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Abstract

In this paper, we report our design of the neural structure for

a novel reflexive walking controller that has been implemented on

a planar biped robot to achieve a dynamically stable walking gait.

This reflexive controller has following characteristics: (1) Other lo-

comotion control models rely on AEP (Anterior Extreme Position)

and PEP (Posterior Extreme Position) signals or their equivalents for

phasic feedback. Our reflexive controller on the other hand requires

only an AEA (Anterior Extreme Angle) signal of the hip joints as

phasic feedback because of the properties of the physical computa-

tion used in our robot to the advantage of reducing the number of

required input signals. (2) Neither a position control algorithm (e.g.,

PD or PID) nor trajectory tracking control is involved in this reflexive

controller. Instead, the approximate nature of the local reflexes on

each joint allows the robot mechanics itself (e.g., its passive dynam-

ics) to contribute substantially to the overall gait trajectory compu-

tation. Thus, dynamically stable biped walking gaits emerge from the

coupling between neural computation and physical computation. (3)

The motor control scheme used in the local reflexes of our robot is

more straightforward and has more biological plausibility than that
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of other robots, because the outputs of the motor-neurons in our re-

flexive controller are directly driving the motors of the joints, rather

than working as references for position or velocity control as often

found in other biologically inspired walking robots. As a consequence,

the neural controller and the robot mechanics are closely coupled as a

neuro-mechanical system. Walking experiments also show the built-in

autonomy of this neuro-mechanical system.

1 Introduction

There are two distinct schemes for leg coordination discussed in the animal-

locomotion and biologically-inspired robotics literature, namely CPGs (Cen-

tral Pattern Generators) and reflexive controllers. It was found that motor-

neurons (and hence rhythmical movements) in many animals are driven by

central networks of inter-neurons that generated the essential features of the

motor pattern. However, sensory feedback signals also play a crucial role in

such control systems by turning a stereotyped unstable pattern into the co-

coordinated rhythm of the natural movement (Reeve, 1999). These networks

were referred to as CPGs. On the other hand, Cruse developed a reflexive

controller model to understand the locomotion control of a slowly-walking
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stick insect (Carausius morosus). In his model, reflexive mechanisms in each

leg generate the step cycle of each individual leg. For inter-leg coordination,

in accordance to observations in insects, he presented six mechanisms that

can re-establish coordination in the case of minor disturbances (Cruse et al.,

1998).

While neural systems modeled as CPGs or reflexive controllers explic-

itly or implicitly compute walking gaits, the mechanics also ”compute” a

large part of the walking movements (Lewis, 2001). This is called physical

computation, namely exploiting the system’s physics, rather than explicit

models, for global trajectory generation and control. One distinct example

of physical computation in animal locomotion is the ”preflex”; the nonlinear,

passive visco-elastic properties of the musculoskeletal system itself (Brown

and Loeb, 1999). Due to the physical nature of the preflex, the system can

respond rapidly to disturbances (Cham et al., 2000). Thus, in all animals

locomotion control is shared between neural computation and physical com-

putation.

In the current work, we present our design of a novel reflexive neural

controller that has been implemented on a planar biped robot. We will show

how a dynamically stable biped walking gait emerges on our robot as a result
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of combination of neural- and physical computation. Several issues are ad-

dressed in this paper which we believe are of relevance for the understanding

of biologically motivated walking control. Specifically we will show that it is

possible to design a walking robot with a very sparse set of input signals and

with a controller that operates in an approximate and self-regulating way.

Both aspects may be of importance in biological systems, too, because they

allow for a much more limited structure of the neural network and reduce

the complexity of the required information processing. Furthermore, in our

robot the controller is directly linked to the robot’s motors (its ”muscles”)

leading to a more realistic, reflexive sensor-motor coupling than implemented

in related approaches. These mechanisms allowed us for the first time to ar-

rive at a dynamically stable artificial biped combining physical computation

with a pure reflexive controller.

This paper is organized as follows. First we describe the mechanical

design of our biped robot. Next, we present our neural model of a reflexive

network for walking control. Then we demonstrate the result of several biped

walking experiments. Finally, we compare our reflexive controller with other

walking control mechanisms.
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Figure 1: A) The robot and B) a schematic of the joint angles of one leg. C) The

structure of the boom. All its three orthogonal axis (pitch, roll and yaw) rotate

freely, thus having no influence on the robot dynamics in its saggittal plane.
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2 The robot

Reflexive controllers such as Cruse’s model involve no central processing unit

that demands information on the real-time state of every limb and computes

the global trajectory explicitly. Instead, local reflexes of every limb require

only very little information concerning the state of the other limbs. Coor-

dinated locomotion emerges from the interaction between local reflexes and

the ground. Thus, such a distributed structure can immensely decrease the

computational burden of the locomotion controller. With these eminent ad-

vantages, Cruse’s reflexive controller and its variants had been implemented

on some multi-legged robots (Ferrell, 1995). Whereas in the case of biped

robots, though some of them also exploit some form of reflexive mechanisms,

their reflexes usually work as an auxiliary function or as infrastructural units

for other non-reflexive high-level or parallel controllers. For example, on a

simulated 3D biped robot (Boone and Hodgins, 1997), specifically designed

reflexive mechanisms were used to respond to two types of ground surface

contact errors of the robot, slipping and tripping, while the robot’s hopping

height, forward velocity, and body attitude are separately controlled by three

decoupled conventional controllers. On a real biped robot (Funabashi et al.,

2001), two pre-wired reflexes are implemented to compensate for two distinct
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types of disturbances because of an impulsive force and a continuous force,

respectively. Up to date, no real biped robot has existed that depends ex-

clusively on reflexive controllers for walking control. This may be because of

the intrinsic instability specific to biped-walking, which makes the dynamic

stability of biped robots much more difficult to control than that of multi-

legged robots. After all, a pure local reflexive controller itself involves no

mechanisms to ensure the global stability of the biped.

While the controllers of biped walking robots generally require some kind

of continuous position feedback for trajectory computation and stability con-

trol, some animals’ fast locomotion is largely self-stabilized due to the passive,

visco-elastic properties of their musculoskeletal system (Full and Tu, 1990).

Not surprisingly, some robots can display a similar self-stabilization property

(Iida and Pfeifer, 2004). Passive biped robots can walk down a shallow slope

with no sensing, control, or actuation. However, compared with a powered

biped, passive biped robots have obvious drawbacks, e.g., needing to walk

down a slope and their inability to control speed (Pratt, 2000). Some re-

searchers have proposed to equip a passive biped with actuators to improve

its performance. Van der Linde made a biped robot walk on level ground by

pumping energy into a passive machine at each step (Van der Linde, 1998).
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Nevertheless, no one has yet built a passive biped robot that has the capabil-

ities of powered robots, such as walking at various speeds on various terrain

(Pratt, 2000).

Passive biped robots are usually equipped with circular feet, which can

increase the basin of attraction of stable walking gaits , and can make the

motion of the stance leg look smoother. Instead, powered biped robots typ-

ically use flat feet so that their ankles can effectively apply torque to propel

the robot to move forward in the stance phase, and to facilitate its stability

control. Although our robot is a powered biped, it has no actuated ankle

joints, rendering its stability control even more difficult than that of other

powered bipeds. Since we intended to exploit our robot’s passive dynamics

during some stages of its gait cycle, similarly to the passive biped, its foot

bottom also follows a curved form with a radius equal to the leg-length.

As for the mechanical design of our robot, it is 23 cm high, foot to hip.

It has four joints: left hip, right hip, left knee, and right knee. Each joint

is driven by an RC servo motor. A hard mechanical stop is installed on the

knee joints, thus preventing the knee joint from going into hyperextension,

similar to the function of knee caps on animals’ legs. The built-in PWM

(Pulse Width Modulation) control circuits of the RC motors are disconnected
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while its built-in potentiometer is used to measure joint angles. Its output

voltage is sent to a PC through a DA/AD board (USB DUX, www.linux-

usb-daq.co.uk). Each foot is equipped with a modified Piezo transducer (DN

0714071 from Farnell) to sense ground contact events. We constrain the

robot only in the saggital plane by a boom. All three axis (pitch, roll, and

yaw) of the boom can rotate freely (see figure 1 C), thus having no influence

on dynamics of the robot in the sagittal plane. Note that the robot is not

supported by the boom in the saggittal plane. In fact, it is always prone to

trip and fall.

The most important consideration in the mechanical design of our robot

is the location of its center of mass. Its links are made of aluminium alloy,

which is light and strong enough. The motor of each hip joint is a HS-475HB

from Hitec. It weights 40g and can output a torque up to 5.5kgcm. Due to

the effect of the mechanic stop, the motor of the knee joint bears a smaller

torque than the hip joint in stance phases, but must rotate quickly during

swing phases for foot clearance. We use a PARK HPXF from Supertec on

the knee joint, which has a light weight (19g) but is fast with 21rad/s. Thus,

about seventy percent of the robot’s weight is concentrated on its trunk.

The parts of the trunk are assembled in such a way that its center of mass
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is located as far forward as possible (see figure 2). The effect of this design

is illustrated in figure 2. As shown, one walking step includes two stages,

the first from (A) to (B), the second from (B) to (C). During the first stage,

the robot has to use its own momentum to rise up on the stance leg. When

walking at a low speed, the robot may have not enough momentum to do

this. So, the distance the center of mass has to cover in this stage should

be as short as possible, which can be fulfilled by locating the center of mass

of the trunk far forward. In the second stage, the robot just falls forward

naturally and catches itself on the next stance leg (see figure 2). Then the

walking cycle is repeated. The figure also shows clearly the movement of the

curved foot of the stance leg. A stance phase begins with the heel touching

ground, and terminates with the toe leaving ground.

3 The neural structure of our reflexive con-

troller

The reflexive controller model of Cruse et al. (1998), and Cruse and Saavedra

(1996) that has been applied on many robots can be roughly divided into

two levels, the single leg level and the inter-leg level. Figure 3 illustrates
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Figure 2: Illustration of a walking step of the robot.

how Cruse’s model creates a single leg movement pattern. A protracting

leg switches to retraction as soon as it attains the AEP (Anterior Extreme

Position). A retracting leg switches to protraction when it attains the PEP

(Posterior Extreme Position). On the inter-leg level, six different mechanisms

have been described (Cruse et al., 1998), which coordinate leg movements via

modifying the AEP and PEP of a receiving leg according to the state of a

sending leg.

Although Cruse’s model, as a reflexive controller, is for hexapod locomo-

tion, where the problem of inter-leg coordination is much more complex than

in biped walking, we can still compare its mechanism for the generation of
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Figure 3: Single leg movement pattern of Cruse’s reflexive controller model (Cruse

et al., 1998).

single leg movement patterns with that of our reflexive controller. Cruse’s

model depends on PEP, AEP and GC (Ground Contact) signals to generate

the movement pattern of the individual legs. Whereas our reflexive controller

presented here uses only GC and AEA (Anterior Extreme Angle of hip joints)

to trigger switching between stance and swing phases of each leg. Creation

of the single leg movement pattern for our model is illustrated in figure 4.

Figure 4: Illustration of single leg movement pattern generation.

Fig. 4 (A)-(E) represents a series of snapshots of the robot configuration
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while it is walking. At the time of figure 4 B, the left foot (black) has just

touched the ground. This event triggers four local joint reflexes at the same

time: flexor of left hip, extensor of left knee, extensor of right hip, and flexor

of right knee. At the time of figure 4 E, the right hip joint attains its AEA,

which triggers only the extensor reflex of the right knee. When the right foot

(gray) contacts the ground, a new walking cycle will begin. Note that on the

hip joints and knee joints, extensor means forward movement while flexor

means backward movement.

The reflexive walking controller of our robot follows a hierarchical struc-

ture (see figure 5). The bottom level is the reflex circuit local to the joints,

including motor-neurons and angle sensor neurons involved in joint reflexes.

The top level is a distributed neural network consisting of hip stretch recep-

tors, ground contact sensor neurons, and inter-neurons for reflexes. Neurons

are modeled as non-spiking neurons simulated on a Linux PC, and commu-

nicated to the robot via the DA/AD board. Though somewhat simplified,

they still retain some of the prominent neuronal characteristics.
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AL, (AR) Stretch receptor for anterior angle of left (right) hip

GL, (GR) Sensor neuron for ground contact of left (right) foot

EI, (FI) Extensor (Flexor) reflex inter-neuron

EM, (FM) Extensor (Flexor) reflex motor-neuron

ES, (FS) Extensor (Flexor) reflex sensor neuron

Table 1: Meaning of some abbreviations used in this paper.

3.1 Model neuron circuit of the top level

The joint coordination mechanism in the top level is implemented with the

neuron circuit illustrated in figure 5. Each of the ground contact sensor

neurons has excitatory connections to the inter-neurons of the ipsi-lateral

hip flexor and knee extensor as well as to the contra-lateral hip extensor and

knee flexor. The stretch receptor of each hip has excitatory connections to its

ipsi-lateral inter-neuron of the knee extensor, and inhibitory connection to

its ipsi-lateral inter-neuron of the knee flexor. Detailed models of the inter-

neuron, stretch receptor, and ground contact sensor neuron are described in

following subsections.
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Figure 5: The neuron model of reflexive controller on our robot. For meanings of

EI, FI, EM, FM, etc. see Table 1.

3.1.1 Inter-neuron model

The inter-neuron model is adapted from one used in the neural controller of

a hexapod simulating insect locomotion (Beer and Chiel, 1992). The state

of each model neuron is governed by equations 1,2 (Gallagher et al., 1996):

τi
dyi

dt
= −yi +

∑
ωi,juj (1)

uj = (1 + eΘj−yj)−1 (2)
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Where yi represents the mean membrane potential of the neuron. Equa-

tion 2 is a sigmoidal function that can be interpreted as the neuron’s short-

term average firing frequency, Θj is a bias constant that controls the firing

threshold. τi is a time constant associated with the passive properties of

the cell membrane (Gallagher et al., 1996), ωi,j represents the connection

strength from the j th neuron to the i th neuron.

3.1.2 Stretch receptors

Stretch receptors play a crucial role in animal locomotion control. When the

limb of an animal reaches an extreme position, its stretch receptor sends a

signal to the controller, resetting the phase of the limbs. There is also evi-

dence that phasic feedback from stretch receptors is essential for maintaining

the frequency and duration of normal locomotive movements in some insects

(Chiel and Beer, 1997).

While other biologically inspired locomotive models and robots use two

stretch receptors on each leg to signal the attaining of the leg’s AEP and PEP

respectively, our robot has only one stretch receptor on each leg to signal the

AEA of its hip joint. Furthermore, the function of the stretch receptor on

our robot is only to trigger the extensor reflex on the knee joint of the same
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leg, rather than to explicitly (in the case of CPG models) or implicitly (in

the case of reflexive controllers) reset the phase relations between different

legs.

As a hip joint approaches the AEA, the output of the stretch receptors

for the left (AL) and the right hip (AR) are increased as:

ρAL = (1 + eαAL(ΘAL−φ))−1 (3)

ρAL = (1 + eαAR(ΘAR−φ))−1 (4)

Where φ is the real time angular position of the hip joint, ΘAL and ΘAR

are the hip anterior extreme angles whose value are tuned by hand in an

experiment, αAL and αAR are positive constants. This model is inspired

by a sensor neuron model presented in Wadden and Ekeberg (1998) that is

thought capable of emulating the response characteristics of populations of

sensor neurons in animals.

3.1.3 Ground contact sensor neurons

Another kind of sensor neuron incorporated in the top level is the ground

contact sensor neuron, which is active when the foot is in contact with the

ground. Its output, similar to that of the stretch receptors, changes according
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to:

ρGL = (1 + eαGL(ΘGL−VL+VR))−1 (5)

ρGR = (1 + eαGR(ΘGR−VR+VL))−1 (6)

Where VL and VR are the output voltage signals from piezo sensors of the

left foot and right foot respectively, ΘGL and ΘGR work as thresholds, αGL

and αGR are positive constants.

While AEP and PEP signals account for switching between stance phase

and swing phase in other walking control structures, ground contact signals

play a crucial role in phase transition control of our reflexive controller. This

emphasized role of the ground contact signal also has some biological plau-

sibility. When held in a standing position on a firm flat surface, a newborn

baby will make stepping movements, alternating flexion and extension of

each leg, which looks like ”walking”. This is called “stepping reflex”, elicited

by the foot’s touching of a flat surface. There is considerable evidence that

the stepping reflex, though different from actual walking, eventually develops

into independent walking (Yang et al., 1998).

Concerning its non-linear dynamics, the biped model is hybrid in nature,

containing continuous (in swing phase and stance phase) and discrete (at

the ground contact event) elements. Hurmuzlu applied discrete mapping
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techniques to study the stability of bipedal locomotion (Hurmuzlu, 1993). It

was found that the timing of ground contact events has a crucial effect on

the stability of biped walking.

Our preference of using a ground contact signal instead of PEP or AEP

signals has also other reasons. In PEP/AEP-models, the movement pattern

of a leg will break down as soon as the AEP or PEP can not be reached,

which may happen as a consequence of an unexpected disturbance from the

environment or due to intrinsic failure. This can be catastrophic for a biped,

though tolerable for a hexapod due to its high degree of redundancy.

3.2 Neural circuit of the bottom level

In animals, a reflex is a local motor response to a local sensation. It is

triggered in response to a suprathreshold stimulus. The quickest reflex in

animals is the ”monosynaptic reflex”, in which the sensor neuron directly

contacts the motor-neuron. The bottom-level reflex system of our robot con-

sists of reflexes local to each joint (see figure 5). The neuron module for

one reflex is composed of one angle sensor neuron and the motor-neuron it

contacts (see figure 5). Each joint is equipped with two reflexes, extensor

reflex and flexor reflex, both are modelled as a monosynaptic reflex, that is,
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whenever its threshold is exceeded, the angle sensor neuron directly excites

the corresponding motor-neuron. This direct connection between angle sen-

sor neuron and motor-neuron is inspired by a reflex described in cockroach

locomotion (Beer et al., 1997). In addition, the motor-neurons of the local

reflexes also receive an excitatory synapse and an inhibitory synapse from

the inter-neurons of the top level, by which the top level can modulate the

bottom level reflexes.

Each joint has two angle sensor neurons, one for the extensor reflex, and

the other for the flexor reflex (see figure 5). Their models are similar to that

of the stretch receptors described above. The extensor angle sensor neuron

changes its output according to:

ρES = (1 + eαES(φ−ΘES))−1 (7)

where φ is the real time angular position obtained from the potentiometer

of the joint (see figure 1 B). ΘES is the threshold of the extensor reflex (see

figure 1 B) and αES a positive constant.

Likewise, the output of the flexor sensor neuron is modelled as:

ρFS = (1 + eαFS(ΘFS−φ))−1 (8)

with ΘFS and αFS similar as above.
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It should be particularly noted that the thresholds of the sensor neurons in

the reflex modules do not work as desired positions for joint control, because

our reflexive controller does not involve any exact position control algorithms

that would ensure that the joint positions converge to a desired value. In fact,

as will be shown in the next section, the joints often pass these thresholds in

swing- and stance phase, and begin their passive movement thereafter.

The model of the motor-neuron is the same as that of the inter-neurons

presented in 3.1.1. Note that, on this robot, the output value of the motor-

neurons, after multiplication by a gain coefficient, is sent to the servo ampli-

fier to directly drive the joint motor1. In this way, the neural dynamics are

directly coupled with the motor dynamics, and furthermore, with the biped

walking dynamics. Thus, the robot and its neural controller constitute a

1While we use motors to drive the robot, animals use muscles for walking. Muscles have

their own special properties that make them particularly suitable for walking behaviors,

for example, the ”preflex”, which refers to the nonlinear, passive visco-elastic properties

of the musculoskeletal system of animals (Brown and Loeb, 1999). Due to the physical

nature of the preflex, the system can respond to disturbances rapidly. In the next stage of

our work, we will build a Hill-type muscle model with RC motors. The motor-neurons of

our reflexive controller at the moment drive the motors directly. Then, in the next stage,

they will drive the muscle model directly, just like in animals.
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ΘEI ΘFI ΘEM ΘFM αES αFS

Hip Joints 5 5 5 5 4 1

Knee Joints 5 5 5 5 4 4

Table 2: Parameters of neurons for hip- and knee joints. For meaning of the

subscripts, see table 1.

ΘGL (v) ΘGR (v) ΘAL (deg) ΘAR (deg) αGL αGR αAL αAR

2 2 = ΘES = ΘES 4 4 4 4

Table 3: Parameters of stretch receptors and ground contact sensor neurons.

closely coupled neuro-mechanical system.

The voltage of joint motor is determined by

Motor V oltage = MAMP (gEMuEM + gFMuFM), (9)

where MAMP represents the magnitude of the servo amplifier, gEM and

gFM are output gains of the motor-neurons of the extensor- and flexor reflex

respectively, uEM and uFM are the outputs of the motor-neurons.
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Figure 6: Realtime data of one hip joint. (A) Hip joint angle. (B) Motor voltage

measured directly at the motor-neurons of the hip joint. During some times (the

gray areas), the motor voltage remains zero, and the hip joint moves passively.

4 Robot walking experiments

The model neuron parameters chosen jointly for all experiments are listed

in Table 2 and 3. Only the thresholds of the sensor neurons and the output

gain of the motor-neurons are changed in different experiments. The time

constants τi of all neurons take the same value of 5ms. The weights of all the

inhibitory connections are set to -10. The weights of all excitatory connec-

tions are 10, except those between inter-neurons and motor-neurons, which

are 0.1.
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Figure 7: Motor voltages of the four joints measured directly at the motor-neurons,

while the robot is walking: (A) left hip; (B) right hip; (C) left knee; (D) right knee.

Note that during some period of every gait cycle (gray area), all four motor voltages

remain zero, and all four joints (i.e., the whole robot) move passively (see figure 8).

24



We encourage readers to watch the video clips of the robot walking experi-

ments:

Walking fast on a flat floor, http://www.cn.stir.ac.uk/˜tgeng/robot/walkingfast.mpg

Walking with a medium speed, http://www.cn.stir.ac.uk/˜tgeng/robot/walkingmedium.mpg

Walking slowly http://www.cn.stir.ac.uk/˜tgeng/robot/walkingslow.mpg

Climbing a shallow slope, http://www.cn.stir.ac.uk/˜tgeng/robot/climbingslope.mpg

These videos can be viewed with Windows Media Player (www.microsoft.com)

or Realplayer (www.real.com).

4.1 Passive movements of the robot

In a walking experiment with specific parameters as given in table 4 the pas-

sive part of the movement of the robot is shown most clearly. (The sign of

gEM and gFM depends on the hardware configurations of the motors on the

left and right leg).

Figure 6 shows the motor voltage and the angular movement of one of its

hip joint while the robot is walking. During roughly more than half of every

gait cycle, the hip joint is moving passively.
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ΘES (deg) ΘFS (deg) gEM gFM

Hip Joints 115 70 ±2 ±2

Knee Joints 180 100 ±1.8 ±1.8

Table 4: Specific parameters for walking experiments.

As shown in figure 7, during some period of every gait cycle (e.g., grey

area in figure 7), the motor voltages of the motor-neurons on all four joints

remain zero, so all joints move passively until the swing leg touches the

ground (see figure 8). During this time, which is roughly one third of a

gait cycle (see figure 7 and figure 8), the movement of the whole robot is

exclusively under the control of ”physical computation” following its passive

dynamics; no feedback based active control acts on it. This demonstrates

very clearly how neurons and mechanical properties work together to generate

the whole gait trajectory. This is also analogous to what happens in animal

locomotion. Muscle control of animals usually exploits the natural dynamics

of their limbs. For instance, during the swing phase of the human walking

gait, the leg muscles first experience a power spike to begin leg swing and

then remain limp throughout the rest of the swing phase, similar to what

is shown in figure 8. Note that, in figure 8 and the corresponding stick
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Figure 8: A). A series of sequential frames of a walking gait cycle. The interval

between every two adjacent frames is 33 ms. Note that, during the time between

frame (10) and frame (15), which is nearly one third of the time length of a gait

cycle (corresponding to the grey area in figure 7), the robot is moving passively.

At the time of frame (15), the swing leg touches the floor and a new gait cycle

begins. (B). Stick diagram of the gait drawn from the frames in (A). The interval

between any two consecutive snapshots is 67 ms.
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diagrams of walking gait, we omitted the detailed movement of the curved

foot, in order to show clearly the leg-movements. The point on which the

stance leg stands is the orthographic projection of the mid-point of the foot

and not its exact ground-contact point.

Figure 9: Phase diagrams of hip joint position and knee joint position of one leg.

Robot speed: (A) 28cm/s; (B) 63cm/s. (C) A perturbed walking gait. For values

of the neuron parameters chosen in these experiments, see table 4. Note that the

hip joint angle in these figures is an absolute value, not the angle relative to the

robot body as shown in Fig. 1 B. (D) The walking speed is changed online.
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ΘES (deg) ΘFS (deg) gEM gFM

Low speed walking Hip Joints 120 70 ±1.4 ±1.3

see Fig. 9 A Knee Joints 180 100 ±1.5 ±1.5

High speed walking Hip Joints 110 85 ±2.5 ±2.5

see Fig. 9 B Knee Joints 180 100 ±1.8 ±1.8

Perturbed walking gait Hip Joints 115 90 ±2.5 ±2.5

see Fig. 9 C Knee Joints 180 100 ±1.5 ±1.5

Table 5: The different values of neuron parameters chosen to generate different

speeds (see figure 9).

4.2 Walking at different speeds and a perturbed gait

Walking speed of the robot can be changed easily by adjusting only the

thresholds of the reflex sensor neurons and the output gain of the motor-

neurons (see table 5). Figure 9 A and B show two phase plots of the hip and

knee joint positions, which were recorded while the robot was walking with

different speeds on a flat floor.

Figure 9 C shows a perturbed walking gait. The bulk of the trajectory

represents the normal orbit of the walking gait, while the few outlaying tra-
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jectories are caused by external disturbances induced by small obstacles such

as thin books (less than four percent of robot size) obstructing the robot

path. After a disturbance, the trajectory returns to its normal orbit soon,

demonstrating that the walking gaits are stable and to some degree robust

against external disturbances. Here robustness is defined as rapid conver-

gence to a steady state behavior despite unexpected perturbations (Lewis,

2001).

With neuron parameters changed in the cases of fast walking and slow

walking, walking dynamics are implicitly drawn into a different gait cycle

(see figure 9). Figure 9 D shows an experiment in which the neuron param-

eters are changed abruptly online while the robot is walking at a slow speed

(33cm/s, the big orbit). After a short transient stage (the outlaying trajec-

tories), the gait cycle of the robot is automatically transferred into another

stable, high-speed orbit (the small one, 57cm/s). In other words, when the

neuron parameters are changed, physical computation closely coupled with

neural computation can autonomously shift the system into another global

trajectory that is also dynamically stable. This experiment shows that our

biped robot, as a neuro-mechanical system, is stable in a relatively large

domain of its neuron parameters.
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With other real-time biped walking controllers based on biologically in-

spired mechanisms (e.g., CPG) or conventional trajectory preplanning and

tracking control, it is still a puzzling problem how to change its walking

speed on the fly and not undermine its dynamical stability at the same time.

However, this experiment shows that the walking speed of our robot can

be drastically changed (nearly doubled) on the fly while the stability is still

retained due to physical computation.

Figure 10: The robot is climbing a shallow slope. The interval between any two

consecutive snapshots is 67 ms.

4.3 Walking up a shallow slope

Figure 10 is a stick diagram of the robot when it is walking up a shallow slope

of about 4 degree. Steeper slopes could not be mastered. In figure 10, we

can see that, when the robot is climbing the slope, its step length is becom-

ing smaller, and the movement of its stance leg is becoming slower (its stick
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snapshots are becoming denser). Note that these adjustments of its gait take

place autonomously due to the robot’s physical properties (physical computa-

tion), not relying on any pre-planned trajectory or precise control mechanism.

This experiment demonstrates that such a closely coupled neuro-mechanical

system can to some degree autonomously adapt to an unstructured terrain.

5 Discussion and comparison with other walk-

ing control mechanisms

5.1 Minimal set of phasic feedbacks

The aim of locomotion control structures (modeled either with CPG or with

reflexive controllers) is to control the phase relations between limbs or joints,

attaining a stable phase locking that leads to a stable gait. Therefore, the

locomotion controller needs phasic feedback from the legs or joints. In the

case of reflexive controllers like Cruse’s model (Cruse et al., 1998), the phasic

feedback signals sent to the controller are AEP and PEP signals, which can

provide sufficient information on phase relations at least between adjacent

legs. It is according to this information that the reflexive controller adjusts
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the PEP value of the leg, thus effectively changing the period of the leg,

synchronizing it in, or out of phase with its adjacent legs (Klavins et al.,

2002). On the other hand, in the case of a CPG model, which can gen-

erate rhythmic movement patterns even without sensory feedback, it must

nonetheless be entrained to phasic feedback from the legs in order to achieve

realistic locomotion gaits. In some animals, evidence exists that every limb

involved in cyclic locomotion has its own CPG (Delcomyn, 1980), and phasic

feedback from muscles is indispensable to keep its CPGs in phase with the

real time movement of the limbs. Not surprisingly, CPG mechanisms used on

various locomotive robots also require phasic feedback. Lewis et al. (2003)

implemented a CPG oscillator circuit to control a simple biped. AEP and

PEP signals from its hip joints define the feedback to the CPG, resetting its

oscillator circuit. Removal of the AEP or PEP signals caused quick deteri-

oration of this biped’s gait. On another quadruped robot (Fukuoka et al.,

2003), instead of discrete AEP and PEP signals, continuous position signals

of the hip joints provide feedback to the neural oscillators of the CPG. The

neural oscillator parameters were tuned in such a way that the minimum and

maximum of the hip positions would reset the flexor- and extensor oscillator

respectively. Apparently, this scheme functions identically with AEP, PEP
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feedback.

In summary, because AEP and PEP provide sufficient information about

phase relations between legs, walking control structures usually depend on

them (or their equivalents) as phasic feedback from the legs. However, the

top level of the reflexive controller on our robot requires only AEA signals

as phasic feedback. Furthermore, this AEA signal is only for triggering the

flexor reflex on the knee joint of the robot, rather than triggering stance

phases as in other robots. In this sense, the role (and number) of the phasic

feedback signals is much reduced in our reflexive controller.

In spite of the fact that the AEA signal is by itself not sufficient to control

the phase relations between legs, stable walking gaits have appeared in our

robot walking experiments (see section 4). This is because reflexive controller

and physical computation cooperate to accomplish the task of phasic walking

gait control. This shows that physical computation can help to simplify the

controller structure.

As described above, CPGs have been successfully applied on some real-

time quadruped, hexapod and other multi-legged robots. However, in biped

walking control based on CPG models, most of the current studies are per-

formed with computer simulation, in which the stable biped walking gait
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emerges as a consequence of the interaction between CPG models and sim-

ulated biomechanics. To our knowledge, no one has successfully realized

real-time dynamic biped walking using a CPG model as a single controller,

because the CPG model itself can not ensure stability of the biped gait.

A considerably well-known biped robot controlled by a CPG chip has been

developed by Lewis et al. (2003). Its walking/running gaits looks very nice,

though on a treadmill instead of on a floor. But this biped robot has a fatally

weak point in that its hips are fixed on a boom (not rotating freely around

the boom axis as in our robot). So it is actually supported by the boom. The

boom is greatly facilitating its control, avoiding the most difficult problem

of dynamic stability control that is specific to biped robots. Thus, this robot

is indeed not a dynamic biped in its real sense. Instead, it is rather more

equivalent to one pair of legs of a multi-legged robot.

5.2 Physical computation and approximation

In contrast to exact representations and world models, physical computation

often implies approximation. Approximation in control mechanism gives

more room and possibility for physical computation. While conventional

robots rely on precise trajectory planning and tracking control, biologically
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inspired robots rarely use preplanned or explicitly computed trajectories. In-

stead, in general, they usually compute their movements approximately by

exploiting physical properties of their self and the world, thus avoiding the

accurate calibration and modeling required by conventional robotics. But,

in order to achieve real time walking gait in a real world, even these bi-

ological inspired robots often have to depend on some kinds of position-

or velocity control on their joints. For example, on a hexapod, simulating

the distributed locomotion control of insects (Beer et al., 1997), outputs of

motor-neurons were integrated to produce a trajectory of joint positions that

was tracked using proportional feedback position control. On a quadruped,

built by Kimura’s group, that implemented CPGs (neural oscillators) and

local reflexes, all joints are PD controlled to move to their desired angles

(Fukuoka et al., 2003). Even on a half passive biped, controlled by a CPG

chip, position control worked on its hip joints, though passive dynamics of

its knee joints was exploited for physical computation (Lewis, 2001).

The principle of approximation embodied in the reflexive controller of

our robot, however, goes even one step further, in the sense that, there is no

position or velocity control implemented on our robot. The neural structure

of our reflexive controller does not depend on, or ensure the tracking of,
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any desired position. Indeed, it is this approximate nature of our reflexive

controller that allows the physical properties of the robot itself, especially

the passive dynamics of the robot (see figure 8), to contribute implicitly to

generation of overall gait trajectories, and ensures its stability and robustness

to some extent. Just as argued by Raibert and Hodgins 1993, page 353, ”

Many researchers in neural motor control think of the nervous system as

a source of commands that are issued to the body as direct orders. We

believe that the mechanical system has a mind of its own, governed by the

physical structure and the laws of physics. Rather than issuing commands,

the nervous system can only make suggestions which are reconciled with the

physics of the system and the task.”

5.3 Conclusions

In this paper, we presented our design and some walking experiments per-

formed by a novel neuro-mechanical structure for reflexive walking control.

We demonstrated with a closely coupled neuro-mechanical system, how phys-

ical computation can be exploited to generate a dynamically stable biped

walking gait. In the experiment of walking with different speeds and climb-

ing a shallow slope, it was also shown that the coupled dynamics of this
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neuro-mechanical system are sufficient to induce an autonomous, albeit lim-

ited, adaptation of the gait.

While the biologically inspired model neurons used in our reflexive con-

troller retain some properties of real neurons, they do not include one of the

most significant features of neurons, namely synaptic plasticity. As has been

observed in human and animal locomotion, while walking gait generation

may be reflexive, stability control of walking behavior has to be predictive.

Although physical computation can assure autonomy and stability to some

extent, in order to get a stable walking gait in a wide parameter range, we

have to rely on the plasticity of the neural structure. In the near future,

we will apply proactive learning on this neuro-mechanical system (Porr and

Wörgötter, 2003). The basic idea is to use the waveform resulting from the

ground contact sensors to predict and thus avoid possible instabilities of the

next walking step.
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