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We present a fast and robust cluster update algorithm that is especially efficient in implementing the task of
image segmentation using the method of superparamagnetic clustering. We apply it to a Potts model with spin
interactions that are are defined by gray-scale differences within the image. Motivated by biological systems,
we introduce the concept of neural inhibition to the Potts model realization of the segmentation problem.
Including the inhibition term in the Hamiltonian results in enhanced contrast and thereby significantly im-
proves segmentation quality. As a second benefit we can, after equilibration, directly identify the image
segments as the clusters formed by the clustering algorithm. To construct a subsequent spin configuration the
algorithm performs the standard steps of~i! forming clusters and of~ii ! updating the spins in a cluster
simultaneously. As opposed to standard algorithms, however, we share the interaction energy between the two
steps. Thus, the update probabilities are not independent of the interaction energies. As a consequence, we
observe an acceleration of the relaxation by a factor of 10 compared to the Swendson and Wang@Phys. Rev.
Lett. 58, 86 ~1987!# procedure.

PACS number~s!: 05.50.1q, 87.15.Aa, 89.70.1c, 87.80.Xa
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The segmentation of images into connected areas or
jects is a formidable task and an important step in the proc
of recognition. Nature provides us with many examples
biological systems that solve this and other tasks relate
the recognition problem in highly efficient ways. Taken
such, the problem is ill-defined: one will distinguish differe
numbers of objects in a noisy picture depending on the le
of contrast and resolution. A physicist’s answer to the pr
lem has been presented by the method of ‘‘superparam
netic clustering of data’’@1,2#, where the pixels of an imag
are represented by a Potts model of spins which interac
such a way that neighboring spins corresponding to sim
pixels tend to align. Then the image segments~or objects!
may be identified as subsets or clusters of correlated spin
a given temperature. At high temperature one will find
disordered paramagnetic phase while, when lowering
temperature, superparamagnetic phases occur with clu
of aligned spins.

From a theoretical point of view any method of simula
ing a given spin system is equivalent as long as it prese
PRE 621063-651X/2000/62~2!/1461~4!/$15.00
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general concepts such as detailed balance. For practical
poses it is of course desirable to choose a method tha
efficient and best adapted to the model. Cluster update a
rithms are commonly used to to accelerate the equilibra
of large spin systems@3–5#. As opposed to single spin up
dates following a Metropolis procedure, these algorith
provide a method to update connected clusters of alig
spins simultaneously.

Our approach to the problem is twofold: On the one ha
we introduce to the spin model the concept of~i! global
inhibition, motivated by the analogy to neural visual syste
@6#, on the other hand~ii ! we have developed a cluster alg
rithm that utilizes the energy landscape, which underlies
equilibration process, in a more efficient way.

~i! The concept of global inhibition is found in many bio
logical neural networks and has successfully been app
also in neural computation@7#. We implement it by adding a
small global penalty for spins to align. It serves to ident
different clusters by different spin labels without the need
observe the spin correlations over a longer time period.
R1461 ©2000 The American Physical Society
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~ii ! In a cluster update algorithm the clusters are form
by ‘‘freezing’’ bonds between aligned spins with some pro
ability. Commonly the clusters are then updated indep
dently. We update the clusters taking into account also
interactions on bonds that were not frozen. In addition
inner surface of the larger clusters is reduced by incorpo
ing islands that they might contain. Both of our improv
ments are implemented while preserving detailed balan
As a result, we observe a significant increase in quality
speed.

Without loss of generality in the following we will use th
problem of segmenting an image into individual objects
an example to describe our approach. Specifically, give
picture in form of color~or gray-scale! valuesg1 , . . . ,gN on
the N sites of a finite two-dimensional~2D! lattice, we have
the clustering problem: find ‘‘objects’’ i.e., clusters of almo
the same color.

We define for each pair of nearest neighbors orbond( i , j )
on the lattice the distanceD i j 5ugi2gj u and the mean dis
tanceD̄ i j averaged over all bonds.

To perform the clustering task we assign a spin varia
s i to each sitei and for each bond (i , j ) an interaction
strength

Ji j 512D i j /D̄ i j . ~1!

With the normalization in Eq.~1! the color of sitesi , j is
assumed to be similar when the gray value distanceD i j is
smaller than the average. Then the interaction strengt
positive with a maximum value of 1 for equal color. W
implement the spin model in such a way that for neighbor
sites with similar color the spins have the tendency to ali
For this purpose we use aq-state Potts model with the
Hamiltonian

H52(
^ i , j &

Ji j ds is j
1

k

N (
i , j

ds is j
. ~2!

Here,^ i , j & denotes thati , j are nearest neighbors connect
by a bond (i , j ) and d i j is the Kroneckerd function. The
second term is introduced in analogy to neural syste
where it is generally called ‘‘global inhibition.’’ It serves t
favor different spin values for spins in different clusters,
explained below. This is a concept realized in many neu
systems that perform recognition tasks. The segmenta
problem is then solved by finding clusters of correlated sp
in the low temperature equilibrium states of the Hamilton
H.

We perform this task by implementing a clustering alg
rithm: In a first step the ‘‘satisfied’’ bonds, i.e., those th
connect nearest neighbor pairs of identical spinss i5s j , are
identified. The satisfied bonds (i , j ) are then ‘‘frozen’’ with
some probabilitypi j .

Sites connected by frozen bonds define the clusters. E
cluster is then updated by assigning to all spins inside
cluster the same new value. Commonly this is done indep
dently for each cluster@3#. In that sense the external bond
connecting the clusters are ‘‘deleted.’’ Here, we use a m
general cluster algorithm. When choosing a new spin c
figuration we take these bonds into account. To preserve
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tailed balance, we adjust the bond freezing probabilitiespi j
and the interaction on the external bonds.

Our cluster update algorithm, which we call energ
sharing cluster update~ECU! is divided in two basic steps
Similar to the Swendson and Wang cluster algorithm@3#,
also in our approach the temperature remains fixed and
annealing takes place between the iterations.

~1a! As for any cluster update we first identify thesatis-
fied bonds (i , j ) with s i5s j and freeze these with probabi
ity

pi j
(1)512e2bqi j

(1)Ei j ,

whenJi , j.0 andEi j 5Ji j ds is j
. Here 1/b5kBT is the prod-

uct of the Boltzmann constantkB and temperatureT.
The additional coefficients

qi j
(1)5H a (1) if ~ i , j ! is a bond

0 else

with a (1)<1 allow us to ‘‘share’’ the interaction energy wit
the following additional steps. If one choosesa (1)51, then
one obtains the usual Swendson-Wang clusters, which
then be updated independently.

~1b! In an intermediate step we identify ‘‘invisible’’ is-
lands, i.e., clusters according to step~1a! that have a bound-
ary only withoneother cluster and have the same spin val
These islands often delay the spin flip of the larger cluste
step~2! as their total boundary may be large. For this reas
we want to remove them with some finite probability. Th
step is not indispensable for our algorithm but it further im
proves its performance. We freeze the bonds between
island and the surrounding cluster with probability

pi j
(2)512e2bqi j

(2)Ei j ,

whereqi j
(2)5a (2) if ( i , j ) is a bond connecting an island wit

a surrounding cluster after step~1! and otherwiseqi j
(2)50.

We impose the conditiona (1)1a (2)<1. Note that we do not
increase the bond freezing probability beyond the Swends
Wang probability and no size limit for the islands is implie

~2! Finally we identify the clustersc1 , . . . ,ck of spins
connected by frozen bonds after steps~1a! and~1b!. On this
system of clusters that in similar approaches is referred to
a hyperlattice@8# we perform a Metropolis update that up
dates all spins in each cluster simultaneously to a comm
new label. The Metropolis rate is calculated using the mo
fied Hamiltonian

H̃~s!52(
^ i , j &

qi j
(0)Ji , jds is j

1
k

N (
i , j

ds is j
. ~3!

As has been shown on general grounds in@9# detailed bal-
ance is preserved under the condition that in the modi
Hamiltonian one usesqi j

(0)1qi j
(1)1qi j

(2)51. This amounts to
sharing the interaction energy between the clustering and
dating steps. Note that the inhibition term in Eq.~3! does not
enter the bond freezing probabilities. For the cluster upda
has the effect of favoring a different spin value for ea
cluster.



e

-

o-
F
ti
te

d
th
a

e

he
hi
fi

on

is

ling

of

are
-
nted
is

e is
as
ed
and
e is
te
ex-
of

te
e

ar-

ch
he

er

pa

o

o

RAPID COMMUNICATIONS

PRE 62 R1463CLUSTER UPDATE ALGORITHM AND RECOGNITION
We have tested the performance of the proposed segm
tation method based on the HamiltonianH in Eq. ~2! with a
finite inhibition of k50.2 in combination with the ECU clus
ter update algorithm with energy sharing parametersa (1)

5a (2)50.5. In our experience the efficiency of the alg
rithm does not depend sensitively on these parameters.
ther refinements may be added to improve the segmenta
delivered by the ECU algorithm to cope with more delica
recognition problems@10#. We have compared the algorithm
to the performance of other known segmentation metho
As methods of reference we have used in particular
method of simulated annealing and the method of superp
magnetic clustering@1# without inhibition ~k50! using the
standard Swendson and Wang~SW! update. In addition we
have tested a variant of the SW update that allows to fre
antiferromagnetic bonds (i , j ) whenJi j ,0.

An example that illustrates the different solutions to t
segmentation problem is shown in Fig. 1. Let us explain t
comparison in some detail. The gray scale values that de
the interactionsJi j according to Eq.~1! are taken from Fig.
1~a!. Some noise is included in this input. All segmentati
methods that we consider useq510 state spin variabless i

FIG. 1. Comparison of different segmentation methods. As
rameters we useN51283128 and q510 ~states of the Potts
model!. ~a! The input image for all simulations consists of tw
rectangles with gray valuesgi

0572,152 and a one pixel thin line
surrounding them withgi

05112. Noise is addedgi5gi
01j i that is

equally distributed:j i5212..12.~b! The initial random configura-
tion. ~c! and ~d! Configurations of a local update algorithm~Me-
tropolis: ‘‘Gibbs-Sampler’’! at different iterations.~e! Configura-
tions of the SW cluster update algorithm.~f! Configurations of the
SW cluster update using antiferromagnetic clustering.~g! Configu-
rations of the ECU-algorithm including inhibitionk50.2. ~h! The
relative energy of the spin-lattice as a function of the number
iteration steps for the different algorithms in~c!, ~f!, and ~g! at
kBT50.2.
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51, . . .,10. A random initial configuration of the spins
shown in terms of a gray scale picture in Fig. 1~b!. As a first
reference we show the sequence of a simulated annea
procedure in Figs. 1~c! and 1~d!. Here, the HamiltonianH in
Eq. ~2! with k50 is used to define the Metropolis rate
local spin updates@11,12#. After each sweep ofN spin up-
dates the temperature is lowered by a constant factorl @13#.
We started with a temperaturekBT051.0 and lowered by
l50.999 92 in Fig. 1~c! and l50.8 in Fig. 1~d! for each
sweep. The spin configurations at intermediate steps
shown in Figs. 1~c! and 1~d!. In the slower annealing proce
dure the two large rectangles in the image are segme
according to the original picture, while the finer structure
not recognized by this algorithm. When the faster schedul
applied as in Fig. 1~d! then even the larger connected are
are divided into artificial segments. Obviously the simulat
annealing method is inefficient for the segmentation task
due to slowing down at low temperatures the local updat
very time consuming. Even optimizing the annealing ra
during the schedule cannot change this picture as an
tremely slow rate is needed to indentify the fine structure
the thin border line.

In Figs. 1~e!–1~g! we compare different cluster upda
algorithms that avoid the problem of slowing down and w
test the influence of the inhibition term and the energy sh
ing that are included only in Fig. 1~g!. Comparing the series
of spin configurations in Figs. 1~e! and 1~g! one notices that

FIG. 2. Applications of the ECU segmentation method. For ea
picture ~a!–~c! the input image and the segmention result of t
q-state Potts model afterk iterations is shown.~b! shows an inter-
mediate,~a! and ~c! show the final result of segmentation aft
equilibration. ~a! Moose in the morning fog.q510, k540. ~b!
Front of a car. The task is to identify the license plate.q510, k
512. ~c! NMR-image of the human brain.q520, k565.
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the inhibition term in Fig. 1~g! indeed introduces a force
contrast between different segments as compared to 1~e!, in
particular atkBT50.25 andkBT50.2. Also the increase in
speed is remarkable.

In Fig. 1~f! we test a cluster update algorithm@14,15# that
includes antiferromagnetic clustering where in the cluster
step~1a! antiferromagnetic bonds withJi j ,0 ands iÞs j are
frozen with probabilitypi j 512exp@bJij#. The clusters de-
fined by ferro- and antiferromagnetic bonds are upda
while preservings i5s j on the ferromagnetic ands iÞs j on
the antiferromagnetic bonds. This method introduces a
tional contrast between areas of different input color, bu
fails at low temperature where artifacts are generated du
the noise in the input. The convergence characteristic of
different algorithms is shown in Fig. 1~h!, where the energy
of the spin-lattice is plotted as a function of time at fix
temperature. The relaxation time of the ECU-algorithm
about ten times faster than that of the other algorithms.

Let us note that the only parameters that enter our s
mentation method are the factors of proportionalitya (1),a (2)

that determine the share of energy for the bond freezing s
and the inhibition strengthk. Mainly the a-parameters are
relevant for the efficiency of the segmentation, whilek in-
droduces some contrast to the representation of the clu
in terms of spin values. We have not attempted to optim
the choice of the parameters to speed the segmentatio
Fig. 1~a!. Rather, we are interested in a general purpose
gorithm and we have successfully tested the robustnes
the ECU segmentation with the present choice of parame
for many different pictures. To demonstrate this robustn
we show three examples in Fig. 2. Despite the bad qualit
the input a usable segmentation was found within a sm
number of iterations. A seemingly continuous gray sc
background in Fig. 2~a! is segmented into only few cluster
identifying the foreground character. In Fig. 2~b! we illus-
trate that for practical purposes, in this case detection of
license plate, even an intermediate iteration step, herek512,
may be used without need to wait for equilibration~at k
'30). Figure 2~c! shows the quality of segmentation for
highly complicated picture.
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Data clustering becomes tremendously complicated w
the intrinsic correlation between the data points which
long to the same cluster is small. A situation like this alwa
occurs if the clusters extend into a thin, threadlike shape
an almost fractal structure, for example, when dealing w
images of biomolecules, polymers, or stellar structures. T
ECU makes better use of the energy landscape which un
lies the clustering problem bysharing energybetween the
bond-freezing and the spin-update steps of the algorit
The additionally introduced global inhibition enhances co
trast. As a consequence the quality of the results impro
and, most notably, energy sharing leads to an acceleratio
the segmentation by about a factor of 10@Fig. 1~h!#.

In the course of development of the modern cluster upd
algorithms similar ideas have been proposed on someti
more general grounds. Kandel and Domany@8# lay out how
to preserve detailed balance for a broad class of algorith
and they show how several other proposed update vari
@4# may be rephrased to comply with this. The ECU alg
rithm is also embedded in this framework. Niedermayer@7#
shows that in the clustering step~1a! any functionpi j

(1)(Ei j )
can be used in principle, but proposes for practical purpo
to applypi j

(1)512exp@2b(Eij2E0)# with some appropriately
chosenE0. With this choice the contribution of the nonfro
zen bonds to the update is clipped atE0. In our case we share
the energies in a proportional way between the clustering
update steps. The alignment of clusters is thus enhance
also including the stronger bonds with higher energy conte

In summary, the recognition task of segmenting an ima
may be performed with high efficiency by a simple clus
update algorithm if global inhibition is implemented. Fu
thermore, we believe that our cluster update approach m
also be useful for the simulation of other spin models as
efficiency is not dependent on the special properties of
Potts model we use here.
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