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Abstract
A long-standing problem is how memories can be stored for very long times despite the vol-

atility of the underlying neural substrate, most notably the high turnover of dendritic spines

and synapses. To address this problem, here we are using a generic and simple probabilis-

tic model for the creation and removal of synapses. We show that information can be stored

for several months when utilizing the intrinsic dynamics of multi-synapse connections. In

such systems, single synapses can still show high turnover, which enables fast learning of

new information, but this will not perturb prior stored information (slow forgetting), which is

represented by the compound state of the connections. The model matches the time course

of recent experimental spine data during learning and memory in mice supporting the

assumption of multi-synapse connections as the basis for long-term storage.

Author Summary

It is widely believed that information is stored in the connectivity, i.e. the synapses of neu-
ral networks. Yet, the morphological correlates of excitatory synapses, the dendritic spines,
have been found to undergo a remarkable turnover on daily basis. This poses the question,
how information can be retained on such a variable substrate. In this study, using connec-
tions with multiple synapses, we show that connections which follow the experimentally
measured bimodal distribution in the number of synapses can store information orders of
magnitude longer than the lifetime of a single synapse. This is a consequence of the under-
lying bistable collective dynamic of multiple synapses: Single synapses can appear and dis-
appear without disturbing the memory as a whole. Furthermore, increasing or decreasing
neural activity changes the distribution of the number of synapses of multi-synaptic con-
nections such that only one of the peaks remains. This leads to a desirable property: infor-
mation about these altered activities can be stored much faster than it is forgotten.
Remarkably, the resulting model dynamics match recent experimental data investigating
the long-term effect of learning on the dynamics of dendritic spines.
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Introduction
Learning and memory in neuronal networks is commonly attributed to changes in the connec-
tivity, i.e. the number of synapses between neurons and their transmission efficacy [1–3],
which are then consolidated to form long lasting memories [2, 4–6]. The majority of the excit-
atory cortical synapses resides on dendritic spines [7]. Thus, very likely they contribute much
to these phenomena.

One central problem here is the apparent contradiction between the facts that memories are
often stable over very long times, while the underlying neural substrate—most notably the syn-
aptic spine structure—undergoes constant changes.

Experiments reveal that even under control conditions, more than 5% of the spines are
exchanged every day [8–13]. This turnover increases during learning (e.g, motor learning [11,
12]), sensory deprivation [13] or environmental enrichment [12].

Intriguingly, although learning triggers increased turnover, repeated learning of the same
task—even after long intervals—does not. The missing need for restructuring during the
repeated training has been attributed to structural changes that had persisted from the previous
training, and this, in turn, has been interpreted as a long-lasting memory trace [11–13]. This
trace can be acquired during a few days of training, but maintained for several months, which
indicates different time scales for learning and forgetting. However, the majority of the spines
formed during learning vanishes a few days after training and only very small proportions may
persist for the survival duration of the memory trace. Thus, it seems more reasonable that the
collective properties of the pool of synapses, rather then any momentarily existing connectivity
configuration, have to account for learning and memory formation.

Several such properties have been found, such as the abundance of two- or three-neuron
microcircuits [14, 15] or the characteristic distribution of the number of synapses between two
neurons, which shows a large peak at zero synapses and another smaller peak at multiple syn-
apses [16–20]. Theoretical results suggest that such bimodal distributions emerge from the col-
lective dynamics of multiple synapses [21].

One possibility to obtain this collective dynamics is to establish a positive feedback between
the number of synapses and synapse stability. For this, however, each synapse has to sense the
number of synapses from the same presynaptic neuron. It has been shown theoretically that
the postsynaptic activity, which can be accessed by each synapse, provides sufficient informa-
tion [22, 23]. However, only a complex non-linear interaction between structural and synaptic
plasticity, i.e. between the number of synapses, the postsynaptic activity, the synaptic weights,
and synapse stability, gives rise to the observed bimodal distributions [22, 23]. For this, synap-
tic plasticity rules must be sensitive to either correlations of pre- and postsynaptic firing [22] or
to the postsynaptic firing rates [23].

A systematic variation of the neural activity in such systems reveals that the bimodal distri-
bution emerges from a hysteresis in the creation and deletion of synapses [23]. The existence of
such a hysteresis could be used to store information [23–29].

Considering these results, here, we abstract this collective dynamics by using a theoretical
model in which the stability of synapses directly depends on the actual number of synapses.
We demonstrate that storing information in the collective dynamics of multiple synapses can
resolve the contradiction between memory duration and structural/synaptic volatility. Further-
more, we show that especially bimodal synapse distributions correspond to a bistability in the
number of synapses which enables prolonged information storage. These bistable systems
allow fluctuations of the actual number of synapses within certain limits which keeps the struc-
ture flexible and leads to the intriguing additional effect that learning is orders of magnitude
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faster than forgetting. Recent experimental data on the dynamics of spines [11] can, therefore,
naturally be explained by this model.

Results
In neural systems information storage is commonly attributed to the connectivity based on
synapses. Experiments reveal that a connection between two neurons can consist of multiple
synapses—in the following named compound-connection. In this study we define a compound-
connection between two neurons by two numbers: the number of potential synapses N, which
accounts for the morphologies for the two connected neurons [23, 30, 31], and the number of
realized synapses S, which are those potential synapses that actually host a functional contact.
To mimic the turnover dynamics of dendritic spines from experiments, synapses are created
and removed stochastically: New synapses are formed with a constant probability rate b at each
of the potential (but not yet realized) synapses. Realized synapses are removed with a probabil-
ity rate dI[S], which depends on the number of realized synapses S and the current stimulation
condition I (Fig 1A).

The dynamics of these processes can be described by a Markov process [22, 23]. Previous
work, investigating their interaction with synaptic plasticity, shows that the stationary distribu-
tions of the number of synapses strongly depends on the stimulation and the resulting activity
of the pre- and postsynaptic neuron (Fig 1C, [23]). In the current study, we abstract this to
three characteristic activities, the so called stimulation conditions I, yielding three qualitatively
different stationary synapse distributions pI[S] (Fig 1B): low-stimulation induces a low proba-
bility to form synapses and, therefore, leads to a unimodal distribution with peak at zero synap-
ses, high-stimulation forms compound-connections consisting of mostly multiple synapses,
and medium level stimulation, here called the working-point-condition (Fig 1D), leads to the

Fig 1. Model structure and the stationary distributions for different conditions. (A) Structure of the model: Each compound-connection consists of a
number of potential synapses N and a number of realized synapses S� N. Each realized synapse can be deleted with probability rate dI[S] and, as long as S
6¼N, new synapses can be formed with constant probability rate b. (B) The dynamics of the model reveals three characteristic stationary distributions of
synapses p[S] given different stimulation conditions I 2 flow; working� point; highg (low: left;working-point (wp): middle; high: right). (C) The stationary
distributions (color code) emerge from the interaction of structural and synaptic plasticity when varying the stimulation (Figure adapted from [23]). Black line:
theoretical positions of distribution maxima (solid) and minima (dashed). (D) Thewp-stationary distribution consists of a weighted sum of the high- and low-
distributions with weighting factorsC and 1 − C. The high-distribution (brown) is modeled by a Gaussian distribution with mean μ and standard deviation σ,
the low-distribution (black) by a Poisson distribution with mean and variance λ. Influence of distribution parameters is sketched schematically.

doi:10.1371/journal.pcbi.1004684.g001
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working-point-(wp-)distribution, which is bimodal such as those found in many experimental
studies [16–20]. Related to these findings, this is assumed to be the basic synaptic distribution
to which compound connections converge at resting (medium) activity. Thus, low-stimulation
corresponds to an—on average—reduced neuronal activity (possibly via inhibition) and high-
stimulation to an excitatory input (possibly via external stimulation).

However, here, instead of modelling neural activity explicitly, these stationary distributions
are more easily obtained by adjusting the deletion probabilities dI[S] to render the different
stimulation cases (see Models and Methods). This implementation yields bistable dynamics for
the number of synapses under wp-conditions but only one stable fixed point under low- and
high-conditions (compare Fig 1C dashed black line).

Using these different conditions, in the following we consider the dynamics of 500 com-
pound-connections in our network and analyze the resulting probability distribution of synap-
ses p[S].

Note all time scales, we refer to, are dependent on the synapse-formation probability rate b.
However, from matching the model to dendritic spine experiments (see below; Fig 6), we will
demonstrate that the time scales of the model indeed correspond to memory-relevant scales of
100 days and more.

Basic synaptic dynamics in the working point
First we simulated two groups of 500 compound-connections with deletion probabilities which
enforce the development into the working-point-distribution. Hence, this corresponds to
medium activities at all connections. However, we initialized both groups differently: the syn-
apse distribution of the first group is from the beginning in the wp-distribution (Fig 2A), while
in the second group all compound-connections initially consist of seven realized synapses
(peak at S = 7; Fig 2B).

The first group demonstrates the validity of the model setup as the system indeed remains
stationary in the bimodal wp-distribution (Fig 2A).

The development of the second group (Fig 2B) reveals an interesting feature of the model
dynamics: first, the compound-connections tend to delete synapses and, thus, the average
number of synapses reduces from the initial value (S = 7) to the mean of the upper peak in the
wp-distribution (μ = 5). In parallel the variance increases, thus, different compound-connec-
tions consist of different numbers of synapses. Later, although the probability distribution of
the whole group of connections remains rather constant, the number of synapses of each single
compound-connection varies frequently (see purple line for one example). Furthermore, even

Fig 2. Temporal evolution of the probability distribution of synapses. The probability distribution p[S] of 500 compound-connections (gray scale)
converges to the bimodalwp-stationary distribution given different initial conditions p[S(0)]: (A) initial distribution is thewp-distribution itself; distribution stay
stationary (B) all compound-connections have seven realized synapses (S = 7); distribution converges to thewp-distribution. The development of a single
compound-connection is shown as an example (purple).

doi:10.1371/journal.pcbi.1004684.g002
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if during development the total number of realized synapses is the same at two different time
points (e.g., S(t1) = S(t2) = 5), the location of these realized synapses could be different (Fig 2B,
insets). However, the connection remains in the upper peak of the wp-distribution and fluctu-
ates around the mean μ.

Finally, only after a long period (note the logarithmic time scale) many compound-connec-
tions delete all their synapses and a second peak at zero synapses emerges in the probability dis-
tribution. Even then—after reaching the wp-stationary distribution—the number of synapses
at any given compound-connection fluctuates as can be seen, for instance, in the figure when
the pink curve jumps between zero and six realized synapses. Such fluctuations within the sta-
tionary distribution (also in Fig 2A) represent the experimentally measured turnover of den-
dritic spines hosting a synapse [9].

Based on these results, we hypothesize that for long time scales the bistable dynamics of the
number of synapses and the resulting probability distribution stores information rather than
the existence of single synapses. This will be investigated next.

Quantitative evaluation of information decay
In the second step, we investigate the capacity of the system to store information. For this, we
evaluate how much information the number of synapses S(t) at time point t provides about the
initial number of synapses S(0) using mutual information. Mutual information is an informa-
tion theoretic measure, which determines how much of the variability of one quantity can be
predicted by another one. Here, we calculate the mutual information between S(0) and S(t)
(Fig 3) for different initial probability distributions (Fig 3A1–3A3) and stimulation-conditions
resulting in different stationary distributions (Fig 3B4, 3C4 and 3D4).

Note, although we use a population of connections to evaluate mutual information, this
information is stored by each connection on its own as connections have no means of interact-
ing in the model. The use of a population is necessary to estimate the time evolution of the dis-
tribution p[S] which describes the number of synapses on a single connection as a random
variable. To apply mutual information also the initial condition is treated as a random variable
which follows a given probability distribution, although each distribution has only one initial
condition and populations with different initial conditions are separately tracked (see Models
and Methods).

Here, we used three different initial conditions for the starting distributions: (1) the wp-dis-
tribution (Fig 3A1); (2) a two peaked distribution with probabilities p[S = 0] = 1 − C and p
[S = 7] = C (Fig 3A2); as well as (3) a distribution which is uniform in each peak (Fig 3A3)
where the summed probabilities are 1 − C for the lower peak (S 2 0, 1, 2) and C for the upper
peak (S> 3).

Using these three initial conditions, the three stimulation-conditions from above (see Fig
1B) were investigated. Each condition yields after convergence a different stationary distribu-
tion (see Models and Methods for more details): (i) low induces a single peaked Poisson distri-
bution (Fig 3B), (ii) wp yields the working-point-distribution (Fig 3C), and (iii) high leads to a
Gaussian distribution (Fig 3D).

For low and high the mutual information and, therefore, the information about the initial
distribution, decays after a short period to zero (107 to 108 time steps; Fig 3B and 3D). This
period corresponds to the time scale of the synapse-formation probability rate b = 10−8/time
step, which is the intrinsic time scale of a compound-connection. Thus, information cannot be
stored longer than the average duration of a single synapse turnover. For the wp-condition, this
decay also occurs after the same period (Fig 3C). However, in contrast to all other cases, infor-
mation does not decay to zero but converges for a longer time to a constant non-zero value.
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After another long period, mutual information starts again to decay until it finally reaches zero
and all information about the initial number of synapses is ‘forgotten’. The period between the
first and the second decay provides a plateau indicative of prolonged information storage
which will be further investigated next.

The collective dynamics of multiple synapses encode long-lasting information. The
intriguing effect that systems, which converge to the wp-stationary distribution, can retain a
longer lasting memory of the initial conditions across two phases, while others loose it after a
first, early decay can be intuitively understood as explained in the following (Fig 4A–4C), but
this will later be expanded by a mathematical argument using a two state model, too.

For the bimodal wp-distribution, but not for the other ones, the population of compound-
connections undergoes two distinct phases of information loss (green and red in Fig 4A–4C):
First, every compound-connection retains its basic characteristic and fluctuates around one of
its two stable fixed points at S = 0 or at S = μ. A connection with, for instance, five synapses
(S = 5; Fig 4B, top left) may change to one that has four synapses (S = 4; Fig 4B, middle) but
will not loose all synapses as it experiences a stronger drive towards the upper fixed point μ = 5
(brown compound-connections). Likewise a weak connection with one synapse only may drop

Fig 3. Development of mutual information given different initial and stationary distributions. Three different initial probability distributions (A1-3) and
three different stimulation-conditions each yielding a specific stationary distribution (B4, C4 and D4). Dependent on the different combinations of these
distributions and conditions, the development of the probability distribution of synapses p[S(t)] differs (gray scale in central panels). This results in different
time courses of the mutual information (red) between initial number of synapses S(0) and number of synapses S(t) at time point t. In general, for all
conditions, exceptwp-condition, mutual information decays to zero after 107 to 108 time steps. For thewp-condition (panels C1-3) the same decay occurs,
but to a non-zero plateau. On this plateau information about the initial number of synapses is preserved up to 109 to 1010 time steps. The height and duration
of this plateau can be reproduced by analytical methods from a simplified system (blue dashed line, see Models and Methods).

doi:10.1371/journal.pcbi.1004684.g003
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to zero but not move up to a high number of realized synapses (black). Thus, the basic connec-
tion pattern stays the same (compare brown and black compound-connections in left and mid-
dle panels in Fig 4B). Synapse numbers are redistributed inside each peak of the bimodal wp-
distribution (Fig 4A, left; first phase). Hence, the mutual information between initial condition
and this stage decays but remains above zero: Connections “remember their identity” and a
plateau is formed (Fig 4C).

As the connections experience a drive towards their current stable fixed point, they
approach the basin of attraction of the other stable fixed point only very rarely. This leads to
very few transitions from one peak to the other. Thus, changes of the peak can only be expected
at much longer time scales. At these time scales, the peak identity is lost and a compound-con-
nection can take any value of realized synapses regardless of how it had been originally initial-
ized. Synapse numbers are finally redistributed between peaks (Fig 4A and 4B right; second
phase) and mutual information drops to zero.

Panels C1 and C2 in Fig 3 represent two interesting cases supporting this view. In C2 the
initial condition had been a distribution with two solitary peaks. Hence with respect to the
peak position such a system is fully determined right from the beginning. Thus, as long as peak
identity information is retained there cannot be any drop in mutual information, which is the
case until the late and only drop. Until then the system had indeed retained the information
about peak positions. Panel C1 started with the wp-distribution; the peaks of which have a cer-
tain width. Thus, there are indeed various choices for redistributing the synapses within each
peak and, as a consequence, there is a first phase with a slow drop in mutual information hap-
pening until the final information decay, which again corresponds to a mixing of synapses
between peaks.

Fig 4. Schematic diagram of the dynamics underlying long-lasting memory and influences of parameters on storage time. (A-C) The different
phases (green, red) of decay in mutual information can be explained bywithin peaks versus across peaks redistribution of synapses. (D) The period until the
plateau of mutual information has decayed to 95% of its initial value (color code, on a logarithmic scale) depends on the parameters of the bimodalwp
stationary distribution of synapses. White cross in center panel marks parameters used in Figs 2 and 3.

doi:10.1371/journal.pcbi.1004684.g004
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Approximation by a two state model reveals determinants for time scale. To test
whether the long-lasting information indeed corresponds to information about the peaks of
the bimodal distribution, we designed a reduced two-state model which only describes the
transitions between the two peaks. This reduced system can be analyzed by using analytical
methods (see Models and Methods for details). We matched the parameters of the reduced
model to the initial and stationary distributions of the full system and compared the develop-
ment of their mutual information. To set the time scale correctly, we searched for the two states
with the least probability flow between the two peaks of the wp-distribution. The lower one of

these two states is the minimum of the wp-distribution ~S. Matching the probability flow of

these two states with the probability flow in the two state model yields a transition rate R ¼
ðN � ~SÞ � b � pWP½~S� (see Eq (8)), which we use for our simulations.

Indeed, the two-state model reproduces with high accuracy the second decay of mutual
information for all three initial conditions (blue dashed line in Fig 3C1–3C3). Therefore, the
information, which is stored for long periods, has to be the information about the “identity” of
each compound-connection about the peak it had been initialized in. The information about
the specific initial number of synapses is lost during the first decay.

These results imply that the long-term storage in the model is not accomplished by single
persistent synapses, but rather by the collective dynamics of all synapses of a compound-con-
nection. Remarkably, single synapses can be created and deleted without perturbing this type
of storage.

The transition rate R of the two state model also provides insights into the typical time scale
for memory storage in these systems. Interestingly, this rate only depends on the minimum

probability between the two peaks of the stationary wp-distribution pWP½~S�. This probability is
influenced by the different distribution parameters. Accordingly, storage time is longer for
sharper and stronger separated peaks of the final distribution of synapses. Intuitively, with
sharp, widely spaced peaks there are less ‘chances’ for a given compound-connection to be at a
state, where it can make a ‘jump’ to the other peak, as compared to a situation when the peaks
are wider and/or closer together.

We evaluated this by assessing the time scale τ0.95 at which the mutual information plateau
decayed to 95% of its initial value (after the first decay), while varying all parameters that influ-
ence the shape of the stationary distribution: the mean and variance λ of the lower peak, the
mean μ and variance σ of the upper peak, and the weighting C between the peaks (see Fig 1D).
All other parameters are the same as for Fig 3C1.

The results confirm that in the wp-distribution the decay time scales τ0.95 gets larger for nar-
rower peaks (small λ and σ) and when the upper peak is farther away from the lower one
(larger μ). The weighting C between peaks seems to have a minor influence. This can be also
shown by the reduced two-state model as C influences the stationary probabilities linearly
while all other parameters contribute exponentially (see Models and Methods).

On the other hand, the fact that R only depends on the minimal probability pWP½~S� has
another interesting consequence: All distributions, which have the same minimum at ~S(with

probability pWP½~S� and the same C) will always yield at least the same time scale for long-term
information storage. Thus, the actual shape of the peaks is unimportant, as long as they give
rise to the same minimum in between them (see S1 Text).

Therefore, we can conclude that collective dynamics of all synapses in a compound-connec-
tion, which gives rise to bimodal distributions of the number of synapses, also stores informa-
tion longer than expected from single synapse dynamics.
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Learning can be faster than forgetting
Up to now, we have analyzed how information decays in a system of compound-connections
with stochastic synapses. Hence, we had investigated storage time and information loss. On the
other hand, so far, it is unclear how this information can be encoded into the connectivity of
such systems. This can be achieved through learning as discussed next.

First, before learning, the system has reached its wp-stationary distribution (Fig 5A, left)
corresponding to the steady state under resting state activity. Then, learning is triggered where
a changed stimulation would elicit higher activities at some connections and lower activity at
others, e.g. due to increased excitation and inhibition. This is modeled by applying either high-
or low-stimulation, or—as a control case—the system just stays in the wp-condition (Fig 5A,
center). Here, the learning phase is always long enough such that the new stationary distribu-
tion is reached (Fig 5B, green color code). Afterwards, learning stops and the system reverts
again to the wp-condition (retention phase; Fig 5A, right).

Fig 5. Compound-connections enable learning orders of magnitude faster than forgetting. (A) Paradigm to investigate learning and forgetting: A group
of compound-connections is brought from the initialwp-condition to either the high- or the low-condition by applying external stimuli (learning phase). After
reaching the corresponding stationary distribution, all conditions are reverted to thewp-condition (retention phase) and simulated until the system reaches
the stationarywp-distribution. Thewp-only case serves as control. (B1-B3) The time course of the probability distribution p[S(t)] (color code, green: learning
phase; red: retention phase) for the three different cases from (A): B1: high, B2:wp and B3: low. (C) The mutual information between the number of synapses
S(t) and the stimulation-condition during learning phase (green) and retention phase (red) reveals that learning is much faster than forgetting. Dashed lines:
time scales τ0.50, when the distribution of the number of synapses shares 50% of the information of the stimulation-condition. (D) Influence of the distribution
parameters on the difference between time scales of learning and forgetting ΔTmeasured by the ratio between τ0.50 (color coded, logarithmic scale). White
cross in center panel marks parameters used in other panels and Figs 2 and 3.

doi:10.1371/journal.pcbi.1004684.g005
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The two different “learning” stimulations (low, high) induce development of the probability
distribution p[S(t)] to their characteristic distribution (green phase in Fig 5B1 and 5B3), while
for the wp-condition—as expected—the wp-distribution remains roughly constant (Fig 5B2).
Remarkably, in the high- or low-stimulation case the system reaches the stationary distribution
during the learning phase about 2-3 orders of magnitude earlier than during the retention
phase (red phase). We quantify this effect by assessing how much information the number of
synapses S(t) at time t shares with the stimulation case (low, high, or wp) applied to the system.

Thus, we performed 1500 random draws of these three different cases from a uniform distri-
bution with P(low) = P(wp) = P(high) = 1/3, where each drawn stimulation case was used to
drive one compound-connection. By this, the stimulation-conditions can be considered as a
random variable and the mutual information between S(t) and the stimulus-condition can be
calculated. Note, the actual choice of the distribution for P(low), P(wp) and P(high) does not
matter and results remain qualitatively the same. During learning, mutual information grows
until the number of synapses S(t) represents with a high confidence the stimulation-condition
applied to the system (green line in Fig 5C). By comparing this learning curve with the reten-
tion curve (red line), we see that the learning curve has reached its maximum before the reten-
tion curve starts decaying. In other words, information is indeed preserved several orders of
magnitude longer than the duration the system needs to store it.

Similar to the decay time scale (Fig 4C) the difference in time scales between learning and
forgetting should also depend on the shape of the finally reached stationary distribution. To
quantify this, we determined the time scales τ0.50 at which the mutual information between the
number of synapses and the stimulation-conditions reaches 50% of its maximal value in the
learning and in the retention phase. The difference between these time scales ΔT can be deter-
mined by the ratio between τ0.50(retention) and τ0.50(learning) (Fig 5D). As observed for the
decay time scale τ0.95 (Fig 4C), the ratio increases if the two peaks of the bimodal stationary dis-
tribution are narrower (small λ and σ) and further apart (larger μ). Also in this case the weight-
ing C between the peaks has only a minor influence.

The difference in time scales of learning and forgetting can even be observed for learning
with single peaked distributions which are piecewise uniform, i.e. for the broadest or sharpest
possible peaks (see S1 Text). This again highlights that the presented results generalise to a
much broader class of distributions.

In conclusion, the interactions between multiple synapses in a compound-connection lead
to a fast encoding of information, which is then preserved for longer periods. In the final step
we will compare these dynamics with data from in-vivo experiments [11].

Synapse-dynamics in compound-connections is consistent with long-
term dynamics of dendritic spines
A similar difference of time scales between learning and forgetting is also observed in experi-
ments investigating the dynamics of dendritic spines; the morphological correlates of excitatory
synapses in cortex. For example a few days of training, sensory enrichment, or deprivation can
influence the spine turnover several months later [11–13]. As the dynamics of the synapses in
the model are comparable to spine dynamics in experiments, next we will reproduce the experi-
mental data from the motor learning tasks of Xu and co-workers [11].

In these experiments, animals were selectively trained in an early (postnatal month one)
and/or a late motor training phase (month four). Some animals were only trained during the
late training phase (late-only paradigm; Fig 6B), some were trained with the same task during
early and late training phase (retraining paradigm; Fig 6C) and some did not receive any train-
ing at all (control paradigm; Fig 6A). For all groups the number of created and removed spines
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had been tracked. When comparing changes during the early training phase, motor training
increases spine creation as well as removal compared to the control paradigm (Fig 6D, red
bars). During the late training phase (Fig 6E) a similar increase in spine turnover emerges in
the late-only paradigm (compare red bars in Fig 6E right panels with Fig 6D right panels).
However, animals in the retraining paradigm, which had already experienced training before,
show in this case spine creation and removal at control levels (compare red bars in Fig 6E left
with center panels), which indicates that the early training has left a long-lasting trace in the
connectivity [11–13].

In our model these experimental paradigms can be reproduced. For this, again, we take the
wp-condition as the basic distribution and emulate the process of motor learning by exposing
very small sub-populations of compound-connections to high- or low-stimulation-conditions.

For the control case, connections are left in the wp-condition during the whole experiment
(Fig 6A). This case was used to adjust the time scale of the model. For this, we considered the
complete temporal characteristic of the experimental control case for spine creation during

Fig 6. Themodel reflects long-term effects of spine dynamics. (A-C) Paradigms to test the influence of an early training phase on the spine/synapse
dynamics in a late training phase. Durations of the respective phase for all 3 paradigms are indicated above (same for all paradigms). (A) Control paradigm
where the system remains in thewp-condition (receiving no learning stimulus). (B) Retraining paradigm: Starting with thewp-condition, then change
stimulation in the early phase dividing the population into 4.35% receiving low-stimulation and 0.65% of compound-connections receiving the high-
stimulation. The rest remains unaffected and stays in thewp-condition. Afterwards stimulus is withdrawn and the deletion probabilities of all compound-
connections are set to render thewp-distribution (similar to Fig 5). After another 74 days a second (late) phase with the same stimuli to the same connections
as during the early phase is applied. (C) Late-only paradigm: Starting with thewp-condition only in the late phase low- and high-stimulations are provided.
Note, the middle pathways in (B) and (C) are identical to the control condition (A). (D) Comparison of spine creation (upper panel) and removal (lower panel)
of the early training phase in experiment (red bars [11]) with the corresponding values from the model (blue bars, mean ± SEM). In this phase the late-only
paradigm is identical to the control condition. (E) Creation and removal of synapses in the late training phase are comparable for the control and the retraining
paradigm. However, without early training an increased turnover is observed. This corresponds exactly to the dynamics of dendritic spines observed in
experiment and indicates the long-lasting trace which the early training leaves in the connections. Here,N = 5 and σ = 1.0.

doi:10.1371/journal.pcbi.1004684.g006
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early training phase (red bars in Fig 6D, top-left) and compared it to the model dynamics to
match the time scales (see Models and Methods for details).

For the retraining paradigm (Fig 6B) we start the system in the wp-condition for 30 days.
Then, for the next 16 days, we define the early phase by dividing the population into 4.35% of
compound-connections receiving low- and 0.65% receiving high-stimulation. The rest does not
receive a learning signal and stays in the wp-condition. After this, the learning signal is with-
drawn and the system and all connections are in the wp-condition for another 74 days (similar
to Fig 5A). Finally, we perform a second (late) phase of learning for 8 days with the same
changes applied to the same sub-populations as during the early phase. Note, the rather small
changes of only 5% of the compound-connections applied here correspond to the sparse
changes observed in experiments [11, 12].

For the late-only paradigm (Fig 6C) we maintain the wp-condition for 120 days and only
then perform, for 8 days, the same subdivision of the population as above (4.35% low, 95% wp,
and 0.65% high).

From these simulations, we determined the realized synapses before and during training
phases and calculated the number of created and removed synapses for each of the three differ-
ent paradigms.

The most interesting case concerns the late phase (Fig 6E), where the retraining paradigm
had experimentally led to only a control-level rate for creating and removing synapses, indicat-
ing that a long-lasting trace might exist in the connectivity. If we compare the numbers of cre-
ated and removed synapses during the late training phase in our model (blue bars, Fig 6E) with
the experiments, we find that the model reproduces the data almost perfectly. As in the experi-
ments, the synapse turnover during the late training phase in the retraining paradigm is com-
parable to the control levels, whereas the turnover is increased, when there is no early training.
This indicates that also in our model early training leaves a structural trace in the connections
(like in Fig 5), which persists until the late training.

During early training (Fig 6D), model and experiment also match but experimental results
show larger creation and removal rates. This is due to the fact that animals show an over-
expression of dendritic spines during their early life [9, 32] and accordingly also a stronger
removal due to homoeostatic processes. This leads to a non-stationary trend in early develop-
ment, which is not covered by the model in its current state. To explain the early training phase
data completely, we would have to combine the here presented approach with homoeostatic
structural plasticity [33, 34], which is beyond the scope of this study.

Thus, apart from such non-stationary effects, our model provides a simple explanation for
long-lasting traces in the connectivity. Remarkably, these traces do not rely on the persistence of
single synapses (different from [12]) or on different time scales of plastic changes during learning
and forgetting but are generated by the natural dynamics of such compound-connection systems.

Discussion
Here we have demonstrated that storing information on an permanently changing substrate,
like dendritic spines, can be achieved by the collective dynamics of spines (or synapses). If the
dynamics renders the experimentally observed bimodal connectivity distribution, prolonged
information storage about the state of the connections in the network is possible. Other (unim-
odal) stationary distributions do not exhibit this information storage property. Our results
instead suggest that transitions to unimodal distributions might happen during learning and
will lead to the desired property that learning is much faster than forgetting in such systems.
Importantly these dynamics are consistent with the long-term dynamics of dendritic spines in
memory related experiments as shown at the end.

Long-Term Information Storage in the Presence of Synaptic Turnover

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004684 December 29, 2015 12 / 22



The problem of storing information on variable substrates is inherent to all neural struc-
tures. For example, proteins and molecules, which form the substrate for storing information
at any single synapse, are sometimes completely exchanged in rather short times, while the syn-
apse’s long-lasting properties persist [35, 36]. Similar to the here presented approach, this is
resolved by the collective dynamics of the involved compounds, i.e., the dynamics of their con-
centrations and reaction rates. Long-term information storage is achieved if they show a bis-
table or hysteretic characteristic [24–29]. Thus, such systems do not rely on the existence of
any single protein, analogous to the synapses in the compound-connections in our model.

Such a dynamic is, however, only possible when the single entities are homogeneous, i.e.
have the same properties. For multiple synapses between two neurons this might not be the
case. Here, the location of synapses on the dendritic tree might influence their impact on the
generation of action potentials due to dendritic processing [37] or even change their plastic
behaviour [38]. In this case, it would not only matter how many synapses are realised but also
which ones. Interestingly, recent experiments suggest that the spine volumes, which are related
to synapse stability [39, 40], are very similar for synapses between the same axon and dendrite
[41], supporting the homogeneity assumption of our model. However, in general, we expect
that qualitatively the here shown prolongation of storage time by the collective dynamics of
multiple synapses, is unaffected by such synapse differences, as long as they also implement the
experimentally measured bimodal distributions.

Prolongation of storage time is, however, accompanied by a decrease in the amount of
stored information. Previous estimates of the information, which can be encoded by the exis-
tence of a single synapse, predict it to be around 2-3 bits [3]. In our model, this information dis-
solves during the first decay phase (see Fig 3). The maximum information, which can be stored
for longer periods by the collective dynamics of all potential synaptic locations at one connec-
tion is here 1 bit—connected or unconnected. This value further decreases, when these two
states are not equally probable.

However, encoding of information by the collective dynamics of the multiple synapses of
compound-connections rescues information from fluctuations of the number of synapses. This
has at least three advantages: First, information storage does not rely on the persistence of sin-
gle synapses. Memories are, therefore, robust against synapse loss. Second, the lifetimes of
memories will be much longer than estimated from the lifetime of a synapse (as, e.g., in [12,
13]). Third, connections can keep the same degree of plasticity (by the formation probability
rate b) during learning and storage phase. This enables the system to learn very quickly when a
learning signal is applied.

The latter seems to contradict the suggestion that there are distinct learning- andmemory-
spines [12, 40]. However, in the here proposed model, synaptic plasticity leads to very different
dynamics for synapses in the lower as compared to the upper peak. Synapses of compound-
connections in the lower peak will repeatedly appear and disappear, thus, exhibiting small syn-
aptic weights. It is known that small weights are susceptible to large changes induced by synap-
tic plasticity [42]. As a consequence, the present model inherently contains a population of
synapses which resembles learning spines. On the other hand, synapses of compound-connec-
tions in the upper peak create a rather stable connection relating tomemory spines. This yields
a second population of spines with long life times, which have been proposed to encode long-
lasting memory traces. This picture is supported by the fact that the long-term dynamics of
dendritic spines observed in experiments indeed match the dynamics of the here proposed
compound-connections (Fig 6). Only at short time scales model and experiment correspond
less well and the time course of spine creation and removal during training is faster in model
than in experiments. This might be due to an increased formation rate of new filopodia or
spines during periods of high activity [43, 44], because this leads to an activity-dependent
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synapse-formation rate. In our study, we had restricted ourselves to a constant formation rate
to demonstrate the effect of the bimodal wp-distribution on the time scale of information stor-
age without having to account for interfering non-stationary effects at the same time scale.
Analysis of such coupled systems, in possible future work, is very difficult and needs to build
on the here presented results. Strikingly, as all time scales reported here are proportional to the
formation probability b, an increase of b during the stimulation or learning phase would yield
to an even faster learning and a larger difference in the time scales of learning and forgetting.

In summary, the here presented model is to our knowledge the first that shows how infor-
mation can be acquired and stored on the variable substrate of continuously changing spines
(or synapses). To achieve this, encoding exploits the existence of multiple synapses between
two neurons and their mutual interactions. This principle may lend itself helping to understand
the dynamics of long-lasting memories.

Models and Methods

Stochastic model of structural plasticity
In this study we model the connection between two neurons by a number of potential synapses
N and the number of realized synapses S. To mimic the turnover dynamics of dendritic spines
observed in experiments, synapses are created and removed randomly. Hereby, new synapses
are formed with a constant probability b at each of the potential synapses which are not real-
ized and existing synapses are removed with a probability dI(S) which depends on the number
of synapses and the current stimulation (see Fig 1A).

Stimulation conditions
The number of synapses is, thus, a random variable, which follows the dynamics of a Markov
chain with the different numbers of synapses as states. The time development of the distribu-
tion of the number of synapses p[S] is then characterised by the transition matrix between the
states which is given by b and dI(S). As long as all dI(S)> 0, this matrix is non-negative imply-
ing that the Markov chain is irreducible. As connections can also stay in the same state, the
Markov chain is also aperiodic. For a Markov chain with these properties, the Frobenius-Per-
ron theorem guarantees that there is a stationary probability distribution p[S], to which an
ensemble of such connections will converge [22, 23].

Our previous investigations of the interaction of activity and synaptic plasticity with a simi-
lar structural plasticity rule [23] showed that this stationary distribution can be controlled by
applying specific stimulations to the pre- or postsynaptic neuron.

In this study, we simplify these stimulations to three different stimulation conditions: a
high, a low and a working-point condition. For each of those conditions, we choose a stationary
distribution pI[S] with I 2 {high, low, wp} inspired by our previous results (see Fig 1B): The
working-point distribution will take a bimodal shape like the distributions of the number of
synapses which were experimentally found in cortex [16–20]. The high and the low stimulation
stationary distributions follow the shape of the upper and the lower peak of these distributions
respectively:

phigh½S� ¼ 1

N
� exp �ðS� mÞ2

s2

� �
with N ¼

XN
S¼0

exp �ðS� mÞ2
s2

� �
ð1Þ

plow½S� ¼ 1

M
lS

S!
with M ¼

XN
S¼0

lS

S!
ð2Þ
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with μ and σ as the location and width of the upper peak and λ adjusting the steepness of the
decay in the lower peak. The working-point distribution is then given by a mixture:

pwp½S� ¼ ð1� CÞ � plow½S� þ C � phigh½S� ð3Þ

weighted by the connection probability C (see Fig 1D).

Calculation of deletion probabilities
To construct connections which have the given stationary distributions, we have to determine
suitable deletion probabilities dI(S). For this, we use an approximation of the stationary distri-
bution in the described system: When we only allow for creating or removing one synapse at a
time (first step approximation [22, 23]), the transition matrix of the system is

1� Nb Nb 0 0 ::: ::: 0

d½1� 1� d½1� � ðN � 1Þb ðN � 1Þb 0 ::: ::: 0

0 2d½2� 1� 2d½2� � ðN � 2Þb ðN � 2Þb ::: ::: 0

::: ::: ::: ::: ::: ::: :::

0 0 0 0 ::: Nd½N� 1� Nd½N�

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

In equilibrium, the probability flow between states S − 1 and Smust be equal (detailed bal-
ance) and the stationary distribution pI[S] fulfils

pI½S�
pI½S� 1� ¼

ðN � Sþ 1Þb
SdI½S� :

Thus, we choose the deletion probabilities as

dI½S� ¼ ðN � Sþ 1Þ
S

pI½S� 1�
pI½S� b ð4Þ

for each stimulation condition. As, by construction, pI[S]> 0, this also yields dI[S]> 0. As
described above, this ensures the convergence to the stationary distributions from any initial
condition.

Simulations
Implementation. The stochastic changes of synapses are implemented in an event-based

fashion. Hereby, the time interval until the next removal or creation event for each potential
and existing synapse follows a Poisson distribution with different success rates. The number of
time steps until the next event can be calculated as the value at which the cumulative probabil-
ity density function of this Poisson-distribution reaches a random number between 0 and 1.
After each change in the number of synapses, all intervals of a connection are recalculated as
the success rates for the Poisson distributions change (because of d[S]). The simulation then
proceeds to the next event in the population of connections. Therefore, the calculation time
depends on the number of changes in S and the time scale can be freely adjusted without
increasing simulation times.

To investigate the dynamics ensembles of these connections, we conduct the following
simulations:

Decay of initial conditions—Constant stimulation condition (Figs 2 and 3). In these
simulations, 500 connections are initialized at the same number of synapses and simulated
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with the same stationary distribution. This is repeated for all initial conditions. To cover all dif-
ferent time scales of the dynamics, the relative frequencies for all numbers of synapses are
saved for exponentially increasing time intervals.

Learning scenario—Changing stimulation condition once (Fig 5). This paradigm has
three phases: (1) In an initialization phase all connections are initialized with the same num-
ber of synapses and with the working-point stationary distribution. The length of this phase
is long enough that the ensemble reaches the stationary distribution and the initial condi-
tions have no influence any more. (2) In the learning phase, the stationary distribution is
switched to either high, low or working-point condition by adjusting the deletion probabili-
ties. Hereby, each stimulation is selected with a probability P(I). Again, this phase is long
enough that the stationary distributions are reached. (3) Finally, in a retention phase, the
deletion probabilities are switched back to working-point condition again and the population
is simulated until it reaches equilibrium. In all three phases the relative frequency of each
number of synapses is saved in exponentially increasing time intervals from the beginning of
the phase. The simulation is then repeated for all initial conditions and all possible
stimulations.

Dendritic spine experiments—Changing stimulation condition twice (Fig 6). To inves-
tigate, whether the data from dendritic spine experiments can be reproduced by the here pro-
posed model, we adapted the stimulation scheme from the in vivo experiments [11]:

A population of connection is initialized with the working-point stationary distribution and
simulated for 30 days. Then, for the early training and retraining data, the connections are set
to different stimulation conditions with the respective probabilities P(I) for 16 days, whereas
for control or naive training data, the stationary distribution remains the same, Afterwards, all
connections are set back to working-point conditions and simulated for another 74 days. Then,
for the late training phase, the connections are set to the stimulation conditions again. Hereby,
the same stimulation as in the early training phase is used for the retraining data.

During stimulation, the occupancy of each potential synapse is tracked, such that we can
evaluate the number of persistent synapses or spines from the overlap of occupied locations at
at two time points. Comparing this number to the number of synapses at the first and second
time point results in the number of created and removed synapses.

Matching the time scale to experiments. As a first step to compare the results of model
and experiment, the number of time steps T in the model which correspond to one day in
experiment has to be set. To analytically estimate this number we use the fact that, in experi-
ments, under control conditions, one observes about 5% newly formed synapses as compared
to the pre-existing ones one day before. Therefore, we estimate the proportion of newly
formed synapses under wp-conditions depending on T and determine the value of T where it
reaches 5%.

For this, it is not enough to just estimate the number of synapses which has been formed,
but also the persistence until their next measurement has to be taken into account. To approxi-
mate this, we assume that a connection forms at most one synapse during the time interval [0,
T]. Then, the probability that a synapse is formed at time t 2 [0, T] and persists until the next
measurement at time T is given by

Pðnew& persistent; tjSÞ ¼ ðN � ðS� 1ÞÞbð1� ðN � ðS� 1ÞÞbÞt�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
formation at time t

ð1� S � d½S�ÞT�t|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
persistence until T

where S is the number of synapses after the formation. If we sum this over all possible creation
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times between 0 and T, we get

Pðnew&persistentjSÞ ¼
XT

t¼0

Pðnew&persistent; tjSÞ

¼geometric series ð1� S � d½S�ÞT � ð1� ðN � Sþ 1ÞbÞT
ðN � Sþ 1Þb� S � d½S�

� ð1� Sd½S�ÞðN � Sþ 1Þb
1� ðN � Sþ 1Þb

(see S2 Text).
The fraction of newly created (and persistent) synapses is then given by the expected value

of this probability divided by the expected value of S − 1:

Pðnew&persistentÞ ¼ EðPðnew&persistentjSÞÞ
EðS� 1Þ

When evaluating this fraction for the used wp-distribution (μ = 5.0, σ = 1.2, λ = 0.05,
C = 0.1, N = 5), we find that it first hits the experimental value of 5% at T� 2.3 � 107 time steps
(see S2 Text).

We re-evaluated this result by a simulation of the turnover dynamics of populations of our
model synapses between day 30 and 46. We compared the proportions of newly formed synap-
ses from these simulations with the values of the control group in experiment and determined
the quadratic error. This was repeated for T 2 [5 � 106, 30 � 106] in steps of 106 time steps. We
found that there is indeed a minimum of the squared error around T = 23 � 106 time steps (S2
Text), such that we used this value for our further simulations.

Determining the stimulation probabilities. Afterwards we simulate a population of con-
nections, each driven by a randomly selected stimulation condition. The size of this population
is chosen such that the number of synapses in the initial conditions matches the average num-
ber of spines observed in experiment (e.g., for 160 synapses for [11]). These simulations are
repeated multiple times (here 8 times which corresponds to the typical number of animals in
[11]) to obtain an estimate for the statistical error of the obtained values. These simulations
were repeated, while systematically varying the proportion of synapses which receive (high or
low) stimulation, and the fraction of stimulated connections, which received the high stimula-
tion (conditioned probability for high stimulation).

From these simulations we determine the squared error to the experimental values at the
late training phase and the last day of early training, such that the structural traces in model
and experiment are based on an equal amount of structural changes. This enables us to deter-
mine the best fitting stimulation probabilities P(I). Interestingly, our best match occurs at only
5% stimulated connections, out of which 13% receive high stimulation.

Reduced two-state system
Dynamics and entropy. If the long-lasting information encodes the peak a connection

was initialized in, a model of the probability masses in the two peaks should be able to repro-
duce the second decay of mutual information in the full system (see Fig 3C1–3C3). To test this,
we use a Markov chain with two states for the lower and the upper peak p: = (p0, p1) (note this
system would also describe the behaviour of a mono-synaptic system). Assume the stationary
distribution of this system is (1 − C, C). Then, the transition matrix of such a process takes the
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form:

MðRÞ ¼
1� R

1� C
R

1� C

R
C

1� R
C

0
BBB@

1
CCCA with Eigenvalues 1 and 1� R

Cð1� CÞ ð5Þ

where transition rate R adjusts the convergence time to the stationary distribution and is a free
parameter. The time evolution of the system with initial condition (1 − pinit, pinit) can approxi-
mately be described as

p1ðt; pinitÞ ¼ C þ pinit � Cð Þe� t�R
Cð1�CÞ; p0ðtÞ ¼ 1� p1ðtÞ: ð6Þ

The mutual information between initial conditions and the distribution p(t) evaluates to

MIðpð0Þ; pðtÞÞ ¼ H2ðp1ðt; pinitÞÞ � ð1� pinitÞH2ðp1ðt; 0ÞÞ � pinitH2ðp1ðt; 1ÞÞ ð7Þ
with a two state system entropy

H2ðpÞ ¼ �p log 2ðpÞ � ð1� pÞ log 2ð1� pÞÞ:

Transition rate R corresponding to the multisynaptic system. Beside the initial condi-
tion and the stationary distribution, the time scale of the two state model has to be matched
with the full system. For this we analyse both systems in their steady state:

In equilibrium (i.e., (p0, p1) = (1 − C, C)) the probability flow between the states of two-state
system must be balanced (equal to R by construction):

R
C|{z}

transition probability

� C|{z}
state probability

¼ R
1� C|fflffl{zfflffl}

transition probability

ð1� CÞ|fflfflfflffl{zfflfflfflffl}
state probability

If we again assume that in the multisynaptic system only one synapse is created or removed
at a time, the same holds for the probability flow between the upper boundary of the lower

peak p½~S� and the lower boundary of the upper peak p½~S þ 1�. The probability flow between the
boundary states is:

ðN � ~SÞ � b|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
transition probability

� pWP½~S�|fflffl{zfflffl}
state probability

¼ ~S � dWP½~S þ 1�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
transition probability

� pWP½~S þ 1�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
state probability

As this is the only probability flow between the two peaks in the multisynaptic system, a cor-
responding model of the two peaks should have the same probability flow:

ðN � ~SÞ � b � pWP½~S� ¼ R
C
� C ¼ R ð8Þ

Note, Eq (8) can also be used to quantify the advantage of multiple synapses:
Compared to a mono-synaptic system with the same building probability, the information

decay is ððN � ~SÞpWP½~S�=P~S
S¼0 p

WP½S�Þ�1-fold slower.

Information theoretic measures
To quantify shared information between two random variables and their probability distribu-
tions, the information theoretic concept of mutual information can be used. Here, we use it for
two different analyses:
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Mutual information between the number of synapses at different times (Fig 3). If we
regard the number of synapses at time step 0 (i.e., S(0)) and at timestep t (i.e., S(t)) as random
variables, we can evaluate the mutual information between them as

MIðSð0Þ; SðtÞÞ ¼ HðSðtÞÞ � HðSðtÞjSð0ÞÞ ð9Þ

with the entropy HðSðtÞÞ ¼ �PN
~S¼0 p½SðtÞ ¼ ~S� log 2p½SðtÞ ¼ ~S� and the conditional entropy

HðSðtÞjSð0ÞÞ ¼ PN
S0¼0 p½Sð0Þ ¼ S0�HðSðtÞjSð0Þ ¼ S0Þ with

HðSðtÞjSð0Þ ¼ S0Þ ¼ �PN
~S¼0 p½SðtÞ ¼ ~SjSð0Þ ¼ S0� log 2p½SðtÞ ¼ ~SjSð0Þ ¼ S0�.

Note, this formulation of mutual information can be evaluated only from simulating the dis-
tributions p[S(t)|S(0) = S0] for each initial condition S0. The entropyH(S(t)) can then be calcu-
lated from the sum of the distributions emerging from different initial conditions S0 weighted
with their probability p[S(0) = S0] (i.e., total probability):

p½SðtÞ� ¼
XN
S0¼0

p½Sð0Þ ¼ S0� � p½SðtÞjSð0Þ ¼ S0�

In this way the initial conditions can be chosen freely and the mutual information can be evalu-
ated for different distributions of S(0) from the same simulated distributions p[S(t)|S(0) = S0].

Mutual information between number of synapses and stimulus (Fig 5). Similarly, the
mutual information between the number of synapses at time t and the applied stimulation con-
dition can be evaluated as

MIðSðtÞ;IÞ ¼ HðSðtÞÞ �
X

PðIÞ � HðSðtÞjIÞ
I2fhigh;low;working�pointg

ð10Þ

where P(I) is the probability that a connection experiences a stimulation condition I 2 {high,
low,WP} during the learning phase and H(S(t)|I) the conditional entropy of the distribution p
[S(t)|I] when the stimulus is known.

For each stimulation, again each initial condition can be simulated separately. Afterwards
the distributions p[S(t)] and p[S(t)|I] are calculated as weighted sums of the simulation results.
Here, the initial conditions and P(I) can be chosen freely, although the initial conditions
should have decayed during the initialization phase.

Supporting Information
S1 Text. Learning and forgetting with other stationary distributions.Here we investigate,
how the presented results generalize to a broader class of stationary distributions for learning
and forgetting.
(PDF)

S2 Text. Results from matching model and experimental data.
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