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Abstract— Insects, e.g. cockroaches and stick insects, have
found fascinating solutions for the problem of locomotion, es-
pecially climbing over a large variety of obstacles. Research on
behavioral neurobiology has identified key behavioral patterns
of these animals (i.e., body flexion, center of mass elevation,
and local leg reflexes) necessary for climbing. Inspired by this
finding, we develop a neural control mechanism for hexapod
robots which generates basic walking behavior and especially
enables them to effectively perform reactive climbing behavior.
The mechanism is composed of three main neural circuits:
locomotion control, reactive backbone joint control, and local
leg reflex control. It was developed and tested using a physical
simulation environment, and was then successfully transferred
to a physical six-legged walking machine, called AMOS II.
Experimental results show that the controller allows the robot
to overcome obstacles of various heights (e.g., ∼ 75% of its
leg length, which are higher than those that other comparable
legged robots have achieved so far). The generated climbing
behavior is also comparable to the one observed in cockroaches.

I. INTRODUCTION

The concept of a fully autonomous and multi-mission-
capable walking robot is one of the primary objectives
in robotics. Often projects aim to design a biologically
inspired robot with a conventional control system to perform
locomotion. Most of them use a parametric model to control
kinematics, dynamics and posture of the robot [1], [2]. Some
works take inspiration from biological paradigms like Central
Pattern Generators (CPGs) for basic walking generation and
local leg reflexes for rough terrain locomotion and obstacle
negotiation [3], [4]. In [5] and [6], biologically inspired
compliant-legged robots have been developed to achieve a
more stable and successful climbing. Especially in [5], they
employed a body joint to improve the climbing capabilities of
their robot. Another approach [7] implemented a “sprawled
posture” on a robot hardware to obtain stability in climbing.
More recent works on step climbing robots are mainly
focussed on hybrid leg-wheeled mechanisms [8], [9] since
they are easily controlled comparing with legged robots with
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many degrees of freedom. However, because of their reduced
mobility these robots may have problems in negotiating very
high steps as well as narrow stairs compared to legged
robots. Besides all research and development related to
such machines, existing robots still have not achieved a
level similar to nature. Even the simplest forms of life are
able to locomote autonomously through complex landscapes.
Especially insects, e.g., cockroaches and stick insects, have
the ability to negotiate obstacles relatively high with respect
to their body scale. Research on behavioral neurobiology has
identified key behaviors (i.e., body flexion, center of mass
(CoM) elevation, and local leg reflexes) of insect climbing
[10], [11], [12]. Only a few approaches have utilized parts
of these key behaviors [3], [5], [7].

Inspired by behavioral neurobiology research, we devel-
oped a neural control mechanism for hexapod robots. It
generates basic walking behavior and in particular reactive
climbing behavior utilizing all mentioned key behaviors of
insect climbing. Experimental results will not only demon-
strate obstacle climbing capabilities but also show that the
generated reactive climbing behavior is consistent with the
one observed in insects.

The following section describes the key behaviors ob-
served in insects. In section III, we introduce the hexa-
pod walking machine AMOS II and the simulation toolkit
LpzRobots. In section IV, the implementation of the neu-
ral control mechanism for climbing of hexapod robots is
described. Section V presents experimental results of the
climbing behavior of AMOS II. Finally, in section VI, we
discuss the results and provide an outlook of possible future
works.

II. BIOLOGICAL OBSERVATIONS

Research on behavioral neurobiology has identified at least
three key behaviors necessary for climbing in insects: body
flexion, CoM elevation and local leg reflexes.

A. Body flexion

Ritzmann et al. [10] investigated that the mobility of the
two thoracic joints provides significant support for climbing
of insects. For instance, cockroaches use their thoracic body
flexion joint to support their locomotion over an object by
tilting the prothorax down [10]. This specific behavior can
be referred to as body flexion (see Fig. 6(a) in section V). It
allows the forelegs a more powerful climbing movement and
even more importantly it keeps the CoM near to the surface
such that the cockroach does not fall down backwards.



B. CoM elevation

Watson et al. [11] investigated climbing locomotion of the
deathhead cockroach (Blaberus discoidalis). Whilst climb-
ing, the body requires an elevation of its center of mass (i.e.,
CoM elevation) to reach a higher altitude. This is done by a
positive change of the body-substrate angle which is defined
as the angle between ground and torso axis. Comparing
climbing behaviors over obstacles of different heights, a
difference of this positive change occurs. Cockroaches climb
over obstacles smaller than the height of their front leg swing
trajectory with no change of their walking gait. The front
legs reach the obstacle’s edge through walking. After the
tarsi touches the top of the obstacle, the coxal-trochanteral
(CTr) joint extends to push the front body from the ground.
This leads to a positive change of the body-substrate angle.
For higher obstacles the change is anticipated before the
front legs reach the obstacle. This anticipatory change of
behavior, moving the torso upwards, is called rearing phase
[7]. To be able to fully climb the obstacle, a translation of the
CoM above the obstacle is required. This is done through leg
extension of each leg pair (see Fig. 6(c) in section V). This
phase is named rising phase [7]. It appears that climbing does
not require any remarkable dispositions from general walking
control mechanisms, except the anticipatory behavior in
the rearing phase. In addition, reacting to an obstacle the
cockroach may require divisive sensory feedback (e.g. visual
or antennae) as well as neural control mechanisms for leg
reflex behaviors.

C. Local Leg Reflexes

Locomotion through complex landscapes causes many
problems for legged animals, including holes in the ground
as well as steps. Consequently, there is a high probability for
legs to get stuck at such situations. The so-called searching
and elevator reflexes observed in insects tend to solve such
a problem leading to effective rough terrain locomotion and
climbing over obstacles [13], [14], [15]. The searching reflex
appears in situations in which legs lack ground contact, e.g.
in a hole or a pit. The reflex then forces the respective
leg to search for a foothold. It can be observed in certain
insects, e.g. stick insects and locusts [12]. Uneven, complex
landscapes are riddled with small obstacles such as rocks,
roots or branches. Insects are able to avoid hitting an obstacle
by triggering the elevator reflex [16]. During this reflex, the
leg begins a further swing phase with a higher amplitude.

III. BIOLOGICALLY INSPIRED HEXAPOD ROBOT
AMOS II

AMOS II (see Fig. 1(a)) is a biologically inspired hexapod
robot developed to study neural control of locomotion of liv-
ing creatures. The robot body is inspired by the morphology
of cockroaches. Its six identical legs are connected to the
trunk which consists of two thoracic jointed segments. Body
flexibility is assured by an active backbone joint. The 19
active joints (three at each leg, one body joint) of AMOS II
are driven by servomotors which are controlled in position
mode. In addition, the body joint torque has been tripled by
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Fig. 1. Experimental platforms. (a) Biologically inspired hexapod walking
machine AMOS II. Symbols: BJ = backbone joint, FC = foot contact sensor,
IR = infrared sensor, US = ultrasonic sensor. (b) Robot simulation toolkit
LpzRobots with GUI.

using a gear to achieve a more powerful body joint motion
(see Tab. I in Appendix). The thoracal-coxal (TC) joint
controls forward/backward motion of the leg, the CTr joint
has the role of extension and flexion of the second limb and
the motion of the third limb (up and down) is driven by the
femoral-tibial (FTi) joint. Besides the motors, AMOS II has
33 sensors perceiving its environment: nineteen joint angle
sensors, two ultrasonic (US) sensors, six foot contact (FC)
sensors, six infrared (IR) reflex sensors located at the front of
each leg (see Fig. 1(a)). All in all, these sensors and motors
are deployed for generating various behaviors (e.g., obstacle
avoidance) [17], [18]. The simulation toolkit LpzRobots [19]
based on the Open Dynamics Engine (ODE, see [20]) is used
to simulate AMOS II (see Fig. 1(b)) and to test the developed
reactive neural control before transferring it to the real robot.
Since the simulation has the relevant properties of the real
robot, it can accurately predict maximum obstacle or step
heights that the robot can achieve. In addition, the tuned
control parameters in the simulation can be directly tested
on the real robot leading to almost identical behavior. Note
that additional information of the dimensions, the mechanical
and electrical properties of AMOS II is given in Tab. I in
Appendix.

IV. CONTROL ARCHITECTURE FOR REACTIVE
CLIMBING BEHAVIOR OF AMOS II

Inspired by behavioral neurobiology research discussed
in section II, we extend the existing neural locomotion
control of AMOS II (NLC [18], see Fig. 2) with two neural
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Fig. 2. Control architecture of AMOS II: the reactive climbing control
composed of reactive backbone joint control (BJC), leg reflex control (LRC)
and neural locomotion control (NLC). The BJC and LRC (I) control climb-
ing key behavior while basic walking behavior including omnidirectional
walking is achieved by NLC (II).

control units. This combination leads to so called Reactive
Climbing Control (RCC). It allows the robot to effectively
climb obstacles of various heights. The first extra unit is
a reactive neural controller, called Backbone Joint Control
(BJC), used to drive backbone joint motion. This controller
enables the robot to negotiate obstacles higher than the ones
existing robots have been able to negotiate. Inspired by
neuroethological observations of stick insects and locusts
[14], [15], we implement a second extra unit, called Leg
Reflex Control (LRC), which generates local leg reflexes in
order to avoid situations in which a leg might get stuck or
lack ground contact.

All neurons applied in the networks are modelled as
standard additive non-spiking neurons. The activity of a
neuron i is given by ai(t +1) = ∑

n
j=1 wi jσ j(a j(t))+Θi; i =

1, ...,n, where n corresponds to the number of neurons, Θi is
a constant input term, called bias, to the neuron i, and wi j the
synaptic weight of the connection from neuron j to neuron i.
There are three types of transfer function of the neurons used
here: the standard sigmoid σi(ai(t)) = (1+ exp(−ai(t)))−1,
the hyperbolic tangent σi(ai(t)) = tanh(ai(t)), and the linear
(threshold) transfer function. Input units are linearly mapped
onto the interval [0, 1] (for sigmoid and linear) and [−1, 1]
(for hyperbolic tangent). Note that artificial neural networks
are used here as robot control because they are conceptually
close to biological systems [18] compared to any other
solution. They can form as a modular structure where the
entire controller consists of different functions as shown here.
In addition, they also allow different off-line and on-line
learning (not shown here but see [17], [18]).

A. Neural Preprocessing of Sensory Data

In order to generate biologically inspired reactive climbing
behavior, we use foot contact (FC), infrared (IR) and ultra-
sonic (US) sensors. In this work, signal preprocessing is used
for smoothing, filtering noise (i.e., random signal fluctua-
tions) as well as prolongation of signals (see [21] for further
study about neural preprocessing of sensory signals). This is
done by applying the dynamical behavior of neural modules.

In particular, hysteresis effects of a recurrent neuron using a
sigmoid transfer function are utilized to extend the activation
time of the US signals [21]. This prolongation is required to
control backbone joint motion (see below) longer than the
stimulus itself is presented.

B. Reactive Backbone Joint Control (BJC)

Here, we present Reactive Backbone Joint Control (BJC)
which supports the climbing behavior of the robot by emu-
lating the body flexion observed in cockroaches. The neural
network of the BJC is a hand-designed recurrent network
with a behavior-based hierarchical order (see Fig. 3). There

Fig. 3. Neural module for Backbone Joint Control (BJC). BJC receives
preprocessed sensory data from different sensors (foot contact (FC) and
ultrasonic (US) sensors). All neurons are modelled as standard additive neu-
rons whose outputs are given by a linear transfer function. Input neurons are
connected to a neuron whose output signal σBJ directly drives the backbone
joint. Normalizing neurons ND and NU have a recurrent connection from
the output neuron. Note that positive values of σBJ cause a normalizing
downwards behavior, while negative values drive the backbone joint upwards
to achieve normal position. The synaptic weights of the network are simply
designed based on the hierarchical order of the control system. They have
very strong connections (e.g., C = −10.0) from one behavior to another
behavior to ensure fully inhibition. Other synaptic weights which combine
all behaviors are set to smaller values (e.g., A = 1.0, B = −1.0) where
positive and negative weights are used to drive the backbone joint up and
down, respectively.

are five neurons with a linear threshold transfer function
receiving preprocessed signals from different sensors (FC
and US sensors). They are connected to an output neuron
with a linear transfer function controlling the backbone joint.
When activated, each of the five neurons causes different
behaviors of the backbone joint. Leaning up (UP) the front
body supports the robot before placing the front tarsi on
the top of the obstacle (i.e., rearing phase). It is induced
by US sensor signals. FC sensors of the front and the
middle legs, respectively, are used for controlling reactive
searching behaviors of the backbone joint. While downwards
movements (SD) are useful for traversing an edge (i.e.,
transition of vertical/horizontal surface), upwards movements
(SU) keep the middle legs to the ground when the robot
locomotes through rough terrain. Normalizing behavior (ND,
NU) is applied to drive the backbone joint to normal position
after traversing an obstacle. Note that the interaction of



searching and normalizing behavior keeps the front body axis
parallel to the surface.

C. Leg Reflex Control (LRC)
Besides the Backbone Joint Control, the Leg Reflex Con-

trol (LRC) is the second neural unit important for climbing.
This sensor-driven control employs two leg reflex behaviors
observed in insects. The first reflex is the searching reflex
in which the leg searches a foothold when the foot has no
ground contact, thus the foot contact signal σfc does not
match the leg motor pattern. This reflex is implemented by
using a neural module (see Fig. 4(a)) including a neural
forward model [22]. The model transforms a motor command
from a CPG (efference copy) into an expected foot contact
signal σforward of normal walking. Describing the model in
detail will go beyond the scope of this work. The output
signal of the module is given by ∆ = σfc−σforward and can
be referred to as an error. The actual reflex is enforced
by vertical shifting of the CTr and FTi signals using the
accumulation of significant, positive errors: ∆∗ = ∑t |∆(t)|;
∀∆(t)≥ 0.15. Consequently, the CTr/FTi signals are shifted
when an error occurs, i.e., the respective leg searches for a
foothold. The second reflex causes a leg elevation after the
leg touches an obstacle during the swing phase. This reflex is
called elevator reflex. It is induced by the infrared (IR) reflex
sensors at the front of each leg. Using this sensory data as
an input signal, a threshold neuron provides an output signal
σe which shifts the CTr/FTi signals upwards, i.e., the leg
is elevated. Note that this elevator reflex only occurs in the
swing phase.
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Fig. 4. Neural modules for local leg reflexes. (a) Searching reflex module.
A neural forward model is applied to determine expected foot contact
signal from leg motor pattern provided by the CPG. The additive neuron
accumulates positive errors which cause vertical shifting of the CTr and
FTi signals, resulting in searching reflex. (b) Elevator reflex module. A
preprocessed infrared reflex signal are fed into a neuron using a linear
threshold transfer function. The threshold is set to 0.01. The output signal
σe shifts the CTr and FTi signals upwards. As a result, the leg is elevated.
Note that each leg has its own searching and elevator reflex modules.

D. Neural Locomotion Control (NLC)
Neural locomotion control generates basic walking be-

havior including omnidirectional walking of the robot. This
neural locomotion control has been presented in [17], [18].
Thus, here, we briefly discuss it. It consists of three modules:
• a Central Pattern Generator (CPG) including a postpro-

cessing unit,

• a Phase Switching Network (PSN),
• two Velocity Regulation Networks (VRNs) working in

parallel.

All neurons of these networks use a hyperbolic tangent
transfer function. The CPG contributes periodic signals pro-
viding the leg rhythm of the robot. The PSN receives the
CPG signals and directly drives the CTr and FTi joints. The
VRNs, which receive an output signal from one neuron of
the PSN and ultrasonic sensors, control the TC joints. While
the CPG sets the rhythmic movements of the legs, the PSN
and the VRNs provide a certain steering capability. Finally,
the periodic signals provided by the neural modules are
transferred to the motors using a delay line technique. This
technique delays the output signal coming from the neural
module about a certain delay td = 0.8s for each following
joint (from right hind to right front to left hind to left front).
As a result, neural locomotion control enables AMOS II to
move in different gaits as well as in any direction. Here only
wave gait is used.

V. EXPERIMENTAL RESULTS

In the sequel, the efficiency of the applied climbing control
has been tested by measuring the relative success of obstacle
negotiation at five different altitudes (9-13 cm) using a wave
gait. The relative success has been evaluated for 20 climbing
trials per altitude. As a result, AMOS II negotiated obstacles
with a height up to 13 cm (75% of its leg length) with a
success rate of 100%. In addition, we measured input and
output signals of the controller to illustrate the mechanism of
our neural control (see Fig. 5). Besides climbing capabilities,
the experiments reveal that AMOS II applies the same key
behaviors as observed in cockroach climbing (see Fig. 6).
Video clips of the climbing experiments can be seen at
http://www.manoonpong.com/AMOSII/Climbing.

VI. DISCUSSION

This article demonstrates the reactive climbing behavior
of the hexapod walking robot AMOS II which is generated
by neural control. As a result, the physical robot was able to
surmount obstacles with a maximum height of 13 cm which
equals 75% of its leg length. As a comparison, Gregor I
[7] was able to negotiate obstacles with a height of 65% of
its leg length, while Scorpion IV [3] was able to negotiate
obstacles with a height of 55% of its leg length. In [23],
a quadruped robot successfully negotiated obstacles up to
40% of its leg length. The reference values were calculated
using experimental videos of the respective robots which can
be seen at http://www.manoonpong.com/AMOSII/Climbing.
In addition, AMOS II displays three key behaviors (cf.
sect. 2) which have been observed in insects. Therefore,
the experiments not only show that AMOS II exhibits
outstanding climbing capabilities, but its control system also
generates climbing behavior similar to the behavior observed
in insects. However, the presented behavior of AMOS II can
be improved by:
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Fig. 5. Climbing behavior of AMOS II over a 13 cm high obstacle. In order to demonstrate the neural control mechanism we measured input (sensor)
and output (motor) signal of the left front leg and the backbone joint (BJ). As AMOS II approached the obstacle, the US sensor detection activated the
backbone joint control (BJC) and the BJ leant upwards ((1), see also gray colored area). Because the front legs had no ground contact at this period
(2), the local leg reflex control drove the leg to search for a foothold (searching reflex, see rose colored area). Note that the peak of the FTi signal was
induced by the elevator reflex in order to avoid the leg from hitting the obstacle (3). Local leg reflex control also generated the CoM elevation of AMOS
II by extending the legs for support. At a certain time after the middle legs were on top of the obstacle, the front legs had no ground contact. BJC drove
the backbone joint downwards to gain foot contact (body flexion). Additionally, the behavior-based hierarchy of the BJC tried to always keep the front
body part parallel to the ground ((4), see also green colored area). Finally, AMOS II successfully negotiated the 13 cm high obstacle. Note that in this
experiment body flexion can be recognized when the BJ motor signal (BJ Output) is nonzero. Indications of the y-axis: TC (+1 = forward, -1: backward),
CTr (+1 = up, -1 = down), FTi (+1 = up, -1 = down), FC (+1 = no contact, -1 = contact), US (0 = no detection, +1 = full detection), BJ (+1 = up, -1 =
down). Symbols: BJ = backbone joint, CTr = coxal-trochanteral joint, FC = foot contact sensor, FTi = femoral-tibial joint, TC = thoracal-coxal joint, US
= ultrasonic sensor.



• integrating a learning mechanism into the controller
such that the robot is able to adapt its body joint motion
to an obstacle height as well as a selected gait,

• adjusting the hind legs while climbing,
• implementing switchable friction materials underneath

the trunk of AMOS II to obtain sufficient levels of
friction and adhesion during climbing.

(a) (b)

(c) (d)

Fig. 6. Comparison of the climbing behavior of a cockroach and the robot:
(a)-(b) body flexion and (c)-(d) CoM elevation observed in a cockroach and
the robot. ((a) and (c) modified from [24])

APPENDIX

TABLE I
DIMENSIONS, MECHANICAL AND ELECTRICAL PROPERTIES OF

AMOS II.

Property Description/ Value [Unit]
Robot front height 7.5 [cm]
Robot length 46 [cm]
Robot width 36 [cm]
Body height 7.1 [cm]
Body length 42 [cm]
Body width 6.6 [cm]
Leg length 17.5 [cm]
Coxa length 3.5 [cm]
Femur length 6 [cm]
Tibia length 11.5 [cm]
Weight 4.2 [kg] (with batteries)
Material Carbon-fiber-reinforced polymer and Aluminum

alloys AL5083184
Motors HSP-5990 TG HMI Digital Robot Servo (torque:

τ = 2.4−2.9 Nm, for backbone joint three times
larger via gear)

Ultrasound Sensor UNDK 30U6103
Infrared Sensor Sharp GP2Y0AH01K10F High Accuracy Dis-

tance Measuring Sensor (range: 0.45 - 0.6 cm)
Microcontroller Multi-Servo IO-Board (Mboard)
Batteries 1x 11.1 V/3S-1P/3200 mAh (for servos), 2x 11.1

V/3S-1P/910 mAh (for MBoard/ sensors)
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