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We present a fast and robust cluster update algorithm that is especially efficient in implementing the task of
image segmentation using the method of superparamagnetic clustering. We apply it to a Potts model with spin
interactions that are are defined by gray-scale differences within the image. Motivated by biological systems,
we introduce the concept of neural inhibition to the Potts model realization of the segmentation problem.
Including the inhibition term in the Hamiltonian results in enhanced contrast and thereby significantly im-
proves segmentation quality. As a second benefit we can, after equilibration, directly identify the image
segments as the clusters formed by the clustering algorithm. To construct a subsequent spin configuration the
algorithm performs the standard steps (of forming clusters and ofii) updating the spins in a cluster
simultaneously. As opposed to standard algorithms, however, we share the interaction energy between the two
steps. Thus, the update probabilities are not independent of the interaction energies. As a consequence, we
observe an acceleration of the relaxation by a factor of 10 compared to the Swendson anPiandrev.

Lett. 58, 86 (1987)] procedure.

PACS numbd(s): 05.50+q, 87.15.Aa, 89.70:c, 87.80.Xa

The segmentation of images into connected areas or olgeneral concepts such as detailed balance. For practical pur-
jects is a formidable task and an important step in the procegsoses it is of course desirable to choose a method that is
of recognition. Nature provides us with many examples ofefficient and best adapted to the model. Cluster update algo-
biological systems that solve this and other tasks related tathms are commonly used to to accelerate the equilibration
the recognition problem in highly efficient ways. Taken asof large spin systemg3—5]. As opposed to single spin up-
such, the problem is ill-defined: one will distinguish different dates following a Metropolis procedure, these algorithms
numbers of objects in a noisy picture depending on the levebrovide a method to update connected clusters of aligned
of contrast and resolution. A physicist's answer to the prob-spins simultaneously.
lem has been presented by the method of “superparamag- Our approach to the problem is twofold: On the one hand
netic clustering of datal1,2], where the pixels of an image we introduce to the spin model the concept (df global
are represented by a Potts model of spins which interact imhibition, motivated by the analogy to neural visual systems
such a way that neighboring spins corresponding to similaf6], on the other handi) we have developed a cluster algo-
pixels tend to align. Then the image segmefus objects  rithm that utilizes the energy landscape, which underlies the
may be identified as subsets or clusters of correlated spins atjuilibration process, in a more efficient way.

a given temperature. At high temperature one will find a (i) The concept of global inhibition is found in many bio-
disordered paramagnetic phase while, when lowering théogical neural networks and has successfully been applied
temperature, superparamagnetic phases occur with clusteaso in neural computatiofY]. We implement it by adding a

of aligned spins. small global penalty for spins to align. It serves to identify

From a theoretical point of view any method of simulat- different clusters by different spin labels without the need to
ing a given spin system is equivalent as long as it preservesbserve the spin correlations over a longer time period.
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(ii) In a cluster update algorithm the clusters are formedailed balance, we adjust the bond freezing probabilitigs
by “freezing” bonds between aligned spins with some prob-and the interaction on the external bonds.
ability. Commonly the clusters are then updated indepen- Our cluster update algorithm, which we call energy-
dently. We update the clusters taking into account also theharing cluster updaté€ECU) is divided in two basic steps.
interactions on bonds that were not frozen. In addition theSimilar to the Swendson and Wang cluster algoritfBi
inner surface of the larger clusters is reduced by incorporatalso in our approach the temperature remains fixed and no
ing islands that they might contain. Both of our improve- annealing takes place between the iterations.
ments are implemented while preserving detailed balance. (18 As for any cluster update we first identify tisatis-
As a result, we observe a significant increase in quality andied bonds (,j) with o;=0c; and freeze these with probabil-

speed. ity
Without loss of generality in the following we will use the
problem of segmenting an image into individual objects as pi(jl)zl_e—ﬁqi(jl)ai,
an example to describe our approach. Specifically, given a
picture in form of color(or gray-scalgvaluesgy, ..., gy On  whenJ; ;>0 andE; =Jij3y,,,- Here 18=kgT is the prod-

the N sites of a finite two-dimension&RD) lattice, we have
the clustering problem: find “objects” i.e., clusters of almost
the same color.

We define for each pair of nearest neighborband(i, ) a® if (i,j) isabond
on the lattice the distanc&;;=|g;—g;| and the mean dis- qi(jl):

tanceA;; averaged over all bonds.

To perform the clustering task we assign a spin variable‘\Nith w
o, to each sitei and for each bondi(j) an interaction
strength

uct of the Boltzmann constaki; and temperatur@.
The additional coefficients

0 else

(<1 allow us to “share” the interaction energy with
the following additional steps. If one chooseS"=1, then
one obtains the usual Swendson-Wang clusters, which may
_ then be updated independently.

Jij=1-A4/4y. 1) (1b) In an intermediate step we identify “invisible” is-

lands, i.e., clusters according to std@) that have a bound-

With the normalization in Eq(1) the color of sites,j is  ary only withoneother cluster and have the same spin value.
assumed to be similar when the gray value distafigeis  These islands often delay the spin flip of the larger cluster in
smaller than the average. Then the interaction strength istep(2) as their total boundary may be large. For this reason
positive with a maximum value of 1 for equal color. We we want to remove them with some finite probability. This
implement the spin model in such a way that for neighboringstep is not indispensable for our algorithm but it further im-
sites with similar color the spins have the tendency to alignproves its performance. We freeze the bonds between an
For this purpose we use @state Potts model with the island and the surrounding cluster with probability
Hamiltonian
=1,

> 3,

= ooy @ \whereq®=a? if (i,j) is a bond connecting an island with

1
a surrodnding cluster after stdf) and otherwiseqi(jz)=0.
Here,(i,j) denotes that,j are nearest neighbors connected e impose the condition")+ a!?<1. Note that we do not
by a bond {,j) and &; is the Kroneckers function. The increase the b_(_)nd freezmg_ pro_ba_blllty bey_ond the_S\_Nen_dson-
second term is introduced in analogy to neural systems\,’va“g probablllty qnd no size limit for the islands is |m.pI|ed.
where it is generally called “global inhibition.” It serves to ~ (2) Finally we identify the clusters,, ... c, of spins
favor different spin values for spins in different clusters, asconnected by frozen bonds after stepa) and(1b). On this
explained below. This is a concept realized in many neurapystem of c_:lusters that in similar approaqhes is referred to as
systems that perform recognition tasks. The segmentatiof NYpPerlattice{8] we perform a Metropolis update that up-
problem is then solved by finding clusters of correlated spinglates all spins in each cluster simultaneously to a common

in the low temperature equilibrium states of the Hamiltonian€W label. The Metropolis rate is calculated using the modi-

Z| =

H: _2 Jij5g_g,+
({5 t

H. fied Hamiltonian

We perform this task by implementing a clustering algo-
rithm: In a first step the “satisfied” bonds, i.e., those that (o) = — 03 s +£ 5 3
connect nearest neighbor pairs of identical spips o, are (o) <|El> i1 o0 TN .EJ iy ©
identified. The satisfied bonds,|) are then “frozen” with
some probabilityp;; . As has been shown on general ground$9hdetailed bal-

Sites connected by frozen bonds define the clusters. Eagmnce is preserved under the condition that in the modified
cluster is then updated by assigning to all spins inside thélamiltonian one useq”+q{"”+q{?=1. This amounts to
cluster the same new value. Commonly this is done indepersharing the interaction energy between the clustering and up-
dently for each clustef3]. In that sense the external bonds dating steps. Note that the inhibition term in E8) does not
connecting the clusters are “deleted.” Here, we use a morenter the bond freezing probabilities. For the cluster update it
general cluster algorithm. When choosing a new spin conhas the effect of favoring a different spin value for each

figuration we take these bonds into account. To preserve deluster.
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FIG. 1. Comparison of different segmentation methods. As pa- Original Image Segmented Image

rameters we uséN=128x<128 andq=10 (states of the Potts FIG. 2. Applications of the ECU segmentation method. For each
mode). (&) The input |mage for all simulations consists of two pictyre (a)—(c) the input image and the segmention result of the
rectangles with gray V%|UG§ 72,152 and a one plxel thin line o state Potts model aftériterations is shown(b) shows an inter-
surrounding them witig?=112. Noise is added;=g’+ £ thatis  mediate, (@) and (c) show the final result of segmentation after
equally distributedé;= —12..12.(b) The initial random configura- equilibration. (8) Moose in the morning fogq= 10, k=40. (b)
tion. (c) and (d) Configurations of a local update algorithfWe-  Front of a car. The task is to identify the license plaje: 10, k

tropolis: “Gibbs-Sampler) at different iterations(e) Configura-  —12 (¢) NMR-image of the human braim= 20, k= 65.
tions of the SW cluster update algorithifi) Configurations of the

SW cluster update using antiferromagnetic clusterigy Configu- _ - ) . _
rations of the ECU-algorithm including inhibitior=0.2. (h) The =1,...,10. A random initial configuration of the spins is

relative energy of the spin-lattice as a function of the number ofSNOWN in terms of a gray scale picture in FigblL As a first
iteration steps for the different algorithms i), (f), and (g) at  reference we show the sequence of a simulated annealing

ksT=0.2. procedure in Figs. (t) and Xd). Here, the Hamiltonia in
Eq. (2) with k=0 is used to define the Metropolis rate of
We have tested the performance of the proposed segmelocal spin update$ll,17. After each sweep oN spin up-
tation method based on the Hamiltonidnn Eq. (2) with a  dates the temperature is lowered by a constant fac{as].
finite inhibition of k=0.2 in combination with the ECU clus- We started with a temperatutgTo=1.0 and lowered by
ter update algorithm with energy sharing parametefs A=0.99992 in Fig. {c) and A=0.8 in Fig. 1d) for each
2)=0.5. In our experience the efficiency of the algo- sweep. The spin configurations at intermediate steps are
rithm does not depend sensitively on these parameters. Fushown in Figs. {c) and 1d). In the slower annealing proce-
ther refinements may be added to improve the segmentatiature the two large rectangles in the image are segmented
delivered by the ECU algorithm to cope with more delicateaccording to the original picture, while the finer structure is
recognition problem§10]. We have compared the algorithm not recognized by this algorithm. When the faster schedule is
to the performance of other known segmentation methodsapplied as in Fig. @) then even the larger connected areas
As methods of reference we have used in particular thare divided into artificial segments. Obviously the simulated
method of simulated annealing and the method of superparannealing method is inefficient for the segmentation task and
magnetic clustering1] without inhibition (k=0) using the  due to slowing down at low temperatures the local update is
standard Swendson and Wa(f\\) update. In addition we very time consuming. Even optimizing the annealing rate
have tested a variant of the SW update that allows to freezduring the schedule cannot change this picture as an ex-
antiferromagnetic bonds ) whenJ;;<0. tremely slow rate is needed to indentify the fine structure of
An example that illustrates the dlfferent solutions to thethe thin border line.
segmentation problem is shown in Fig. 1. Let us explain this In Figs. Xe)—1(g) we compare different cluster update
comparison in some detail. The gray scale values that definglgorithms that avoid the problem of slowing down and we
the interactions);; according to Eq(1) are taken from Fig. test the influence of the inhibition term and the energy shar-
1(a). Some noise is included in this input. All segmentationing that are included only in Fig.(d). Comparing the series
methods that we consider uge=10 state spin variables; of spin configurations in Figs.(&) and 1g) one notices that
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the inhibition term in Fig. {g) indeed introduces a forced Data clustering becomes tremendously complicated when
contrast between different segments as comparede it the intrinsic correlation between the data points which be-
particular atkgT=0.25 andkgT=0.2. Also the increase in long to the same cluster is small. A situation like this always
speed is remarkable. occurs if the clusters extend into a thin, threadlike shape or
In Fig. 1(f) we test a cluster update algoritiité,15 that  an almost fractal structure, for example, when dealing with
includes antiferromagnetic clustering where in the cIusteringmages of biomolecules, polymers, or stellar structures. The
step(1a) antiferromagnetic bonds with; <0 ando;# oj are  ECU makes better use of the energy landscape which under-
frozen with probabilityp;; =1—exdBJ;]. The clusters de- jies the clustering problem bgharing energybetween the
fined by ferro- and antiferromagnetic bonds are Update‘ﬂ)ond-freezing and the spin-update steps of the algorithm.

while preservingr; = o on the ferromagnetic ang; # o 0N The additionally introduced global inhibition enhances con-
the antiferromagnetic bonds. This method introduces add‘t'rast. As a consequence the quality of the results improves

tional contrast between areas of different input color, but 'tand, most notably, energy sharing leads to an acceleration of

fails at low temperature where artifacts are generated due tt?]e segmentation by about a factor of [Rg. 1(h)]
the noise in the input. The convergence characteristic of the In the course of development of the mod'ern cl'uster update

different algorithms is shown in Fig.(i), where the energy : U :
of the spin-lattice is plotted as a function of time at fixed algorithms similar ideas have been proposed on sometimes
more general grounds. Kandel and Dom&8y/lay out how

temperature. The relaxation time of the ECU-algorithm is X s
about ten times faster than that of the other algorithms. to preserve detailed balance for a broad class of algorithms

Let us note that the only parameters that enter our se and they show how several other propo_sed update variants
mentation method are the factors of proportionadify,«(? 4] may be rephrased to comply with this. The ECU algo-
that determine the share of energy for the bond freezing stegéhm is also embedded in this framework. Niedermaly&r
and the inhibition strengtix. Mainly the a-parameters are shows that in the clustering stépa) any functionp|"(E;;)
relevant for the efficiency of the segmentation, whidén- ~ can be used in principle, but proposes for practical purposes
droduces some contrast to the representation of the clustets applypi(jl)=1—exr[—ﬂ(Eij—Eo)] with some appropriately
in terms of spin values. We have not attempted to optimize&hosenE,. With this choice the contribution of the nonfro-
the choice of the parameters to speed the segmentation gén bonds to the update is clippedzat In our case we share
Fig. 1(a). Rather, we are interested in a general purpose akhe energies in a proportional way between the clustering and
gorithm and we have successfully tested the robustness @hdate steps. The alignment of clusters is thus enhanced by
the ECU segmentation with the present choice of parametetgsg including the stronger bonds with higher energy content.
for many different pictures. T_o demonst_rate this robust_ness In summary, the recognition task of segmenting an image
we show three examples in Fig. 2. Despite the bad quality ofyay e performed with high efficiency by a simple cluster
the input a usable segmentation was found within & smallsqate algorithm if global inhibition is implemented. Fur-
number of iterations. A seemingly continuous gray scal§permore, we believe that our cluster update approach may
background in Fig. @) is segmented into only few clusters 44 pe useful for the simulation of other spin models as its

identifying the foreground character. In Figtb we illus-  efficiency is not dependent on the special properties of the
trate that for practical purposes, in this case detection of thgyits model we use here.

license plate, even an intermediate iteration step, kerg2,

may be used without need to wait for equilibrati¢at k The authors acknowledge the support of the Deutsche
~30). Figure 2c) shows the quality of segmentation for a Forschungsgemeinschaft, F.W. by Grant No. SFB509 and
highly complicated picture. C.v.F. by Grant No. SFB237.
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