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Abstract: During the last years, approaches based on convolutional neural networks (CNN) had substantial success in

visual object perception. CNNs turned out to be capable of extracting high-level features of objects, which

allow for fine-grained classification. However, some object classes exhibit tremendous variance with respect

to their instances appearance. We believe that considering object parts as an intermediate representation could

be helpful in these cases. In this work, a part-driven perception of everyday objects with a rotation estimation

is implemented using deep convolution neural networks. The used network is trained and tested on artifi-

cially generated RGB-D data. The approach has a potential to be used for part recognition of realistic sensor

recordings in present robot systems.

1 Introduction

The latest wave of artificial neural network meth-

ods which was triggered by Krizhevsky et al. (2012)

has led to impressive progress on many computer vi-

sion problems. However, CNNs can not compete with

humans in terms of generalization. This can be ex-

emplified by looking at objects with a greatly vary-

ing appearance, e.g. power-drills. They come in

vastly different forms and shapes (hand-held, on a

stand, etc.) and when comparing two drill objects as

a whole, many times there are only very few common

visual features across instances which could support

successful whole-object recognition with CNNs. The

fact that humans can refer to these objects as drills,

however, can be explained by looking at the object

parts: On a part level the two drill types share com-

parable features, e.g. the boring bit and the power-

switch and some others. This view suggests that a

visual scene understanding and the class recognition

in particular can be strongly guided by parts.

When it comes to handling and usage of objects,

an adequate understanding of the main functional ob-

ject parts seems to be indispensable. Particularly

knowledge about which objects parts are suitable for

grasping and manipulating forms are an important ba-

sis of the everyday life activities that robots are aim-

ing for. In this regard, the recent achievements of

convolutional neural networks suggest exploring the

potential of an object perception on a per-part basis.

To the best of our knowledge, so far, object recog-

nition with neural networks has been mainly focused

on whole object, approaches explicitly addressing

parts are rather uncommon, in particular in conjunc-

tion with 3D data, like depth images and normals

maps as input.

2 Related Work

The idea of considering objects as composite

structures involving many parts is not new to com-

puter vision.

Perhaps most well known, Biederman (1987) sug-

gested the recognition by components (RBC) theory.

According to Biederman the human object recogni-

tion is carried out by separating objects into its main

components which he calls geons (Biederman, 1987).

An advantage of this approach is its economy since a

small number of basic parts can form a huge num-

ber of possible objects. Also, part recognition is

viewpoint-invariant to some degree since the prop-

erties of object parts do not change massively under

different viewing angles. However, RBC provides a

theoretical framework rather than an implementation,

whereas this work presents a concrete algorithm. It

shares with RBC the consideration of parts but our

parts are neither geons nor is the number of part

classes limited to 36. The segmentation of objects

into parts is addressed by Schoeler et al. (2015). They

propose a bottom-up algorithm to dissect objects into

parts based on local convexity which does not require



annotated training data.

In the 2D domain, the implicit shape model (Leibe

et al., 2004) employs parts in terms of codebook en-

tries to determine the location of the central object by

a voting procedure akin to Hough transform. Felzen-

szwalb et al. (2010) represents parts as linear filters

which are convolved over the image to form feature

maps which then are being employed by a deformable

part model to predict the object location. Approaches

involving neural networks, which explicitly focus on

parts are rather rare, though. Zhang et al. (2014)

proposes a part-based algorithm for fine-grained cate-

gory detection based on the R-CNN by Girshick et al.

(2014) which enriches CNNs with the capability of

segmentation. Bottom-up region proposals of 2D im-

ages are assessed to be either parts or whole objects.

Further approaches in the 2D domain which make use

of dense prediction involve Tsogkas et al. (2015) and

Oliveira et al. (2016). Our approach differs from them

as it encompasses 3D information in form of depth

images and normal maps.

The approaches by Gupta et al. (2015) and Papon

and Schoeler (2015) use CNNs to predict poses of ob-

jects in RGB-D scenes. In contrast to our work, both

operate on the object rather than the part level.

3 Materials and Methods

3.1 Data Generation

In contrast to whole-object training data, there are no

annotated real world data sets of sufficient size to train

deep networks with ground truth for object parts be-

ing available today. Nonetheless, there are different

smaller data sets for the development and the valu-

ation of object segmentation algorithms. While part

level annotation of large real data sets is not feasible,

we decide to use segmented models of a small data set

to generate large annotated data sets suitable for deep

learning. In this context, the shape COSEG dataset

(COSEG) 1 provided by Wang et al. (2012) is the most

eligible one because it is segmented in not too fine

parts, which mostly have some functional meaning.

Alternative data sets like the Princeton Benchmark

for 3D Mesh Segmentation provided by Chen et al.

(2009) not so useful because of their finer segmenta-

tion in many quite small parts. The COSEG dataset

provides 190 everyday object instances separated into

eight classes: Chairs, Lamps, Candles, Guitars, Gob-

lets, Vases, Irons, and Four-legged animals.

1available here:
http://irc.cs.sdu.edu.cn/ yunhai/public html/ssl/ssd.htm

Figure 1: Example of vase object pose alignment and size
normalization.

The COSEG models are neither aligned to a refer-

ence pose nor normalized to a common scale. Thus,

to accomplish that different models with the same ro-

tation or scale are represented in a comparable way,

their minimum bounding boxes (MBB) and normal-

ized size and rotation is determined. We also ensure

that one characteristic part of the object will always be

on the right hand side of the scene to avoid a misalign-

ment by 180 degree. An example of the performed

normalization is illustrated in Figure 1.

The creation of the annotated training data set is

realized by building on the rendering techniques pre-

sented by Papon and Schoeler (2015): To convert the

un-textured normalized models into RGB data, the

Blender Graphic Engine is employed. Depth informa-

tion is produced using the BlenSor sensor simulation

toolbox2 by Gschwandtner et al. (2011), which allows

reproducing the noisy depth measurement of a Mi-

crosoft Kinect RGB-D sensor in a realistic way. De-

spite the fact that due to lack of texture the RGB data

misses hue information, the generated RGB-D are

close to realistic recordings of a Kinect Camera used

by many robot systems. To obtain a part mask the cor-

responding object model is segmented into parts using

the COSEG ground truth information. Subsequently,

each of the part objects were pulled into the Blender

scene and aligned with the object. Using the Blender

coordination transformations it is possible to calcu-

late the part mask entries. Finally, in order to possibly

enrich the scene information we decide to use struc-

tured RGB-D data to compute surface normals using

the technique presented by Holzer et al. (2012).

3.2 Network Structure

As the approach to recognize object parts with neural

networks is rather new, there are no proven standard

network architectures to use in this case. However, it

seems reasonable to view the part recognition prob-

2available here: http://www.blensor.org/



Figure 2: Basic network architecture for the various predic-
tion tasks: The numbers in brackets denote the number of
filters of the convolution layers, the number of nodes of the
fully connected layers (FC layers) or the pooling size of the
pooling stages. Moreover the convolutional modules are la-
beled with the used filter size. The network input consisted
of a 96× 96 part mask stacked together with the intensity
image and optionally depth and surface normal informa-
tion. For the multi-output models the first network output
is merged into the second output branch. Dotted brackets
indicate optional components of the network that are added
depending on the task.

lem as an object recognition problem, where small

objects (the parts) in close proximity to a larger ob-

ject (the object as a whole) need to be recognized.

Following this line of thought it makes sense to be in-

spired by standard architectures for object perception

and to test part recognition performance of different

versions of them.

As basis for each of the perception networks

the ReLU-Conv-Pool network modules suggested by

Krizhevsky et al. (2012) turn out to be a good choice.

The module consists of a 2D-convolutional layer fol-

lowed by a 2D-Maximum-Pooling layer where both

use the recommended ReLU nonlinearity. Following

the approach of Papon and Schoeler (2015) two of

these Conv-Pool modules were stacked with the pa-

rameters of their most successful model. To prevent

from overfitting all layers were adjusted to use the
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Figure 3: Illustration of the part ground truth encoding: Part
information is encoded into a matrix with the dimensions of
the input image, where each entry contains the part number
of the corresponding image pixel. Consequently, different
object parts are highlighted by different numbers.

dropout technique proposed by Hinton et al. (2012).

An overview of the resulting architecture is depicted

in Figure 2.

3.2.1 Network Inputs and Preprocessing

The input of the networks are 96×96 real-valued im-

ages including the intensity information and, option-

ally, depth and surface normal vectors in x-, y- and z-

direction. To ensure standardized inputs all channels

were zero-centered by subtracting the mean across ev-

ery individual feature in the data. Moreover, in or-

der to level the different scales and units the channels

were normalized so that the minimum and maximum

along the dimension is -1 and 1 respectively.

We assume that the object’s parts had been seg-

mented previously and focus our approach on classi-

fying these segmented parts. The part ground truth

is encoded into a matrix having the same size as the

RGB-D image with each entry containing the part

number of the corresponding image pixel. Hereafter

it is referred to as part mask. As illustrated in Fig-

ure 3, the matrix encodes the parent object with a 1,

the part in question with a 2 and the background with

a 0 digit. The network is then requested to predict the

correct label of the part or the area which is designated

with 2. This way, by subsequently masking every un-

classified part with 2, all object parts can be assigned

a label. An overview of all inputs is presented in Fig-

ure 4.

3.2.2 Network Outputs

The network is trained and evaluated in different set-

tings, each predicting different quantities. First, there



(a) Part mask. (b) Intensity Image.

(c) Depth Image. (d) Surface normals.

Figure 4: Compilation of the different network input types,
which were generated for the training. The part and inten-
sity information is obtained using the Blender graphic en-
gine. The depth channel is generated with the help of the
BlenSor sensor simulation toolbox by Gschwandtner et al.
(2011). Finally, the object surface normals were computed
using the technique presented by Holzer et al. (2012).

is a standard output to predict the eight classes of the

parent objects. Second, there are two more output

modules for part classification: One ’full-part output’,

which predicts each of the 28 parts in the eight parent

object classes; and alternatively, a ’reduced-part out-

put’, which condenses semantically similar parts from

the parent object classes resulting in only 16 distinct

part predictions, e.g. LampesStand and VasesStand

become Stand. In the latter case the output therefore

predicts parts regardless of the actual class of the par-

ent object. Finally, there is an output layer to predict

the rotation angle of the parent object.

Rotation output In principle, rotation output can

be realized in two different ways. The obvious possi-

bility is the use of a single output neuron, the activa-

tion value of which represents the predicted rotation

angular. Hereafter this solution is called ’regression

model’. On the other hand it is possible to cast the ro-

tation estimation into a classification task. To achieve

this the possible value range is divided into a number

of small value ranges which are being associated with

a class name. The network is then requested to predict

the correct range. A disadvantage of this approach is

that the network cannot distinguish rotational values

which lie in the same value range. The rotation es-

timation by class is hereafter referred to as ’binned

model’. In contrast to the aforementioned class out-

puts, where the predictions were simply compared to

the correct solution, for the regression output it is nec-

essary to define a proper error metric, e.g. the differ-

ence between predicted and correct value. Evidently,

the maximum possible error in rotation estimation is

180 degree. To reflect this, the error ε∢ between the

predicted angular α and the actual rotation β is de-

fined as follows:

ε∢(α,β) = min(|α−β|,360−|α−β|) (1)

However, it is important to notice that the use of

this error metric might cause problems in the learn-

ing process. The parameter adjustments of the out-

put neuron depend on the gradient ∇C of the cost

function. In fact, the calculation therefore includes

a derivation with respect to the neuron parameters Θ.

Particularly, if the angular error ε∢ is used in the cost

function, the neuron output α = σ(x,Θ) with the acti-

vation function σ has to be differentiated:

∇C ∝ ∇ε∢(α,β,Θ) ∝ ±
(σ−β)

|σ−β|
·σ′

The gradient expression then contains the derivation

of the activation function σ′(w,b). It is therefore es-

sential to remember that the activation function is a

rectified linear unit. As a result, σ′ vanishes if its ar-

gument ~wT~x+b is smaller than zero. In consequence,

if the weights and the bias adapt to improper values,

∇C vanishes as well and the learning process stops.

To use the regression model it had therefore been

ensured that ~wT~x + b is always positive. A simple

way to avoid a vanishing gradient was to initialize the

weights and the bias with wi = 0 and b= 90. This way

the training always sets off from ~wT~x+ b = 90 > 0,

converging safely, even if~x was assigned with an im-

proper value at the beginning of training.

3.3 Training and Testing Methodology

To find optimal learning rates for each training run,

six learning rates between 0.1 and 1 × 10−6 were

tested. Moreover, the learning rate was automati-

cally reduced if the validation performance stopped

improving (adaptive learning rate). To avoid over-

fitting training was canceled using the early stopping

technique on the validation set.

The separation into training, validation, and test

sets were done as follows: randomly chosen 20% of

the models of each class were excluded from training.

From these models, the test data set with 1000 items

was generated using rotation and scaling. Hence, the



network encounter completely new object instances

in the test. With the 80% remaining object models

the training and validation data sets were generated in

proportion 95% and 5%, respectively.

Each of the generated training examples consists

of a randomly chosen object model placed in the cen-

ter of the scene with random illumination to simu-

late shadow effects. In the first instance the objects

were put to the ground and rotated around the z-axis

to guarantee realistic poses. As the number of in-

stances in each object class differs, an approximately

equal number of scenes for each class has been gener-

ated. This led obviously to more frequent occurrences

of object instances of smaller classes throughout the

training. In total, 25 000 scenes were generated as

training set, in which every single object instance oc-

curred at least in 100 different representations.

4 Results and Discussion

The main focus is here on training and evaluation

of the synthetic data sets in order to achieve a basic

understanding of how well part perception with such

a neural network works.

4.1 Classification

The quantitative results in the following section are

obtained using the test data set containing 1000

scenes with unseen object models, i.e. with object

shapes not seen during training at all.

4.1.1 Classification (whole object)

For the first step and to establish a baseline, the convo-

lutional network is trained to predict the eight differ-

ent whole-object classes based on the intensity chan-

nel only (first network output only). With an over-

all accuracy of 85.3%, the classification proves to be

reliable, but it is worth noting that the performance

significantly correlates with the number of class in-

stances in the data set. While the perception accuracy

of the 44 Guitar instances is close to perfection (0.97

F1 score) the classification is less reliable for the Gob-

lets which only counts 12 instances (0.64 F1 score).

4.1.2 Rotation (whole object)

As a next step the model is extended with the sec-

ond output to predict the rotation of the whole object

around the z-axis. To measure accuracy for each out-

put the symmetric angular error ε∢ is calculated as

defined by Equation 1. The Area Under Curve (AUC)

accuracy is calculated as

εAUC = 1−
1

N

N

∑
i

εi
∢

180◦
.

Using this error metric we find the binned rota-

tion model being able to predict the z-rotation with

an accuracy of 69.5% which clearly outperforms the

rotation regression model by 7.7%. In order to exam-

ine the performance in more detail the representation

by Gupta et al. (2015) is used: It determines the frac-

tion of objects for which the model is able to predict

the rotation with an error less than εϑ plotting it as

a function of εϑ. Figure 5a documents the compari-

son of the binned and the regression model using this

representation.

Figure 5a shows that the binned model outper-

forms the regression model: For the binned model

36.8% of all predictions lie under 10◦ error whereas

this is true for only 11.4% of the regression predic-

tions. Moreover it is obvious that for a significant

fraction of predictions the angular error is greater than

100◦ and therefore not usable in a real world applica-

tion.

Examining the rotational estimation for each ob-

ject class, we find that for both models the accuracy

rates are not homogeneous. In fact, as presented in

Figure 5b, rates vary from 94.7% in Guitars class to

50.9% in the Goblets class with 83.8% to 5.8% under

10◦ error, respectively. The scores correlate with the

number of different object instances within classes.

The per-class analysis also discloses that for the three

classes Guitars, Four-legged and Chairs, the rotation

estimation is reliable in the sense that more than 75%

of all predictions have an error less than 25◦.

Motivated by these results all of the following

simulations (if not stated otherwise) are performed us-

ing the binned rotational estimation.

4.1.3 Part recognition

First, the network is trained to predict the full part

label, which contains the parent object’s class name,

e.g. VasesContainer contains Vases. For this only the

two-dimensional part masks are used as input. This

method achieved an overall classification accuracy of

82.3%. The corresponding confusion matrix is docu-

mented in Figure 6.

The performance for different parts varies in a

noteworthy manner ranging from 53% for Lampes-

Lamp up to even 100% for GuitarsBody. Notably the

network tended to confuse Goblet parts with Lamp

parts and had problems keeping the parts of Vases -

Handle, Stand - apart. In particular, in half of all
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(a) Rotation estimation comparison of binned and regres-
sion model: The binned rotation model outperforms the
rotation model in terms of overall accuracy as well as
share of marginal errors.
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(b) Comparison of the rotation estimation performances
broken down by class: Evidently, a large variation in ac-
curacy is observed ranging from 94.7% for the guitars
class to 50.9% for the goblets class.

Figure 5: Results of the rotation estimation: Following
Gupta et al. (2015), the depiction represents the fraction of
objects for which the model is able to predict the rotation
with an error of less than εϑ, plotted versus εϑ.

classes an accuracy of over 90% is achieved, while

the Goblet part classification falls under 50%.

One remarkable observation is that the network

confuses GobletsStand with LampesStand and also

GobletsHandle with LampesHolder in roughly one

half of the predictions performed on these classes.

These findings suggest that the network recognized

semantic part features, e.g. Stands and Handles,

rather than the class of the parent object and its parts.

Therefore it seems reasonable to train a network for

these particular part classes. As Stands and Handles

are not part in all of the eight parent object classes,

this part-focused classification consequently reduces

the number of classes, hence it is called reduced part

classification. Experiments indicate that employing

such a reduced classification model turned out to be

a reasonable choice. The overall accuracy of the re-

duced part perception lies at 85.4% and, therefore,

on the same scale as the full class part recognition.

The rates ranged from 62% for the Holder class to

92% for the Seat class. Remarkably, like the full

model, the reduced one confuses the Handle with

Holder, with both part classes having the same func-

tion. It is not possible to compare the scores of the

full and reduced models in a direct manner since the

16-reduced-classes identification task is easier than

that for the 28-full-classes problem. Nevertheless, the

good accuracy of the reduced model supports the pre-

sumption that the network is able to identify parts re-

gardless of the parent object class.

4.1.4 Part-driven object classification

Provided with the correctly classified parts, it might

be possible to derive the class name of the parent ob-

ject. Next, we investigate if this procedure leads to

a better performance compared to directly predicting

the object class. To realize such a part-driven object

classification, the object in question has to be seg-

mented into parts, which then themselves are classi-

fied. From the resulting part labels the parent object

class is inferred. For example, if the part classifica-

tion yields ChairSeat, LampesStand and ChairBack it

is likely that the parent object is a Chair. This tech-

nique is implemented for all models with part recog-

nition which did not provide a class output natively.

For the part recognition model the mask input was

used as discussed in the previous section. This leads

to a classification accuracy of 88.2%. Figure 8 shows

the corresponding confusion matrix. Compared to the

original, direct classification model, which uses inten-

sity information and is only and explicitly trained for

object classification, this is an improvement of 2.9%.

The fact that objects can be recognized just from their

parts using CNN could be considered an important

observation.

5 Conclusions and Future Work

The presented work proves that it is possible to

realize part perception of everyday objects with syn-

thetically trained deep neural networks. Two aspects

are potentially of more far reaching interest. 1) We

showed that parts are recognized independently of

their parent object class. This kind of generaliza-

tion is a typical human trait. For us a leg remains

a leg whether it comes from a chair or a table. 2)

We could also demonstrate that object recognition can
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Figure 6: Confusion matrix of the full part prediction model, which is trained on the part mask channel. The network is able
to predict parts without major problems but tends to confuse both vases’ and goblets’ components.
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Figure 7: Confusion matrix of the reduced part classifica-
tion carried out by a network trained on the part mask input
channel only. Problems occurred only in the prediction of
handle and container parts.
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Figure 8: Confusion matrix of the COSEG object classifi-
cation, which was derived from the recognized part. The
method tends to confuse lampes with goblets but outper-
forms the standard classification model, which was trained
to recognize the objects as-a-whole.



be achieved from recognizing part combinations from

which the object class is then inferred. Here, we

found that for our system part-driven object classifica-

tion, where the parent object class is derived from the

object parts, outperformed a comparable standard ob-

ject classification network which does not use object

parts as an intermediate representation.

In our future work, we plan to test the part-based

perception approach on a bigger data set also using

more advanced network structures as well as extend

the approach to infer not only objects, but also their

functions (affordances). The method performance

will be compared to the existing techniques and vali-

dated on real RGB-D data. In order to make predic-

tions more robust, more rotation axes and view angles

could be included in the training. Additionally, artifi-

cial noise and visual obstacles could be applied on the

training data to increase robustness even further.
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