functions on the accuracy in the
trajectory reproduction. Mean relative position (top) and velocity (bottom)
error for the whole trajectory obtained from 23 letters.

and PMPs we used equally distributed kernels with equal
variance where the variance was tuned in order to get best
accuracy in trajectory reproduction. The results for repro-
duction of a human motion trajectory are shown in Fig. 2
where we used 10, 15 and 20 basis functions. We can see that
OCPs can reproduce the human trajectory more accurately
than the other methods when 15 and 20 basis functions are
used. We also quantified the movement reproduction property
of the different approaches statistically where we used all
23 letters from the data set (see Fig.1). We calculated the
accuracy of trajectory reproduction for different numbers
of basis functions: 10, 12, 14. . . 40. Statistics for all three
methods are presented in Fig. 2 (d) where we can see that

3145

reference

reference

DMP

OCP
OCP bound.

(a)

(b)

0 1
0

0.5

1

1.5

Y
 -

 p
o
s
.
[c

m
]

0 0.2
0

0.2

0.4

0.6

S
q
rd

.
v
e
l.
 [
c
m

/s
]

0 1
0

0.5

1

1.5

Y
 -

 p
o
s
.
[c

m
]

0 0.2
0

0.2

0.4

0.6

S
q
rd

.
ve

l.
 [
c
m

/s
]

X - pos. [cm] Time [s]

Fig. 3. Comparison of robustness to perturbation between (a) DMPs and (b)
OCPs without bounded acceleration (OCP) and with bounded acceleration
(OCP bound.). Position (left) and velocity (right) profiles are shown for
each case.

OCPs require fewer basis function to reproduce trajectory
accurately as compared to DMPs and PMPs. In case of
OCPs, it was already possible to reproduce trajectories with
zero error with 32 basis functions, whereas for DMPs and
PMPs the error drops around 35 basis functions and is below
0.1% for position and below 5% for the velocity profile.
Based on these results, in order to make a fair comparison
of the different methods, in the following experiments we
used 35 basis functions for all three methods.

B. Robustness to Perturbations

Next, we looked at the behaviour of our trajectory genera-
tion method with respect to perturbation robustness were we
again compared our method against DMPs. We perturbed
the system at some arbitrary time by shifting the position
profile in both X and Y direction by 30%. The results
of such a test are shown in Fig. 3 were we present the
behaviour of DMPs in panel (a) and two cases for the OCPs
in panel (b): 1) without bounded acceleration (OCP) and
2) with bounded acceleration (OCP bound.). Allowing the
solver for the dynamic system to do arbitrary big steps for
the acceleration leads to an unbounded response, bounding
the acceleration by umax leads to the bounded response.
We can observe that in case of unbounded acceleration the
OCP system produces a velocity jump, which is different
from the behaviour of the DMP system and might be even
dangerous for robotic applications. This is due to the fact
that OCPs are optimal with respect to minimal position and
velocity deviation depending on the choice of Qu, where the
system tries to come back to the original trajectory, as soon
as possible. Such undesired jumps in the velocity profile can
be avoided by limiting the maximal acceleration umax. We
can see that by limiting acceleration we can obtain much
smoother response of the system. Moreover, we can also
observe that the OCP system converges to the original path

much sooner as compared to DMPs.

C. Position and Velocity Generalization

Finally, we analysed how well can our trajectory gener-
ation method generalize to new situations, i.e., when po-
sition or velocity boundary conditions are changed. Here
we compared the performance of our framework to both
DMPs and PMPs. First, we compared behaviours of the three
systems when position boundary conditions are changed. To
do so, we changed the end-point position (for both X and Y
components) by relatively increasing the end-point value of
the demonstrated trajectory by 30%. Note that in this case we
kept the velocity boundary conditions the same as those for
the demonstrated trajectory. Qualitative results are presented
in Fig. 4 (a1-c1) where we can see that the performance of
PMPs and OCPs is different from that of DMPs. In case
of DMPs we get much larger deviations from the original
trajectory (along the whole trajectory) as compared to PMPs
and OCPs where deviations are only at the end of the
trajectory. Statistics for the position generalization are shown
in Fig. 4 (d1) where we show average relative position and
velocity error obtained from all 23 letters (see Fig. 1). In
general, we can observe that, when using DMPs, devia-
tion from the demonstrated trajectory increases dramatically
when increasing the change in end-point position. Also, the
deviation of the velocity profile is much higher as compared
to PMPs and OCPs. The results also demonstrate that OCPs
produce smaller deviations from the demonstrated trajectory
(in both position and velocity profile) as those observed with
PMPs. Mean relative position error at the desired new end-
point for DMPs was 0.008%, whereas for PMPs and OCPs
the error was zero. This is due to the fact that DMPs converge
to the end point only asymptotically [2].

Similar to position generalization, we also performed a
test where we compared all three frameworks with respect
to the change of velocity boundary conditions. So, here we
changed the end-point velocity by scaling it relatively to
the end-point velocity of the human demonstration. End-
point position was kept unchanged. Qualitative results for
the 30% end-point velocity change are shown in Fig. 4 (a2-
c2) whereas statistics are shown in Fig. 4 (d2). Similar to the
results obtained from position generalisation we observe that
DMPs result in much larger position and velocity deviations
as compared to PMPs and OCPs. Also as in the previous
case, OCPs outperform PMPs by producing only deviations
at the very end of the trajectory, which is necessary in order
to meet the new boundary conditions. Similar to the case of
position generalisation, relative velocity error at the desired
new end-point for PMPs and DMPs was zero, whereas
mean relative velocity error at the desired new end-point for
DMPs was 0.434%, which again is due to the asymptotic
convergence. We summarize results for position and velocity
generalization in Fig. 5 (a) and (b), respectively, where we
show mean relative position and velocity errors for the whole
trajectory obtained from 23 letters. Results demonstrate that
OCPs outperform both DMPs and PMPs in that the OCP-
system can follow the demonstrated trajectory better when

3146

-0.5 0 0.5 1

0

0.5

1

1.5

Y
 -

 p
o
s.

 [
c
m

]

-0.5 0 0.5 1

0

0.5

1

1.5

Y
 -

 p
o
s
.
[c

m
]

-0.5 0 0.5 1

0

0.5

1

1.5

Y
 -

 p
o
s.

 [
c
m

]

X - pos. [cm]

0 0.1 0.2 0.3
0

0.1

0.2

0.3

S
q
rd

.
v
e
l.

[m
/s

]

0 0.1 0.2 0.3
0

0.1

0.2

0.3

S
q

rd
.

ve
l.

[m
/s

]

0 0.1 0.2 0.3
0

0.1

0.2

0.3

S
q
rd

.
v
e
l.
 [
m

/s
]

Time [s]

0 0.5 1 1.5

0.5

1

1.5

Y
 -

 p
o
s
.
[c

m
]

0 0.5 1 1.5

0.5

1

1.5

Y
 -

 p
o

s.
 [
c
m

]

0 0.5 1 1.5

0.5

1

1.5

Y
 -

 p
o
s
.
[c

m
]

X - pos. [cm]

0 0.1 0.2 0.3
0

0.1

0.2

0.3

S
q

rd
.

ve
l.

[m
/s

]

0 0.1 0.2 0.3
0

0.1

0.2

0.3

S
q

rd
.
v
e
l.

[m
/s

]

0 0.1 0.2 0.3
0

0.1

0.2

0.3

S
q
rd

.
ve

l.
 [
m

/s
]

Time [s]

reference

DMP

reference

DMP

reference

PMP

reference

PMP

reference

OCP

reference

OCP

(a1) (a2)

(b1) (b2)

(c1) (c2)

0

0

25

25

50

50

75

75

100

100

0 25 50 75 100

0 25 50 75 100

0

10

20

30

R
e

l.
p

o
s.

 e
rr

o
r

[%
]

R
e

l.
ve

l.
e

rr
o

r
[%

]

Traj. duration [%] Traj. duration [%]

0

20

40

60

DMP

PMP
OCP

DMP

PMP
OCP

R
e

l.
ve

l.
e

rr
o

r
[%

]

0

20

40

R
e

l.
p

o
s.

 e
rr

o
r

[%
]

0

20

40

60

(d1) (d2)

Fig. 4. Examples of (a1-c1) position and (a2-c2) velocity generalization for (a) DMPs, (b) PMPs and (c) OCPs. Here we changed position/velocity at the
end-point by 30%. Position (left) and velocity (right) profiles are shown for each case. The circles denote new end-points. (d) Statistics for (d1) position
and (d2) velocity generalization. Mean relative position (top) and velocity (bottom) error are shown for each case. Error bars denote standard deviation.

generalising to new boundary conditions.

D. Robot Experiment
Last but not least, we validated our method in a robot

experiment, namely a pouring task, where the task for
the robot was to generalise to new situations based on a
human demonstrated trajectory. DMPs are currently probably
still the most widely used method for the generation of
dynamic, adaptive, and generalizable trajectories. Thus, we
compared the performance of our approach only against
DMPs. For our experiments we used a seven DOF ”KUKA-
LWR” robot-arm [9]. Human trajectories were recorded by
using kinaesthetic guidance and were encoded with DMPs

and OCPs as described above. In this experiment, a human
demonstrated how to pour 50ml of sand from a container
containing 200ml of sand into an empty glass (see Fig. 6 (c)
and supplementary video). The task for the robot, different
from human demonstration, was to empty the container
completely, i.e., to pour all the sand (200ml) from the
container into the glass. To do so, obviously, the robot
needed to tilt the container much more as compared to human
demonstration. In this case we performed the task in joint-
space where we manually set the end-points of three joint
position profiles in order to tilt the wrist as much as to
empty the glass completely. Note that different from other

3147

15

20

DMP PMP OCP DMP

DMPDMP

PMP

PMPPMP

OCP

OCPOCP

0
0.5

1
1.5

20

30

0

0.1

0.2

0

1

2

3

4

0

10

20

(a)

(b)

R
e

l.
p

o
s
.

e
rr

o
r

[%
]

R
e

l.
p

o
s
.

e
rr

o
r

[%
]

R
e

l.
v
e

l.
 e

rr
o

r
[%

]
R

e
l.
 v

e
l.

e
rr

o
r

[%
]

p=0.0323

-7
p=3.4x10

p=0.0063

//

//

Fig. 5. Statistics for (a) position and (b) velocity generalization. Mean
relative position (left) and velocity (right) error for the whole trajectory is
shown for each case. Error bars denote confidence intervals (95%) of mean,
where p stands for the probability of the t-test (α = 0.05).

approaches used in learning to pour tasks [10], [11] we do
not change parameters (weights in case of DMPs) of the
trajectory generation method but only boundary conditions
in order to generalise to the new situation. The resulting
trajectories for DMPs and OCPs are shown in Fig. 6 (a) and
(b), respectively. We can see that in the case of DMPs, as
already demonstrated in Fig. 4 (a1), the trajectory is changed
along the whole path when generalising to new position end-
points. This leads to the fact that the robot starts tilting the
container too early and, as a consequence, spills some of the
sand on the table (see Fig. 6 (d)). By contrast, OCPs change
the trajectory only at the end of the movement, which enables
the robot to pour the sand into the glass without spilling.

TABLE I
COMPARISSON OF DMPS, PMPS AND OCPS WITH RESPECT TO

DIFFERENT FEATURES

Feature # of Built-in Robust. Gener.
param. tracker to pert.

DMP p+ 1 or 3p + + +
PMP p+ 1 or 3p - -∗ +
GMM 4p + + +/-∗∗

OCP p+ 1 + + +
∗ It is not possible without a tracker
∗∗ No velocity generalisation

IV. DISCUSSION

In this paper we presented a novel trajectory generation
method for the generation of highly accurate movements
with arbitrary position and/or velocity boundary conditions.
We showed that the method is comparable to the state-
of-the-art methods such as DMPs [2] and PMPs [4] in
terms of features such as compactness of trajectory rep-
resentation, robustness to perturbations, and generalisation
to new boundary conditions. Moreover, we showed that the

new method generates motions which deviates less from the
demonstrated trajectory as compared to DMPs or PMPs when
generalising to new boundary conditions. It is very important
to note that this comparison is by no means a devaluation
of existing methods but rather shows behavioural differences
of different trajectory methods where in some situations one
method may be more preferable than the others and vice
versa. For instance, we demonstrated by a robot experiment
that in some situations the trajectories generated using the
new method can be beneficial as compared to trajectories
generated with DMPs. In general, the behaviour of OCPs is
qualitatively similar to PMPs, however, different from PMPs
and DMPs, OCPs can achieve higher accuracy in motion
reproduction with fewer basis functions which requires less
parameters to encode a trajectory. Note, that PMPs [4] due
to their probabilistic nature are meant to encode trajectories
from multiple demonstrations, and are not (as DMPs and
GMMs) specifically designed to encode single trajectories
accurately.

A comparison of DMPs, GMMs, PMPs and OCPs in
terms of features is provided in Table I, where we can
see that all methods are capable of generalisation to new
boundary position and velocity (except GMMs) conditions.
However, PMPs require an additional tracker on top of
the trajectory generation model, whereas DMPs and OCPs
(similar to DMPs) have a built-in tracker in the model.
In general, compact trajectory representation with the OCP
framework requires less parameters as compared to DMPs
and PMPs. For OCPs, if we want to represent a trajectory
with p polynomials, we only need to know the via points,
which in total leads to p + 1 parameters. For DMPs and
PMP we would need for p Gaussian kernels a total of 3p
parameters (mean, variance and weight for each Gaussian
function). Only if all kernels are the same one would also
have p+1 parameters, but many situations exist where the use
of identical kernels is not optimal. For comparison, GMMs in
total require 4p parameters in order to represent trajectory by
a mixture of p 2D Gaussian kernels (in GMMs movements
are represented in a phase space of position and velocity [3]).
However, different from our method, GMMs can encode a
set of several different trajectories, whereas our method (as
DMPs) encodes only a single trajectory.

As described above our approach utilises Linear-Quadratic
Regulator (LQR) control for tracking of trajectories. We
have chosen LQR for the following reasons. In general,
as shown in [12], [13] and [14], LQR controller can be
designed as a Proportional Integral (PI) controller. Moreover,
as demonstrated by [15], the more specialised LQR controller
has superior properties regarding oscillations as compared to
a general Proportional Integral Derivative (PID) controller.
Thus, we utilised LQR and not standard PID controller due
to better tracking properties.

Our approach is similar to the one presented in [16], where
LQR controller is utilised to track a desired trajectory by a
UAV. Different from that approach, in our case, we used
a more general model, the double integrator with a mass
equal to one. Since our model is simpler, there is no need

3148

Time [s] Time [s] Time [s]Time [s] Time [s] Time [s]
0 5

24

26

28

Joint Angle #1

A
n

g
le

 [
d

e
g

.]

0 5

-15

-10

-5

0

Joint Angle #6

0 5

-50

0

50

100

Joint Angle #7

(a)
reference
DMP

0 5

24

26

28

A
n

g
le

 [
d

e
g

.]

0 5

-15

-10

-5

0

0 5

-50

0

50

100

(b)
reference

Joint Angle #1 Joint Angle #6 Joint Angle #7

OCP

(c)

(d)

(e)

Fig. 6. Results from pouring experiment. (a,b) Resulting joint (position) trajectories for a new position end-point obtained with (a) DMPs and (b) OCPs.
Note that here we show only joint trajectories which differed from human demonstration. (c-e) Selected frames from action execution performed by (c) a
human, (d) a robot utilising DMPs and (e) a robot utilising OCPs.

to reduce the dimensions of the problem like it is done in
[16], which allows a more intuitive use of the controller and
the parametrisation. In addition, it is easier to add further
constraints if necessary.

We also would like to stress that our approach is not
restricted with respect to the way a trajectory is encoded, i.e.,
it does not necessarily have to be encoded with Chebyshev
polynomials as shown in this study. In our case, different
from DMPs, PMPs and GMMs, a trajectory is a (control-
)signal, which means that one can use and apply any kind of
control theory and/or signal processing in order to represent
a trajectory. For example, a trajectory could be represented
by a parabola or a sine-wave, too.

Common industrial applications, such as gluing or weld-
ing, often require highly exact position and velocity profiles
for the to-be-performed trajectory. For example, the robot
should not decelerate at corners, by which the gluing (or
welding) track would become uneven. The attractive features
of our method – compactness and high accuracy – could have
a great potential especially for such applications.

REFERENCES

[1] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
elling, planning and control. Springer Publishing Company, 2009.

[2] J. A. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Comput., vol. 25, no. 2, pp. 328–373, Feb. 2013.

[3] S. M. Khansari-Zadeh and A. Billard, “Learning Stable Non-Linear
Dynamical Systems with Gaussian Mixture Models,” IEEE Trans.
Robot., vol. 27, pp. 943–957, Oct. 2011.

[4] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic
movement primitives,” in Advances in Neural Information Processing

Systems 26, C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Weinberger, Eds. Curran Associates, Inc., 2013, pp. 2616–2624.

[5] E. Barbieri and R. Alba-Flores, “On the infinite-horizon lq tracker,”
Systems & Control Letters, vol. 40, no. 2, pp. 77–82, 2000.

[6] U. W. Hochstrasser, Orthogonal Polynomials., ser. Handbook of Math-
ematical Functions with Formulas, Graphs, and Mathematical Tables.
New York: Dover, 1972.

[7] T. Kulvicius, K. J. Ning, M. Tamosiunaite, and F. Wörgötter, “Joining
movement sequences: Modified dynamic movement primitives for
robotics applications exemplified on handwriting,” IEEE Trans. Robot.,
vol. 28, no. 1, pp. 145–157, 2012.

[8] J. Kober, K. Mülling, O. Krömer, C. H. Lampert, B. Schölkopf, and
J. Peters, “Movement templates for learning of hitting and batting,” in
Proc. 2010 IEEE Int. Conf. Robotics and Automation, 2010, pp. 1–6.

[9] Kuka Robot Systems. [Online]. Available: http://www.kuka-
robotics.com

[10] M. Tamosiunaite, B. Nemec, A. Ude, and F. Wörgötter, “Learning
to pour combining goal and shape learning for dynamic movement
primitives,” Robot. and Auton. Syst., vol. 59, no. 11, pp. 910–922,
2011.

[11] A. Nemec, R. Vuga, and A. Ude, “Efficient sensorimotor learning
from multiple demonstrations,” Advanced Robotics, vol. 27, no. 13,
pp. 1023–1031, 2013.

[12] W. S. Levine, The control handbook, ser. The electrical engineering
handbook series. CRC Press New York, 1996.

[13] J.-B. He, Q.-G. Wang, and T.-H. Lee, “PI/PID controller tuning via
LQR approach,” in Decision and Control, 1998. Proceedings of the
37th IEEE Conference on, vol. 1, 1998, pp. 1177–1182.

[14] N. Kumari and A. N. Jha, “Automatic generation control using LQR
based PI controller for multi area interconnected power system,”
Advance in Electronic and Electric Engineering, vol. 4, no. 2, 2014.

[15] A. Jose, C. Augustine, S. M. Malola, K. Chacko, et al., “Performance
study of PID controller and LQR technique for inverted pendulum,”
World Journal of Engineering and Technology, vol. 3, no. 02, p. 76,
2015.

[16] I. D. Cowling, W. J. F., and A. K. Cooke, “Optimal trajectory planning
and LQR control for a quadrotor UAV,” in UKACC International
Conference on Control, 2006.

3149

