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Abstract— Full-size humanoid robots are traditionally con-
trolled with the Zero Moment Point (ZMP)-paradigm and
simplified dynamics, a well established method which can be
applied to balancing, walking, and whole-body manipulation
tasks. For pure walking control, approaches like pattern gener-
ators and reflexes are employed, often on optimized hardware.
Both controller groups are developed on different platforms
and therefore can only be indirectly compared in terms of
human likeness or energy efficiency. We present a reflex based
neuro-controller with an underlying, simple hill-type muscle
model on the extremely versatile humanoid robot ARMAR-4.
We demonstrate the reflexive controller’s flexible capabilities
in terms of walking speed, step length, energy efficiency and
inherent robustness against fall due to small slopes and pushes
along the frontal axis. We contrast this controller with a
Linearized Inverted Pendulum (LIP)-based ZMP-controller on
the same platform. The promising results of this study show that
even general humanoid robots can benefit from reflexive control
schemes and encourage further investigation in this field.

I. INTRODUCTION

Based on the formulation of the Zero Moment Point (ZMP)
introduced in the 1970’s as an elegant criterion for dy-
namic stability [1], numerous control methods for stabilizing
dynamic gaits of bipedal robots emerged. ZMP-centered
approaches for motion generation and control resulted in the
first bipedal walking robots capable of dynamically stable
gaits, like the early Honda robots [2]. These approaches
rely on strict assumptions about the environment (e.g. flat
ground), have rather low flexibility in terms of reacting to
unforeseen disturbances, and tend to incur comparatively
high costs of transport (CoT) [3]. Strong contributions to the
field of ZMP-based walking have been made by Kajita et al.
in the early 2000’s, where they made use of the simple yet
very effective Linear Inverted Pendulum Model (LIPM) [4]
and developed the successful ZMP preview-control [5].

In contrast to the efforts of using formal control methods
and inspired by the elegance and efficiency of human gait,
Passive Dynamic Walkers (PDW) were developed starting in
the late 1980’s [6]. Typical for PDWs is their highly opti-
mized mechanical structure that often includes springs, stops,
and balance weights, which allows them to autonomously
walk down slopes without a control system. The field of
PDWs progressed towards actuated motion relying on mini-
mal, reflex-based motor control and exploiting body dynam-
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Fig. 1. Sequences of walking simulation snapshots under reactive control
(top) and on a ZMP-controlled LIP-based generated trajectory (bottom).
Note the significant difference in step length.

ics rather than overriding them with powerful control [7].
These kind of robots are currently the most energy efficient
machines for bipedal walking [3].
Reflex-based motor control in actuated passive biped walkers
draws inspiration from nature. Reflexes can be modeled as
distributed neural circuits, generating motion commands as
an immediate response to sensory feedback. Recent examples
for neuro-inspired controllers include [8], [9], [10]. Another
successful implementation of a neural walking controller for
a real robot is the bipedal 2D walker RunBot [11]. RunBot,
exploiting its specialized mechanical structure, achieved very
high walking speeds under minimal neural control. Apart
from their mere functionality, computational simplicity is
another strong argument for the use of such reflex-based
controllers.
Here, we present a novel, reflex-based, neuro-inspired
walking controller for the full-sized humanoid robot
ARMAR-4 [12] which has evolved from the RunBot con-
trol scheme. The controller has undergone some significant
alterations to make it successful on the much more complex
robot. We evaluate the gait properties produced by this
controller in terms of speed, step length, and energy effi-
ciency. We test the robustness of these gaits against external
disturbances in the form of slopes and pushes to evaluate
their passive stability.
As there are, to the best of our knowledge, no direct compar-
isons between ZMP and reflexive controllers on state of the
art humanoids, we conclude the presented work contrasting
the walking patterns obtained from the proposed controller



to classical, ZMP-controlled walking. All of our evaluation
is conducted with a full dynamics simulator and a dynamic
model of the ARMAR-4 robot (Fig. 1).

II. METHODOLOGY

A. Reactive walking controller for ARMAR-4

The reflexive control scheme for ARMAR-4 is based on
the 2D bipedal walker RunBot [11] that consists of two
legs and a very small trunk. Each leg has 2 active degrees
of freedom (DoF) in the hip and the knee joints, and a
passive compliant ankle joint. ARMAR-4 in contrast is a
full humanoid with 63 DoF; more than 50 % of the robot’s
70 kg body mass are located above the hip. For ARMAR-4,
we focus on the locomotion pattern and enforce 2D walking
in the sagittal plane with external forces applied at the waist
for lateral stability. The remaining challenge is balancing the
upper body in direction of motion, which required several
modifications to RunBot’s original controller. In particular,
the hip joints balance ARMAR-4’s trunk, while knee and
ankle joints control forward progression. Additional reflexes
implement these changes, i.e., postural reflex, swing leg
retraction, push-off, and swing initiation. Furthermore, the
neuro-mechanical level was enhanced with compliant knee
and ankle joints (Fig. 2).

1) Neuro-Mechanics: Joint torques τ i
joint result from ex-

tensor and flexor motoneuron activities a ([11], Figs. 2, 3) or
the passive torques of the spring-damper system in the knee
(SDK) and ankle (SDA) joints

τ ihip = τmaxhip · (aiHF − aiHE) (1)

τ iknee =

{
τ iSDK for aiSI = 0

Ia · τmaxknee · aiSI for aiSI > 0
(2)

τ iankle =

{
τ iSDA for aiPO = 0

Ip · τmaxankle · aiPO for aiPO > 0 ,
(3)

with i ∈ {left, right}, τmax
joint the hardware torque limits,

and the swing initiation (SI) and push-off (PO) reflexes.
Ip, Ia are free parameters for scaling the reflex intensity.
The spring-damper systems in the knee and ankle joints
correspond to simple hill-type muscles and are implemented
as variable Proportional-Derivative (PD) position controllers
that generate the passive torques, with ϕj and ϕ̇j denoting
the local position and velocity of joint j:

τi = Pj · (ϕ0
j − ϕj)−Dj · ϕ̇j . (4)

Human gait kinematics and torque curves [13] inspired the
choices of the equilibrium point ϕ0

j , stiffness Pj , and the
damping parameter Dj . They are encoded on the spinal
reflex level and accessed by simple rules over sensory
input. All remaining joints track their neutral positions with
comparatively stiff PD-controllers.

2) Reflex-Level Control: Reflexes are implemented with
a non-spiking neuron model that describes the average firing
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Fig. 2. Reflex activations a control joint torques at the lower limbs. Sensors
include hip, ankle and knee joint angles ϕ, body orientation α, and ground
reaction forces (GRF). P , D and ϕ0 are the neuro-mechanical parameters
of the spring damper systems (eq. (4)).

rate of neuron N as activity aN
dyN
dt

= −yN +
∑
Z

ωNZaZ (5)

aN =
(

1 + eβN (ΘN−yN )
)−1

, (6)

with membrane potential yN , firing threshold ΘN , and a
positive constant βN . Motoneurons are activated by the
weighted (ωNZ) sum of connected sensor- and inter-neuron-
activity aZ . Sensor neurons use the raw sensor value instead
as membrane potential in equation (6) [11]. RunBot’s con-
troller network is still intact, but superimposed by any of the
reflexes introduced in this paper.
The neural weights are noted in Fig. 3. The symmetric angle
thresholds in ° are ΘS

HE = 205, ΘS
HF = 160, ΘS

RE = ΘS
HE ,

ΘI
IL = 0.6, ΘS

UP = 3, ΘI
GR = 5, ΘI

H = 5, ΘI
SW = −50,

ΘI
ST = 100, ΘS

KN = 160, ΘS
A = 0.05, ΘI

SI = 2.9,
ΘI
PO = 0.9, with the superscript indicating sensor, inter-,

and motoneurons. The constants β are set to 1, except for
βSHF = βSRE = −βSHE = 4, βIIL = βSA = βSSI = βSPO = 50,
βIUP = 2.5, and βSKN = 5.

Connectivity (weights), neuron thresholds, and parameters
of the spring-damper systems provide the flexibility for
adapting reflex-behavior or adjusting to changes in hardware.

The inter leg (IL) coordination reflex (Fig. 3) inhibits
the ipsilateral extensor if the swing leg traverses the sagit-
tal plane faster than the contralateral stance leg. Thus,
CoM motion is stabilized and in-phase to leg swing. [14],
[15] have shown a stabilizing effect of swing leg retraction,
whereas [16] indicates an effective acceleration of the CoM.
The corresponding reflex is triggered by a sensory neuron
activated by the threshold Θhip exciting the ipsilateral hip
flexor motoneuron (HF). We implemented a push-off &
swing initiation reflex, powering leg swing by coupling
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Fig. 3. Reflexes extending the RunBot-Controller [11]. The first letters label the neuron’s association: Hip Extensor/Flexor, KNee, Ankle, GRound
contact, Swing VeLocity (angular velocity between the thighs), UPper body, Push-Off, Swing-Initialization, leg in SWing or STance, and which leg is
TRailing. The last letter indicates the side Left/Right, except for the upper body, where asymmetry in Velocity or Position is tracked for Aft and Fore
deviations. Synaptic weights ω are printed besides the synapses. Sensor neurons are active when the associated raw sensor crosses a threshold (eq. (6)),
except for GRF, which is measured by absolute value. All other sensors are joint angles.

ankle plantar flexion and knee buckling [17]. The Upper
body stabilization reflex processes the orientation α and the
angular velocity α̇ of the upper body (UB) relative to gravity,
balancing the trunk via excitation of hip flexor (HF) or
extensor (HE) motoneurons in the stance leg.

B. Simulation environment

The reflexive and ZMP+LIPM controllers for ARMAR-4
were implemented for the ArmarX framework [18]. The dy-
namic simulation environment offers an interface to connect
to the implemented controllers as well as a generic contact
evaluation which computes the ground reaction forces. The
multi-body dynamics as well as the solvers for the equations
of motion are provided by Robotran [19].

C. ZMP preview control implementation

Our reference implementation of a ZMP controller closely
follows the concepts presented in [20], [21]. With certain
gait parameters like step length and duration specified, foot
placements are computed and a ZMP trajectory is fitted to
these placements. Simplifying the robot dynamics to those
of a linearized inverted pendulum (LIP), a CoM trajectory
is generated. According to foot placements and the CoM
trajectory, a constrained inverse kinematics method produces
whole-body motion. During motion execution, closed-loop
control of the ankle torques is employed to keep the ZMP
on its desired trajectory.

A major drawback with this approach is the constant
height of the CoM that is inherently required by the LIP
model. The inverse kinematics can only produce feasible
robot motions that obey this restriction for comparatively

short steps. In contrast, the reflexive controller has no explicit
constraints in step size.

III. RESULTS

3668 simulations were run to evaluate the gait patterns
of the novel, reflexive controller with respect to selected
properties like cost of transport, velocity, and step length.
For these runs, we selected the following parameters for
variation: push-off reflex intensity Ip and the ankle threshold
angle Θp after which the push-off reflex is inhibited, both
controlling power injection. The threshold for leg retraction
Θhip regulating the step length, SDA parameters Pankle and
ϕ0

ankle prior to the application of plantar flexion moments,
and the equilibrium point ϕ0

Torso of the Torso pitch joint that
adjusts upper body leaning. The latter is thought to have a
strong influence on walking speed [22].

Of the total number of 3668 runs, we tested 2093 param-
eter sets during a general screening of the parameter space,
which provided 57 stable and 2036 unstable runs. Based
on these results, smaller parameter spaces were investigated.
For the cost of transport, 435 parameter sets were tested,
including 115 stable runs; disturbances in form of a 2 m
patch of slopes from [−6, 6 ]° and pushes along the frontal
axis against the torso in the range of [−80, 80 ]N were tested
on the 57 stable gaits found in the initial screening. First,
we will present the cost of transport and gait statistics of the
presented controller, before we will continue to a compilation
of these values for the ZMP controller. We will conclude this
section by contrasting the two controllers’ characteristics.



TABLE I
EVALUATED PARAMETER RANGES IN WALKING EXPERIMENTS WITH THE

PRESENTED CONTROLLER. RUNS 2-4 INCLUDE FOUR SELECTED SLOW

WALKS WITH PARAMETERS LISTED IN 5

Pankle

[
Nm
c

]
ϕ0

ankle[
c] Ip Θp[c] Θhip[◦] ϕ0

Torso[c]

1. Parameter screening: 2093 runs, 57 stable, 2036 unstable
min 250 −0.2 0.2 −0.01 200 0
max 1000 0.2 1 0.05 208 0.2

2. Flat-ground walking: 435 runs, 115 stable, 320 unstable
3. Slope walking: 684 runs, 93 stable, 591 unstable
4. Pushes: 456 runs, 245 stable, 211 unstable
min 250 −0.2 0.2 −0.01 200 0
max 850 0.2 1 0.05 208 0.2

5. Included 4 slow walks
min 550 0.2 0.2 0.05 200 0
max 850

A. Examination of the reflexive controller’s gait-patterns

The examination of the obtained gait patterns was per-
formed with variations in the ranges given in Table I, 1.
Based on these screening runs, we determined the parameter
ranges for the subsequent experiments and determined the
gait stability criterion. In these experiments, a set of four
very slow gaits was included for additional insight. The
parameters of those four gaits are given in Table I, 5.

1) Stability Criterion: For a first classification, we de-
cided to apply a run-time based stability criterion. The
inherent instability of bipedal walking and the high number
of ARMAR-4’s degrees of freedom lets us assume that
without additional control, we will have a non-diminishing
rate of falls in simulations, independent of the run-time.
Therefore, after tests with simulation run-times of 10 to 30 s,
we investigated the distribution of falling times (Fig. 4).
Assuming that the first peak at 103 ms is an artifact of
the initial velocity, we fitted a log-normal distribution to
the histogram with logarithmic binning. The fit according
to equation (7) was performed with scipy [23]. Thus, we ob-
tained the maximum likelihood estimates for the parameters
to be σ ≈ 0.831, µ ≈ 596 s, α = 3848 s.

f(x) =
1

(x− µ) ·
√

2πσ2
· e−

log(
x−µ
α

)2

2σ2 (7)

Based on these estimates, we assume to have eliminated more
than 99.2 % of all unstable gaits, when characterizing a stable
gait by a run-time of at least 30 s.

2) Achievable gait patterns: The reflexive controller pro-
vides a diverse landscape of stable gaits with the parameter
ranges shown in Table I. A variety of different speeds and
stride lengths can be realized (Fig. 5a).

3) Cost of transport: The cost of transport (CoT, equa-
tion (8)) is a dimensionless variable, which can be used to
compare the energy efficiency of locomotion. We use the
mechanical work W performed in the joints of the lower
limbs to transport the robot over the distance d:

Cost of Transport (CoT) =
W

g ·m · d
(8)
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Fig. 4. Background: Distribution of falling times for unstable gaits from
parameter space screening, assuming a 30 s stability criterion. The solid,
blue line shows the cumulative distribution of falling times, the dashed,
red line the log-normal fit which was used to estimate the ratio of missed
unstable gaits to be below 0.8 %.

with m = 70 kg and g ≈ 9.81 m/s2 for ARMAR-4 on earth.
For an alternative definition, compare [3].
The CoT for the presented controller depends strongly on
the chosen parameter set. In addition to the 57 stable gaits
discovered during initial screening, we tested additional
parameter sets according to Table I, 2.. This resulted in 115
stable gaits, for which we investigated the relation between
gait characteristics, like cadence and velocity, and the energy
efficiency of the controller. We find that the CoT in general
does not change with the cadence (Fig. 5b, top), but changes
strongly with the velocity, where higher velocities lead to
lower CoT (Fig. 5b, bottom). Fig. 5c, top shows that the
amount of negative work decreases with higher velocities.
The negative work comes from motor torques opposing the
current direction of joint rotation (i.e. active braking). While
the absolute amount of positive work decreases, Fig. 5c,
bottom indicates that the relative amount of negative work
decreases, too. In other words, the reflexive controller is more
energy efficient the less it brakes limb motions, and in effect,
the faster is the resulting gait. The four slow gaits marked
in red in Figs. 5b and 5c are obvious outliers.

4) Robustness against small slopes: In the first robustness
experiment, the robot faces 2 m slopes of [−6, 6 ]° in a
distance of 3.5 m from the starting point. In these trials, we
tested the 57 stable gaits from the screening run. For these,
Fig. 6 (left) shows per run the slopes the gait could master
without falling during 20 s simulation time. The slopes each
of the 57 stable gaits could master are shown in Fig. 7 (left).
For the gaits in Fig. 6 (left), approximately 16 % of the runs
produced stable gaits and 11 gaits (19 %) could not traverse
any slope. 44 gaits (77 %) succesfully traversed 1 to 3 slopes,
and only 2 gaits could withstand 4 and 5 slopes, respectively.
This demonstrates that the property of robustness against
slopes is very sensitive to the chosen parameters.
Additionally, we observe that the robot generally accelerates
when walking downhill, whereas it gets slower when walking
uphill. We want to emphasize here that the shown robustness
against small slopes is a passive property of the selected
gaits: it does not come from a dedicated stabilizing part of
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Fig. 5. Properties of the presented controller’s gaits.
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Fig. 6. Left: For the 57 parameter sets providing stable walking on flat
ground found in initial screening, 27 were able to compensate for slopes.
Slopes tested were in the range −6−6 °. The plot shows in dark colors for
each of the 27 parameter sets on which slopes they were stable. A light color
in the plot indicates falling due to the slope. Right: Stability against pushes
in mid-swing is shown for 57 parameter sets providing stable walking on
flat ground.

the controller. Learning experiments, e.g. [24], indicate that
the passive robustness allows for the controller to adapt and
therefore provides the foundation for further improvements.

5) Robustness against pushes: To test the robustness
against pushes, the simulation was run for 20 s: 10 s to allow
the influence of the initial condition to decay before a force
(linearly ramped up and down within 0.5 s) was applied
against the root joint of ARMAR-4’s torso with maximum
push forces in the range of [−80, 80 ]N . The push-timing
was fixed to mid-stance, when the swing leg traverses the
stance leg.

Robustness against the tested pushes is more pronounced
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Fig. 7. Left: Count of stable parameter sets on slopes from −6 − 6 ° for
57 flat-ground stable parameter sets from initial screening. Right: Count of
stable parameter sets when pushing with forces from −80 − 80 N for 57
flat-ground stable parameter sets from initial screening.

than against the tested slopes, with 54 % stable runs overall
(Fig. 6 (right) and Fig. 7 (right)). Of these, 40 (70 %) walked
stably for 4 − 6 push intensities. 11 gaits handled less than
3, and only 6 gaits more than 7 different push forces, with 3
gaits that were stable for all tested push forces. The controller
seems to be largely invariant against the direction of the
push, with 125 stable runs for positive push forces, and
120 for negative ones. From the 6 most robust gaits shown
in Table II, the slow gaits seem especially resilient against
pushes.

As with the robustness against small slopes, we want
to emphasize here, that the robustness against pushes is
a passive property. A stabilizing controller extending the
presented design should be able to improve on the inherent



TABLE II
PARAMETER SETS OF THE SIX GAITS MOST STABLE AGAINST PUSHES IN THE TESTING RANGE OF [−80, 80 ]N (FIG. 6). THREE OF THE FOUR VERY

SLOW GAITS ARE REPRESENTED IN THIS TABLE AT ROWS 1, 3, 4. THE OTHER THREE MUCH FASTER GAITS SHOW SIMILAR PUSH-RESISTANCE

Pankle
[
Nm/c

]
ϕ0

ankle[
c] Ip Θp[c] Θhip[°] ϕ0

Torso[c] Stable against push forces [N ] #

850 0.2 0.2 0.05 200 0.0 −80, −60, −40, −20, 20, 40, 60, 80 8
350 −0.1 0.7 0.05 207 0.1 −80, −60, −40, −20, 20, 40, 60, 80 8
650 0.2 0.2 0.05 200 0.0 −80, −60, −40, −20, 20, 40, 60, 80 8
750 0.2 0.2 0.05 200 0.0 −80, −60, −40, −20, 20, 40, 60 7
250 0.1 0.4 0.05 204 0.0 −60, −40, −20, 20, 40, 60, 80 7
350 −0.1 0.9 0.025 207 0.05 −80, −60, −40, −20, 20, 40, 80 7

robustness demonstrated in this experiment. The chosen
experimental setup focuses on the immediate response to the
push, limiting the observation to short term reactions. We
leave long time corrections of speed and walking direction
after the push for additional higher-level control.

B. Contrasting the ZMP- and reflexive controller

While the reflexive controller demonstrated a versatile
set of gaits, the linearized inverted pendulum is effectively
limiting step sizes due to the requirement of a constant CoM
height. As there are no explicit restrictions for the reflexive
controller, a comparison of the two approaches is generally
not straight-forward. We will therefore focus our attention
on qualitative rather than quantitative aspects.

1) Human Likeness: The reflexive controller is designed
to capture features like push-off and swing-leg retraction.
Step lengths of up to 70 cm approach the range of adult hu-
mans with comparable leg lengths, which lies at 74 cm [25].
Although the typical step length of the presented controller
is significantly smaller (Fig. 5a), it is generally much larger
than that of the available ZMP controller (30 cm, see Fig. 1).
The same holds for the walking velocity, with the ZMP
controller providing 0.37 m/s and the reflexive controller
achieving a typical velocity of more than 1 m/s (Fig. 5a).

2) Energy Efficiency: We only compare work done in the
legs, as both our approaches do not make active use of any
of the upper body actuators. The ZMP controller performed
with CoTZMP = 1.978, while the reflexive controller’s
most energy efficient gait resulted in CoTRef = 1.556.
Thus, the reflexive controller operates on the same hardware
CoTZMP
CoTRef

= 1.27 times more energy efficient.
3) Robustness: The stability against external forces over

all gaits is much more symmetric for the reflexive controller
(Fig. 7), whereas the ZMP stack had difficulties to com-
pensate for pushes against walking direction, where it could
only cope with −20 N. This might be due to the ZMP stack
applying stabilizing moments only at the ankle joint level,
which provides better levers in walking direction than against
it due to the specific foot geometry.

IV. CONCLUSION
In this study we showed that the presented controller is

capable of a variety of gaits with different step lengths and
velocities. Fast gaits outperform the available ZMP based
walking controller stack in terms of energy efficiency and
walking speed. Some gaits show inherent robustness against

small slopes and pushes. Besides speed, energy efficiency,
human-likeness and robustness, a major advantage of
reflexive control over other methods is the computational
parsimony. We explored the multi-dimensional parameter
space of the controller and found promising sub-spaces
that provide efficient, human-like, fast and robust gaits. In
contrast to most reflex-based approaches in the literature,
the presented controller does not depend on highly specific
mechanisms. While this lack of specialized hardware may
explain the rather low energy efficiency when compared to,
e.g., [3], it allows to apply different controller architectures
on the same robot.
It is a key contribution of this work to directly contrast a
ZMP controller stack with a reflexive controller on the same
humanoid. However, a general quantitative comparison
is difficult to draw due to the differences between the
two approaches: While the ZMP stack implements a 3D
walker with an additional real-time stabilizer, the reflexive
controller is effectively a 2D walker based on on-line motion
generation and upper body stabilization. A disadvantage
is the controller’s limitation to steady walking without the
ability to stand or move in confined spaces - situations that
can be handled with ZMP-centered approaches. In summary,
the reflexive controller is a major step towards exploiting the
complete kinematic potential of the underlying ARMAR-4
platform.
As the selection of suitable sets of controller parameters
poses a central problem, we aim at autonomously finding
optimal parameter sets in terms of energy efficiency and
robustness. Furthermore, a follow-up study might be
concerned with the direct transition from one controller type
to the other, leveraging the specific advantages (versatility
and speed/energy efficiency) of both.
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in advanced age: the role of ankle and hip kinetics,” The Journals
of Gerontology Series A: Biological Sciences and Medical Sciences,
vol. 51, no. 6, p. M303–M312, 1996.

http://www.mech-sci.net/4/199/2013/
http://www.scipy.org/

	INTRODUCTION
	METHODOLOGY
	Reactive walking controller for ARMAR-4
	Neuro-Mechanics
	Reflex-Level Control

	Simulation environment
	ZMP preview control implementation

	RESULTS
	Examination of the reflexive controller's gait-patterns
	Stability Criterion
	Achievable gait patterns
	Cost of transport
	Robustness against small slopes
	Robustness against pushes

	Contrasting the ZMP- and reflexive controller
	Human Likeness
	Energy Efficiency
	Robustness


	CONCLUSION
	References

