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Abstract
Cortical connectivity emerges from the permanent interaction between neuronal activity

and synaptic as well as structural plasticity. An important experimentally observed feature

of this connectivity is the distribution of the number of synapses from one neuron to another,

which has been measured in several cortical layers. All of these distributions are bimodal

with one peak at zero and a second one at a small number (3–8) of synapses.

In this study, using a probabilistic model of structural plasticity, which depends on the

synaptic weights, we explore how these distributions can emerge and which functional con-

sequences they have.

We find that bimodal distributions arise generically from the interaction of structural plas-

ticity with synaptic plasticity rules that fulfill the following biological realistic constraints:

First, the synaptic weights have to grow with the postsynaptic activity. Second, this growth

curve and/or the input-output relation of the postsynaptic neuron have to change sub-

linearly (negative curvature). As most neurons show such input-output-relations, these con-

straints can be fulfilled by many biological reasonable systems.

Given such a system, we show that the different activities, which can explain the layer-

specific distributions, correspond to experimentally observed activities.

Considering these activities as working point of the system and varying the pre- or post-

synaptic stimulation reveals a hysteresis in the number of synapses. As a consequence of

this, the connectivity between two neurons can be controlled by activity but is also safe-

guarded against overly fast changes.

These results indicate that the complex dynamics between activity and plasticity will, al-

ready between a pair of neurons, induce a variety of possible stable synaptic distributions,

which could support memory mechanisms.

Author Summary

The connectivity between neurons is modified by different mechanisms. On a time scale of
minutes to hours one finds synaptic plasticity, whereas mechanisms for structural changes
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at axons or dendrites may take days. One main factor determining structural changes is
the weight of a connection, which, in turn, is adapted by synaptic plasticity. Both mecha-
nisms, synaptic and structural plasticity, are influenced and determined by the activity pat-
tern in the network. Hence, it is important to understand how activity and the different
plasticity mechanisms influence each other. Especially how activity influences rewiring in
adult networks is still an open question.

We present a model, which captures these complex interactions by abstracting structur-
al plasticity with weight-dependent probabilities. This allows for calculating the distribu-
tion of the number of synapses between two neurons analytically. We report that
biologically realistic connection patterns for different cortical layers generically arise with
synaptic plasticity rules in which the synaptic weights grow with postsynaptic activity. The
connectivity patterns also lead to different activity levels resembling those found in the dif-
ferent cortical layers. Interestingly such a system exhibits a hysteresis by which connec-
tions remain stable longer than expected, which may add to the stability of information
storage in the network.

Introduction
The connectivity between neurons - i.e., the number of synapses and their transmission effi-
ciencies (weights) - determines information processing and storage in neural networks and,
thus, also the cortex. Thus, in order to understand the functionality of cortical neural networks,
we have to understand how they generate their connectivity.

Generally, there are two major processes capable of connectivity changes: the first process,
so-called structural or architectural plasticity, builds and removes synapses between neurons
[1–4]. The transmission efficiency of these synapses is, in turn, modified by the second process
named synaptic plasticity [5–7].

Synaptic plasticity was first postulated by Donald O. Hebb [5]. Later on, experiments
showed persistent strengthening and weakening of the synaptic transmission efficacy due to
neuronal activity [6,8,9]. Besides firing frequencies, different timings of pre- and postsynaptic
action potentials play an important role [7,10]. On a longer time scale, it has also been shown,
that synaptic weights can be homoeostatically regulated to reach a certain firing frequency in
the network [11].

Structural plasticity, on the one hand, refers to the outgrowth and retraction of axons and
dendrites, which is primarily taking place during developmental phases or after major injuries
of the network structure [1]. On the other hand, it refers to the process of creating and remov-
ing synapses, which is the predominant process in adult networks [12]. As the majority of cor-
tical synapses resides on so-called dendritic spines, we can investigate their dynamics to get an
intuition about the dynamics of synapses. Spines are highly motile structures which can appear
and disappear on a time scale of hours to days. Their lifetime has been shown to depend on
their head-volume [3, 12, 13]. Furthermore, this head-volume correlates with the strength of
the excitatory postsynaptic potentials (EPSPs) from the corresponding synapse [14] - the
electro-physiological equivalent of the synaptic weight. It has also been shown that stimulation
protocols which potentiate or depress the synaptic weight enlarge [15] or shrink [16] the spine
head respectively. Thus, synaptic plasticity influences the spine head volume, which determines
the probability of structural changes. This indicates a strong interaction of synaptic and struc-
tural plasticity.
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A recent long-term in vitro study revealed that the dynamics of the spine volume, and,
therefore, the removal of synapses, can be treated as a random process on longer time scales
[13]. Furthermore, this study confirms the influence of synaptic plasticity mechanisms on this
random process.

Therefore, the emergence of neuronal connectivity should be understandable from the in-
teraction between synaptic and structural plasticity. To explore this interaction experimentally,
the changes of the weights of synapses would have to be monitored on the time scale of struc-
tural changes [17]. Unfortunately experiments have not been extended to this time scale yet.

Thus, as the two processes cannot be measured simultaneously, their interaction currently
can only be investigated by theoretical models. For both processes there are already plenty of
commonly used mathematical formulations: Synaptic plasticity has been modelled, e.g., by the
Hebbian rule [18], the Oja rule [19], the Bienenstock-Cooper-Munro rule [18, 20], or even by
arbitrary polynomials in pre- and postsynaptic activity and the synaptic weight [21] for rate-
based systems. Further on, there is also a variety of spike-timing-dependent plasticity rules
(see, e.g., [22–24]). Mechanisms, which prevent divergence of weights, have been proposed for
both classes [18, 25]. On the other hand, there are also several structural plasticity models:
Some of them describe the activity-dependent restructuring of networks during development
or after major injuries [26–28], whereas others tried to describe connection changes from an
information theoretic point of view [29, 30].

The interaction of synaptic and structural plasticity has mostly been addressed by simula-
tion studies [31–33]. These studies already showed the importance of structural plasticity to
generate certain statistical network features (e.g., network motifs [34, 35]), but provide little an-
alytical understanding how these features are generated.

In order to obtain a better analytical understanding, a two neuron system and the probabili-
ty distribution of the number of synapses from one neuron to the other is used as a benchmark,
because it has been measured experimentally. In those experiments, the number of synapses
between two neurons is estimated by quantal analysis of the excitatory postsynaptic potentials
from patch clamp experiments [10, 36–39]. The distributions of the number of synapses be-
tween two neurons obtained by this method typically peak between three and eight synapses
and shows very low probabilities for one or two synapses (Fig. 1A). The fraction of unconnect-
ed neuron pairs in those experiments reaches from 75%−99%, such that the distribution has a
second very large peak at zero synapses. Due to this large number of unconnected pairs, the
connected part of the experimental distributions is based on very few (10–50) data points re-
sulting to large statistical errors (see Text S1). Thus, these experimental data should be inter-
preted qualitatively rather than quantitatively.

In a first model, which was proposed to understand how these distributions emerge [40],
the synapses of a connection are generated from a pool of potential contacts with a certain
probability. Thereby, the probability for a certain number of potential synapses was estimated
from morphological reconstructed neurons. Nevertheless, morphology on its own was not suf-
ficient to explain the distribution of the actual number of synapses. It turned out that the prob-
ability of small numbers of synapses is strongly suppressed, which means that synapses are not
created independently but rather in a collective manner. However, newly established connec-
tions typically have less synapses than old ones [3]. Thus, there must be an underlying dynamic
process, which influences the stability of synapses, such that their creation appears collective
on a longer time scale. The stabilisation of spines in vivo depends on experience-dependent
(synaptic) plasticity [41, 42]. As the collective-formation model does not include activities or
activity-dependent plasticity, it describes synapse formation only in a coarser way. A model
which includes the interaction of synaptic and structural plasticity should provide more insight
into the dynamics that lead to the shape of the experimental distribution (Fig. 1A).
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In fact, another theoretical study already demonstrated [43] that these experimental distri-
butions can be reproduced with a structural plasticity rule, which is modulated by a synaptic-
plasticity-related quantity. Particularly, the authors of this study assume stochastic changes be-
tween three possible synaptic states (absent, silent or active) with probabilities modulated by a
quantity which resembles an abstract version of spike-timing-dependent plasticity. Hereby, the
influence of an active synapse on the postsynaptic neuron is assumed to be constant and not
coupled to this plasticity-related quantity. Although this study already shows that this specific
interaction of structural and synaptic plasticity can in fact yield biologically reasonable connec-
tivity, important questions are still open: First, under the broad variety of existing synaptic
plasticity rules [5, 17, 20, 21, 44], which class of learning rules can exhibit the experimentally
observed behaviour in combination with stochastic structural plasticity? Second, the above dis-
cussed study [43] assumes fixed firing frequencies, although the firing frequencies between the
different experimental locations differ [45–47] and, thus, may influence the structural changes.
Moreover, activity levels possibly act as control signal, which drives connectivity to change in a
specific way, such that it exhibits certain non-random features (see [34, 35, 40]). Therefore, it is
important to evaluate, if and how changes in activity influence the connectivity.

To tackle these questions, in this study, we propose a stochastic model for structural plastici-
ty based on weight-dependent probabilities. Using this model, we calculate the stationary prob-
ability distribution for the number of synapses between two neurons. By means of a simple
approximation, we derive model-constraints under which this probability distribution corre-
sponds to the biological measured distributions. Interestingly, one of these constraints requires
the synaptic weight to grow with the postsynaptic activity, which corresponds to the Hebbian
idea of synaptic plasticity. Then, we show that one example system, which matches these con-
straints, can explain the experimentally observed distributions from different cortical layers by
different neuronal activities, which relates well to experimental observations. Considering

Figure 1. Experimentally obtained distributions of the number of synapses on a single connection and the here proposed structural plasticity
model. (A) The relative frequencies p[S] of the number of synapses between two neurons obtained from experiments [10, 36–39] show strong peaks for no
synapses and 3–8 synapses. The probability for no synapses (S = 0) reaches from 0.75 to 0.99 (for [38] this probability was taken from [81]). (B) Scheme of
the proposed structural plasticity model shows relevant quantities of the model for one connection. Synapses are created from a pool of potential synapses
Pij with a constant probability pbuild. Each of the Sij realised synapses has a weightwij,k (k = 1 . . . Sij) which develops according to a synaptic plasticity rule.
Synapse removal happens with a weight-dependent probability pdel(wij,k). All influences which do not relate to the examined neurons are modelled by
currents Ii or Ij. Inset: An example for the weight-dependency of building and removal probabilities shows that smaller synapses are more likely to be deleted.
(See main text for more details)

doi:10.1371/journal.pcbi.1004031.g001
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these suitable activities as a working point of the system, we explore its activity-dependent dy-
namics around this working point. We find, that increasing and decreasing activity does in fact
influence the connectivity strongly. More precisely, the number of synapses undergoes a hys-
teresis loop when changing either pre- or postsynaptic activity, which suggests potential for
memory storage.

Results

Model of stochastic structural plasticity
In the following, we present a biologically plausible mathematical model with which the (long-
term) interaction between synaptic and structural plasticity is investigated. In this model, the
process with the slowest time scale is structural plasticity, which operates from days to weeks
(see, e.g., [48–50]). We assume that on this time scale the spiking-dynamics of the neurons,
which take place in several milliseconds, need not to be modelled explicitly. Therefore, we use
rate-based neuron models. The firing frequency vi of such a neuron i is determined by the
input-output-relation F, which is an increasing function of the inflowing current:

vi ¼ F
X

j

XSij
k¼1

wij;kvj þ Ii

" #
:

The first component of this current are signals, which are transmitted from other neurons via
synapses and calculated as the product of the presynaptic neurons’ firing frequencies vj and the
synaptic weights wij,k of the kth synapse from j to i: wij,k vj. Hereby, Sij denotes the number of
synapses from neuron j to neuron i. The second component Ii represents other neuron-specific
influences such as leakage currents, inhibitory inputs or inputs from other cortical layers or
brain areas (e.g., thalamus). Note, for better readability in this paper we do not indicate the
time-dependence of activities, weights, number of synapses or stimulations. To eliminate co-
variant model parameters, we normalize the activities vi to the interval [0, 1]. Due to the diver-
sity of experimentally measured input-output-relations we use the logistic function F[x] = 1/
(1 + exp(−x)), if not stated differently. This function is both analytically tractable and it in-
cludes the transition from convex to concave input-output relation. This transition is a com-
mon feature of most biological neurons, such that we can make qualitative predictions.

As already mentioned above, to model structural plasticity, the morphology of the two neu-
rons and their dendritic and axonal trees is abstracted to a number of potential synapses Pij
[51], where each potential synapse represents a location, where a dendritic spine can bridge the
gap between axon and dendrite. If multiple spines can do this close to each other (clustered
spines [52]), each of them is counted as a potential synapse. Thus, in the following, a connec-
tion between two neurons is described by the number of potential synapses Pij, the number of
realised synapses Sij and their weights wij,k (Fig. 1B).

At each of the Pij − Sij locations, where no synapse exists, a synapse can be formed with a
constant probability pbuild (formation rate). If a synapse already exists, its weight is adapted by
a synaptic plasticity rule. The mathematical formulation of this rule should only depend on
local quantities of the synapse: pre- and postsynaptic activity and the synaptic weight itself
[21]. Furthermore, it is required that the rule leads to stable (bounded) weights w�

ij½vi; vj� (also
called fixed weights) for given pre- and postsynaptic activities.

The removal of an existing synapse can also happen with a certain probability pdel. Inspired
by biological weight-volume correlation [14] and the volume-lifetime-dependency [3, 12, 13],
we model this probability as a decreasing function of the synaptic weight resulting from the
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plasticity rule (Fig. 1B, inset):

pdel½wij� ¼ prbuild exp ð�a2w4=3
ij Þ ð1Þ

where r scales the maximum deletion probability relative to the building probability and,
thereby, determines whether deletion happens faster or slower than build-up, and a determines
the influence of the weight. The exponent 4/3 has been inspired from spine-volume-dynamics
from [13]. However, the results presented below, are insensitive to the exact mathematical
form of this function (see Text S5).

Equilibrium-distributions of the number of synapses on a single
connection
We now investigate which connectivity emerges from the model above. Therefore, we calculate
the probability p[S] that one single plastic connection from neuron j to neuron i has S synapses
in the long-term equilibrium (rest of the network fixed; Fig. 1B). The resulting distribution is
especially interesting, because it can be compared to experimental results ([10, 36–39], Fig.
1A). Furthermore, it can be calculated analytically, which we show in the following.

To describe one single plastic connection from neuron j to neuron i, the currents from all
neurons other than i and j can be included into Ii. The only current which influences the con-
nection results from the presynaptic activity vj. Note, this effective Ii is now specific for the sin-
gle connection from j to i. Multiple connections on the same postsynaptic neuron would have
different values for Ii.

In the following, some indices will be omitted for better readability: P := Pij, S := Sij and
I := Ii. The influence Ij will not be used as it is completely determined by vj = F(Ij).

For given postsynaptic influence I and presynaptic activity vj, we can now calculate the equi-
librium probability distribution of the number of synapses p[S] on this connection in the fol-
lowing way: We assume that after each structural change all weights wij,k converge to their
fixed point before the next structural change takes place. Thus, we separate the time scales of
both plasticity mechanisms as the time scale of structural changes is much longer than the
one for synaptic changes [48] which has been similarly applied in [43]. Thus, for a fixed S, we
can calculate the fixed weights w�

ij½v�i ½S�; vj� and activities v�i ½S�. Knowing the fixed weight
for S, we can calculate the deletion probability for S synapses. Thereby, deletion probability
pdelðw�

ij½v�i ½S�; vj�Þ and building probability pbuild only depend on the current number of synapses

but not on past values. The system can thus be treated as Markov-process with the number of
synapses as states. For each of those states, we can calculate the probability to jump to any
other state from the deletion and building probability and, thereby, create a transition matrix.
The long-term equilibrium distribution of the number of synapses on the plastic connection
(stationary distribution of the Markov-process) can now be calculated from the (dominant) ei-
genvectors of the transition matrix.

However, this requires solving a system of equations and is not expressible by a simple for-
mula, which would allow us to investigate the influence of the different components of our
model. Thus, to approach the shape of this distribution in a more analytical way, the so-called
first-step-approximation can be used [43]. In this approximation the system is only allowed to
create or remove one synapse at one time step. Then, the probability flow between two
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neighbouring states S − 1 and S is in equilibrium given by:

p½ðS� 1Þ ! S� ¼ p½S ! ðS� 1Þ� ðdetailed balanceÞ

with p½ðS� 1Þ ! S� ¼ p½S� 1�|fflfflfflffl{zfflfflfflffl}
state probability

� ðP � Sþ 1Þ � pbuild|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
transition probability

p½S ! ðS� 1Þ� ¼ p½S�|{z}
state probability

� S � pdel½w�
ij½vi½S�; vj��|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

transition probability

:

From this we deduce the ratio of the probabilities between two neighbouring states in equilibri-
um

Δp½S� :¼
p½S�

p½S−1� ¼
ðP−Sþ 1Þ

S
pbuild

pdel w�
ij½vi½S�; vj��

h i : ð2Þ

By using these ratios, the whole distribution can be recursively calculated as multiples of
p[S = 0], which can then be derived from the requirement that the probability distribution
sums up to one (see Eq. 7). This provides us with a formula to calculate p[S] (Eq. 6), if we know
all activities v�i ½S� or weights w�

ij½S� for S 2 [0, P]. For the model parameters we use, the equilibri-

um probability distributions obtained by this approximation closely resemble those from a full
simulation of the dynamics (see Text S4).

Classification of possible distributions
With Equation 2 we have a tool to calculate an approximation of the equilibrium distribution.
With this equation, we now want to explore which qualitatively different shapes this distribu-
tion can take and how the interaction between neuron model, synaptic and structural plasticity
influence it. For this, two distributions are considered to be qualitatively different, if they differ
in number and arrangement of their local extrema (peaks and valleys).

As we will show, these extrema are already fully determined by Equation 2, which can, fur-
thermore, be transformed such that the influences of the neuron model and structural plasticity
can be mathematically treated independently.

To distinguish qualitatively different probability distributions p[S], we first identify the
number and arrangement of their local extrema. For this, we treat p[S] as a function of S.
Along this line, the logarithm of the ratios given in Equation 2

Dln p½S� :¼ ln
p½S�

p½S� 1�
� �

¼ ln pbuild þ ln
P � Sþ 1

S

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

:¼�pcf

�ln pdel w
�
ij½vi½S�; vj�

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}¼:pd

ð3Þ

behaves like a discrete version of the derivative of this function. If Dlnp[S] is positive, the
function p[S] grows with S. If Dlnp[S] is negative, p[S] will have smaller values for larger S.
Therefore, as a necessary condition for extrema, hence peaks and valleys, in p[S], we simply
have to determine the zero-crossings Dlnp[S] = 0. Moreover, the sufficient condition for a
peak would be a zero crossing from positive to negative values, and for valleys it is the other
way around.

To see the influence of the plasticity models more clearly, we rewrite Equation 3 depending
on postsynaptic activities v�i in the following way: One can assume that the postsynaptic activity
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v�i ½S� grows (strictly monotonically) with the number of synapses. In this case we can invert this
relationship to S½v�i �. Then, we can rewrite Dlnp as a function of the postsynaptic activity v�i : The
zero-crossings of Dlnp½v�i � are then given by the solutions of the equation

pcf ½v�i � ¼ pd½v�i � ð4Þ

with pcf ½v�i � :¼ � ln pbuild � ln
P � S½v�i � þ 1

S½v�i �
� �

and pd½v�i � :¼ � ln pdel½w�
ij½v�i ; vj��:

Number and types of extrema of the equilibrium distribution of synapses in a connection is de-
termined solely by the intersection topology (crossing points) of pcf ½v�i � with pd½v�i �, where fine
details of these functions will not matter. This is an important notion as it allows us to analyse
types of neural activation function interacting with types of plasticity rules asking whether or
not their interaction will reproduce the biologically observed synaptic distributions. Hence, we
can restrict the analysis to the different, possibly existing, generic cases how such crossing
points could arise from different shapes of pcf ½v�i � and pd½v�i �.

Note, in Equation 4 the influence of the deletion probability and synaptic plasticity is repre-
sented by pd. The term pcf contains an offset term pbuild and combinatorial factors, which are
shaped by properties of the neuron model via S½v�i �: we find that that pcf ½v�i � takes a characteris-
tic S-shape (see Fig. 2A, middle), where curvature may vary following the input-output (neural
activation) function (Fig. 2A, left and right). The function pd changes slowly across variable
input frequencies but could in principle take any shape. Still, under these constraints, there are
only a few possible intersection topologies between pcf ½v�i � with pd existing, depicted in Fig. 2B.

As long as we have slowly changing curvatures of the neural activation functions (Fig. 2A),
which represents the biologically relevant situation, we will observe maximally two extrema of
the synaptic distributions. We have sorted and numbered these six cases by the number of in-
tersections or extrema in the probability distribution. The resulting qualitatively different prob-
ability distributions are sketched in Fig. 2C. It can be seen that the biologically observed case
(Fig. 1A) is represented by case 6, but we will show in the following (see section “Connection
between two neurons can show hysteresis”) that also some of the other cases play an important
role for the dynamics of the system.

Although case 4 also shows two maxima at zero and at higher values, the second peak for
number of synapses would only be at the maximum number of synapses P. Thus, the observed
falling flank of the upper peak would have to stem from the distribution of potential synapses.
As investigations of these distributions show a much shallower tail [40], case 4 will not be con-
sidered in the following.

Table 1. Distribution shapes for different numbers of extrema.

case # roots Δln p sgn Δln p distribution description

1 0 + one maximum at upper boundary (P)

2 0 − one maximum at lower boundary (0)

3 1 + − maximum at position of sign-change (attractive fixed point)

4 1 − + maxima at both boundaries, repulsive fixed point at sign-change

5 2 + − + maxima at first sign-change and upper boundary

6 2 − + − maxima at lower boundary and second sign-change

doi:10.1371/journal.pcbi.1004031.t001
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Constraints for biological realistic behaviour
As already mentioned, the experimental distributions of the number of synapses between two
neurons [10, 36–39] are based on too small datasets to interpret them as a significant quantita-
tive measurement. However, the shape of the probability distribution is quite similar for all
datasets (Fig. 1A), such that we consider this qualitative shape to be a general property of bio-
logical neural networks (see Text S1). This common distribution shape exhibits a strong peak
at S = 0 followed by a probability minimum for one or two synapses and a second peak between
three to eight synapses. As this distribution shape corresponds to case six in Fig. 2C, we can
identify the class of biological realistic plasticity rules and neuron models, which yield case six
dynamics. Following the results from the previous section, this case necessarily needs two inter-
sections between pd and pcf (i.e. necessary condition: two sign-changes of Dln p) at which the
sign of Dln p has to change from negative to positive and from positive to negative (sufficient
condition). In the following, we will translate these conditions to properties of the neuron
model and the plasticity rule. We will show that, as a necessary condition, the fixed synaptic
weight must grow with the postsynaptic activity. Note, this describes a rather generic condition,
which, however, is very often not fulfilled by standard learning rules. Nonetheless, we will show

Figure 2. Possible distributions of the number of synapses of a single connection resulting from the interaction of synaptic and structural
plasticity with different neuronmodels. (A) Three different curvatures of input-output functions F of the neuron (black) lead to different shapes (curvatures)
of the combinatorial term pcf (red, see Eq. 4). For fixed presynaptic activity and postsynaptic stimulation, the lines are calculated for continuous values of S,
whereas the dots mark successive discrete values. (B)When the combinatorial influences pcf (red, Eq. 4) are smaller than the logarithmic deletion probability
pd (black) for a certain value of S (grey shaded area), the long-term equilibrium probability for S synapses is higher than the probability for S − 1 synapses
(see Eq. 2) and vice versa. Thus, intersections of both terms indicate peaks and valleys of the probability distribution p[S]. To cover all six possible
intersection structures between pcf and pd, we show example snippets for the pd with a variety of curvatures and slopes. (C) The shape of the long-term
equilibrium probability distributions (schematically) for the number of synapses of the plastic connection can be derived from the intersection structures in (B):
each intersection in (B) leads to a local extremum in the probability distribution in (C). Furthermore there can be peaks at the boundaries. Note, experimental
connectivity (Fig. 1A) corresponds to case six which has two intersections. As pcf is monotonically growing, two intersections are only possible for growing
pd-functions.

doi:10.1371/journal.pcbi.1004031.g002
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that a large class of realistic rules obeys this and especially if the system is embedded in a recur-
rent network.

Necessary condition In the first step, we determine under which conditions we can obtain
two intersections between pd and pcf: If we look at pcf, we find that it is always increasing with S
and, thus, also with v�i . Therefore, any monotonously decreasing or constant pd½v�i � can intersect
it maximally once. This would lead to maximally one sign-change of Dln p and to the cases 1–4
(Fig. 2). Thus, to exhibit case six, pd½v�i � necessarily needs to have a positive slope. Following
Equation 1, we obtain that pd / w4=3

ij which is a monotonously increasing function of wij.

Thus, instead of investigating the slope of pd, we can also evaluate whether the derivative
dwij½v�i ; vj�=dv�i is positive, i.e. whether the synaptic weight grows with the postsynaptic

activity.
As the plastic connection can be part of a recurrent network, the postsynaptic activity can

also influence the fixed weight by feeding back to the presynaptic activity. This dependency can
be approximated by a Taylor series vj � r0 þ r1vi þO½v2i �. Note, here we take the unusual per-
spective of presynaptic activity as a function of the postsynaptic one. We restrict our following
analysis to two representative systems: a feed-forward system (r0 = const, r1 = 0) and a linear-
feedback system (r0 = 0, r1 = 1).

In these two systems we now evaluate, if the condition of weights growing with postsynaptic
activity is met for the following commonly used rate-based learning rules: the Hebb rule and
the fixed-threshold Bienenstock-Cooper-Munro (BCM) rule with hard boundaries on the
weights, the Oja rule, the BCM rule with sliding threshold [18], and the Hebbian and the fixed-
threshold BCM rule with weight-dependent synaptic scaling [25]. Although the time scales of
synaptic scaling (minutes to days) and structural plasticity (days to months) slightly overlap,
we still apply the Markov-system-approximation for the rules including synaptic scaling. This
approximation is supported by the similarity of the probability distributions resulting from the
(approximated) analysis and from the simulation of the full system dynamics (see Text S4).

Surprisingly, we find that among the investigated rules a positive slope of the v�i � w�
ij-

relation is only found by the Hebb rule with synaptic scaling in the linear feedback system or
by the BCM rule with synaptic scaling in both systems, hence with and without feedback.
Thus, our model predicts that, at least for Hebb-like synaptic plasticity, feedback plays a crucial
role in generating the biological distribution of the number of synapses. This relates well to the
finding that recurrent microcircuits are overproportionally abundant in cortical networks [34,
35]. When evaluating the v�i � w�

ij-relation for a recently published calcium-based plasticity

rule [24], we find that also this biologically more detailed rule shows a growing v�i � w�
ij-

relation. Although we only show a limited set of rules here, many other rules, as, e.g., Hebbian
learning with soft bounds and weight decay [21], fulfil this necessary constraint (see Support-
ing Table S1 for more rules). In general, the analysis we present here can be used as a tool to
judge whether a learning rule of interest has the potential to generate a certain connectivity.

Sufficient condition So far, we only set up a necessary condition for two extrema. In our
second step, we ensure the right order of the extrema (minimum - maximum). For this, the av-
erage curvature of Dlnp must be negative (at least between the two zero crossings), i.e., the dif-
ference between the curvatures of pd and pcf must be negative. This could be achieved, either by
a strong(er) negative curvature in pd (compare case 61 in Fig. 2B) or a strong(er) positive curva-
ture in pcf (compare case 62 in Fig. 2B). As the common rate-based learning rules mostly do not
lead to a strong negative curvature (compare Fig. 3), a positive curvature of pcf seems to be
more plausible. As shown above, this can be achieved by a neuron model which has an input-
output-curve with negative curvature (concave) in the relevant interval of v�i (resulting in case
62). On the other hand, when assuming very low frequencies, where biological neurons
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typically have convex input-output-relations, it is more plausible that the relation between
fixed weight and postsynaptic activity is sublinearly growing (i.e. negatively curved), which
would result in case 61. Although, the commonly used rate-based learning rules typically do
not show this behaviour, there are synaptic plasticity rules which fulfil this constraint. For ex-
ample the v�i � w�

ij-relation of a calcium-based plasticity rule [24] fulfils the required behaviour

(Fig. 3 rightmost panel). Thus, in either case, also the sufficient condition translates to a biolog-
ically reasonable constraint.

In summary, this analysis predicts that biological connectivity can be generated by a weight-
modulated structural plasticity rule under biological reasonable constraints. We therefore con-
clude, that structural rewiring in cortex could be regulated by the synaptic weight or its mor-
phological correlates.

Experimental distributions can be explained in certain activity regions
We now want to verify that an example combination of neuron model and synaptic plasticity
rule, which fulfils the above conditions, can account for experimental data - here the distribu-
tion of connections between cortical layer IV cells[36].

As input-output-curve for this example, we use the logistic function (1 + exp(−x))−1, which
has the required negative curvature for positive inputs. Thus, one would expect that the experi-
mental data can be explained for postsynaptic activities above 0.5. For the synaptic plasticity
rule, we use a fixed-threshold BCM rule with weight-dependent synaptic scaling [25] in the
feed-forward system (r0 = const, r1 = 0):

dwij

dt
¼ mðvjviðvi � yÞ � k�1ðvi � vtssÞw2

ijÞ

where y is the LTP / LTD threshold of the BCM rule, k a parameter which determines the influ-
ence of a single presynaptic neuron on the input, and vtss the characteristic activity of synaptic

Figure 3. Most of the commonly used rate-based learning rules do not provide a positive correlation between weight and postsynaptic activity.
The slope of the pd-term in Equation 2 is determined by the slope of the fixed weight depending on postsynaptic activity (v�i �w�

ij relation) resulting from the
synaptic plasticity rule. Here we show the v�

i �w�
ij relation of commonly used learning rules [18] for the simple feedforward system (top row) and for a linear

approximation of a feedback system, where the presynaptic activity equals the postsynaptic activity (bottom row). For reproducing experimental data, pd has
to grow, i.e. the fixed weights have to increase with postsynaptic activity. This is fulfilled (red shaded area), for example, by the BCM-learning rule with
synaptic scaling or a Hebb-like learning rule with synaptic scaling and feedback but also for more biological rules like the calcium-based plasticity rule from
[24] (see Materials and Methods for parameters used to generate this figure).

doi:10.1371/journal.pcbi.1004031.g003
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scaling [25]. The learning rate m sets the time scale of the convergence of synaptic plasticity,
but does not influence the equilibrium distribution as long as it is faster than the structural
plasticity time scale.

For this model, we calculate the long-term equilibrium distributions p[S] for a broad range
of presynaptic activities vj and postsynaptic influences I (on a 446 x 357 grid). In Fig. 4A, one
example equilibrium distribution for vj = 0.656 and vi[S = 0] = 0.2975 is compared with the ex-
perimental distribution.

As the experimental distribution have so little statistics, standard statistical test fail to com-
pare model and experiment. Therefore, we evaluated if the experimental distributions would
be a probable outcome, when sampling from the model distribution randomly, by using a
Monte-Carlo test (Fig. 4C, see Methods for details). Like in [40] we define 95% confidence re-
gions as the activity regions, where the model distribution is statistical not significantly differ-
ent from the experimental one (p-value> 5%), i.e. where the model can account for the
experimental distribution (Fig. 4B). For a better comparability, the postsynaptic influence I is
transformed to the resulting postsynaptic firing frequency v�i ½S ¼ 0� for zero synapses (without
presynaptic influence). The resulting confidence region spans a broad range of presynaptic ac-
tivities and postsynaptic stimulations. However, choosing one of the parameters restricts the
other one quite strongly, which indicates, that data could stem from different activity levels,
but depends strongly on the right combination between pre- and postsynaptic influences.

Comparison of the activity regions for different cortical layers
We now want to see if the set of plasticity parameters, which was used to account for the layer
IV connections, would also be able to explain the distributions from other cortical layers and
areas. Although the properties of neurons and synapses could be very different in different lay-
ers and areas, we analyse whether the activities can cause the differences in the experimental
distributions. Therefore, we also calculate the confidence regions for connections between

Figure 4. Model can account for experimental data for suitable pre- and postsynaptic activities. (A) The probability distribution of the number of
synapses between two neurons from experiment ([36], red) is similar to the distribution resulting from the proposedmodel (blue) at vj = 0.656 and vi(S = 0) =
0.2975. (B) The activity confidence regions, where error of the experimental outcome lies within the most probable 95% (yellow) or 66% (green) of the trials,
when randomly sampling frommodel distribution, spans over a broad range of activities. (C) Colour code shows the Monte-Carlo p-values for the hypothesis
that experimental data comes frommodel distribution. For comparability, postsynaptic influence I was transformed to the postsynaptic activity for S = 0 in all
figures. (Parameters: BCM rule with synaptic scaling with θ = 0.08, vtss = 0.1, κ = 9.0, structural plasticity: P = 12, ln pbuild = −16, a = 2.0, ρ = 0.125)

doi:10.1371/journal.pcbi.1004031.g004
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visual cortex layer V cells [10] and barrel cortex layer II/III cells [38, 39] as well as connections
from barrel cortex layer IV to layer II [37] (Fig. 5A). We find that all distributions can be ex-
plained by the same model and parameters, but the activities where the model can account for
the data differ for each dataset. However, these layer-specific activities are consistent with each
other and relate well to biologically observed activities: When comparing the datasets which
are taken from rats barrel cortex, we find that the connections from layer IV are on average ex-
plained by higher presynaptic activities than connections from layer II. Also, the postsynaptic
activity seems to be higher for connections to layer IV. This corresponds to experimental ob-
servation of the spontaneous activities in the rat barrel cortex [45, 46] as well as model predic-
tions of the responsiveness of different cortical layers [53]. In both cases, cortical layer IV
exhibits higher activities than layer II. Furthermore, the two confidence regions for layer II/III
experiments are perfectly overlapping, while - as expected - the dataset with more statistics
leads to a smaller confidence region. This supports the hypothesis that activity can be the pa-
rameter which causes the differences of the experimental distributions. On the other hand, the

Figure 5. Different experimental data can be explained at different activity regions; effects are robust to underlying distributions or parameter
changes. (A) The 95% confidence regions for experimental data from different cortical layers ([10, 36, 37], Fig. 1A) are located at different activities for
different layers. Confidence regions for same experimental location (layer II) overlay. (B) The 95% confidence regions, which emerge from the samemodel
parameters when using a distribution of potential synapses from [40], are qualitatively not different. (C), Schematic drawing which summarises the influence
of a and ρ on the location of the confidence region (see (E) and (F)). For the layer IV data, we evaluated how (D) the area in activity space, (E) the average
presynaptic activity, and (F) the average postsynaptic influence of the activity confidence region changes for different structural plasticity parameters a and ρ.
(Parameters BCM rule with synaptic scaling with θ = 0.08, vtss = 0.1, κ = 9.0, structural plasticity: P = 12, ln pbuild = −16, in A-C: a = 2.0, ρ = 0.125)

doi:10.1371/journal.pcbi.1004031.g005
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confidence regions are also partly overlapping. This indicates, that different activities are not
even necessary to explain the experiments. Either way, one parameter-set for the synapses can
be used for all layers.

Experimental data can be reproduced at reasonable frequencies
In the following, we obtain a quantitative estimate for the activities in different layers from a
model which is more closely matched to biology. For this, we repeated the calculations of the
activity confidence regions for layer II and layer IV intra-layer connections from somatosenso-
ry cortex with an adaptive exponential integrate-and-fire neuron [54] and the calcium-based
spiking plasticity rule [24] described above. We first obtain the input-output-curve of the neu-
ron when stimulated with a constant current. Then, we determine the fixed weight of the plas-
ticity rule when stimulated with pre- and postsynaptic Poisson-spike trains as a function of
their frequencies. Interpolation between the simulated values provides us with continuous
functions for which we can apply the analysis described above.

As above, we find also for this biologically more reasonable system that the ordering of the
activity confidence regions corresponds to the experimental measurements. Furthermore, we
assumed that the pre- and postsynaptic activity must be equal for intra-layer connection.
Along this line, we estimate the activities in different layers as the intersection between the vi =
vj-cline (blue line in Fig. 6) and the activity confidence region of that layer. For the vi = vj-cline,
we used both the baseline postsynaptic activity vi(S = 0) (Fig. 6A) and the expected postsynap-
tic activity calculated for the stationary distribution (Fig. 6B). Although the resulting frequen-
cies do not match the experimental values exactly, our simple model, which uses the same
input-output-relation for all neurons and neglects influences of recurrences or inhibition, pre-
dicts frequencies on the right order of magnitude [45] of about one Hertz.

Figure 6. Quantitative estimates of the activities show biological reasonable ordering in a reasonable frequency regime. (A) Activity confidence
regions for intra-layer connections in somatosensory cortex. To obtain quantitative results, we used an input-output-relation (blue line) from an adaptive
exponential integrate-and-fire neuron [54] and a calcium-based plasticity rule [24] (see Methods). As in Fig. 5, the activities for layer IV connections are larger
than those for layer II connections. The firing frequencies lie in a biological reasonable range. (B) The expectation value of the postsynaptic activity for
stimulations within the confidence intervals confirm that experimental data can be reproduced with equal pre- and postsynaptic activity as expected for intra-
layer connections.

doi:10.1371/journal.pcbi.1004031.g006
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Influence of structural plasticity parameters
In this section, we demonstrate that the structural plasticity model does not require fine tuning
to yield bimodal distributions and, thus, that they are a general feature of the proposed model.
Along this line, we evaluate the influence of altered structural plasticity parameters on the size
and position of the confidence region in activity space for the system used in Fig. 5A.

First, we investigate the influence of an altered number of potential synapses. For this, we
use the estimated probability distributions of the number of potential synapses p[P] from [40]
instead of the fixed number P = 12. Along this line, we calculate the equilibrium distributions
for each P 2 [1, 20] separately. Then, we sum those distributions weighted with the probabili-
ties p[P]. Again, we test, if this summed distribution is statistically different from the experi-
mental distribution and obtain 95% confidence regions (Fig. 5B). We find that the shape of the
confidence regions resembles the one for P = 12 potential synapses, but is overall larger (see
Fig. 5B), and that the confidence regions for the P-distributions are slightly shifted to higher
presynaptic activities. This is not surprising, because the mean probability mass of the P-distri-
bution lies below P = 12 and smaller P increase pcf by decreasing the combinatorial factors. To
maintain the same intersection structure for smaller P, larger weights and larger activities are
required in pd.

Second, we vary the parameters a and r which determine height and width of the deletion
probability pdel. For each combination (a, r) we determined the area in the activity space as
well as the averaged presynaptic activity and postsynaptic stimulation of the 95% confidence
region for layer IV data [36] on a grid of 90x90 values (Fig. 5C-F).

It turns out that an increase in a a or r shifts the confidence regions to lower presynaptic ac-
tivities and higher postsynaptic stimulations (Fig. 5E and F; schematically summarised in Fig.
5C ). Also, there is a corridor in the a−r space where the confidence regions reach a maximal
area. The relation of a and r along that corridor follows a negative linear function (Fig. 5D).
Only parameter sets far away from this maximal corridor eventually lead to a disappearance of
the confidence region, and, in general, the system still shows the desired behaviour when the
optimal parameters are varied by 10 – 20%.

For the neuron model and synaptic plasticity rule we use here, the largest area of the confi-
dence regions is obtained when the presynaptic activity is larger than the postsynaptic baseline
activity v�i ½S ¼ 0�. Choosing approximately equal pre- and postsynaptic activities leads to
smaller confidence regions in this system, but the model can still account for the data. A very
large confidence region only means that the system behaviour is very similar over a large range
of activities, which indicates that this behaviour is robust to changes in activity. On the con-
trary, a more confined confidence region means that a significant change of the distribution
can be achieved by a smaller change in activity, which indicates that the connectivity can be
controlled by changing the activities and stimulations more easily.

Activity-dependent changes of the equilibrium distribution
The size of the confidence region, however, can only predict the sensitivity of the equilibrium
distribution to activity changes. In the following, we answer the question how an altered activi-
ty changes the shape of the distribution. For this, we evaluate activity-dependent changes for
the above example model which was already shown to exhibit biological realistic behaviour for
a certain combination of pre- and postsynaptic influences. We now use this combination as a
putative working point of the biological system, keep one of the influences at the value of this
working point and calculate the equilibrium distributions when varying the other.

As predicted by the confidence regions, the shape of the distributions are altered strongly by
these changes: If pre- or postsynaptic influences are weak, there is only one probability
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maximum at S = 0 (Fig. 7A for pre- and Fig. 7B for postsynaptic influence). For higher influ-
ences, the second peak emerges and for even stronger influences the probability mass shifts to
the upper peak until the peak at S = 0 eventually vanishes.

In our example system, changing postsynaptic influence only appears to alter the height of
the probability peaks, which are present at the working point, leaving their shape unchanged,
whereas changing presynaptic activities also shift the position of the upper peak until it reaches
the maximum number of synapses.

In order to understand this behaviour, we treat S as a continuous quantity and calculate the
values of S where building and deleting a synapse are equally probable (Fig. 7A-B black lines).
These points separate the states S (intervals for continuous S) where the system is expected to
increase or decrease its number of synapses. If we treat the stochastic process like a dynamical
system which would be following the net probability flow, these points correspond to attractive
(solid line) and repulsive (dashed line) fixed points. If the net probability flow points towards
one of the boundaries S = 0 or S = P, we also add this boundary as an attractive state.

We see that these fixed points correspond to the shape of the distributions: for both low
pre- or postsynaptic stimulation there is only the attractive state at S = 0. For stronger stimula-
tions a pair of repulsive and attractive states is generated (comparable to a saddle node bifurca-
tion in dynamical systems). For high postsynaptic stimulation, a second bifurcation leads to
the disappearance of the repulsive fixed-point and the attractive state at S = 0, leaving only the
upper attractive state. For presynaptic activity the second bifurcation does not occur if S is a

Figure 7. The BCM rule feedforward connection shows a hysteresis in pre- and postsynaptic stimulation. (A) The predicted probability distributions p
[S] (in colour-code) for the system from Fig. 4A is strongly influenced by varying the postsynaptic stimulation. Black lines indicate the values of S (treated as
continuous variable) for which synapse creation and deletion are equally probable. These points correspond to stable (continuous line) or unstable (dashed
line) fixed points of the dynamical system following the net probability flow of our system and indicate the existence of local extrema in the long-term
equilibrium probability distribution. Two bifurcations lead to an appearance and disappearance of a bistability, which indicates a possible hysteresis. (B) The
same applies for varying the presynaptic activity, although the second bifurcation on the right hand side does not reveal for continuous S, but takes place in
the discrete case as both sign changes happen between two consecutive states. (C) Simulation reveals the predicted hysteresis: postsynaptic stimulation
was increased stepwise such that vi(S = 0) increased by steps of 0.01 until it reached 1.0 and then decreased again. For each stimulation, the average
number of synapses was calculated separately for the in- and decreasing direction and later averaged over all stimulation cycles (see Methods). The blue
curve depicts the average number of synapses in the increasing and the green curve the decreasing direction. (D) Altering presynaptic activity in the same
way also yields a hysteresis loop. (Parameters: BCM rule with synaptic scaling with μ = 0:2, θ = 0:08; υtss = 0:1; κ = 9:0, structural plasticity P = 12; ln pbuild =
−16; a = 2.0; ρ = 0:125, in A, C: vj = 0.656, in B, D: vi(S = 0) = 0.2975)

doi:10.1371/journal.pcbi.1004031.g007
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continuous variable. However, it effectively does take place when the two lower fixed points lie
closer together than the discrete states of S can resolve.

As we showed above, a necessary condition for the existence of two fixed points is that the
fixed-weights resulting from synaptic plasticity grow with increasing postsynaptic activities.
Given this, synaptic plasticity maps an increase in the number of synapses onto larger synaptic
weights, which finally results in a decrease of the deletion probability. At some point, synapse
deletion becomes as probable as synapse creation. This point can be viewed as a threshold: All
numbers of synapses below this threshold (below dashed line in Fig. 7A and B) yield systems
which remove synapses more likely than they create them and converge to S = 0. For all higher
numbers of synapses the system converges into the upper attractor. This bistability emerges
from structural plasticity only due to the growing v�i � w�

ij-relation. A bistability of the weights

themselves, as observed, e.g., for the BCM rule, is not necessary and also not used here (e.g.,
our vi(S = 0) = 0.2975 is larger than the LTP/LTD-threshold y = 0.08 of the BCM rule). Howev-
er, a potential bistability of the weights could even strengthen the bimodality of the synapse-
distributions and enhance the effects observed in this study.

Beside the bistability, we also observe regimes with one fixed point. In these regimes, synap-
tic plasticity does not only map changes in the number of synapses, but also the external pre-
and postsynaptic stimulations onto the weights. For example, at very small stimulations, the
weights are small and the deletion probability is much larger than the build-up probability.
Therefore, the changes in the weights due to the number of synapses may not be sufficient to
create a regime where synapse creation dominates such that there is no upper attractor.

These examples show that the activity-dependent change of the equilibrium distribution
can only be understood from the interaction of synaptic and structural plasticity. Along that
line, Equation 4 provides insight into the fixed points and bifurcations which govern the system
dynamics.

The connection between two neurons can show hysteresis
In dynamical systems theory, the bifurcation structure described above is associated with hys-
teresis [55]. A hysteresis, in turn, would mean, that temporary changes in activity leads to per-
sistent changes in the system’s dynamic. This would be a very desirable feature of the system,
as it indicates the possibility to store information in the connectivity. However, for a stochastic
system a hysteresis does not necessarily emerge, because in contrast to a dynamical system
which can remain in a certain state for infinite times without losing information, the stochastic
dynamics in the long-term equilibrium yields a stationary distribution which is independent of
the system’s history. But, if activities change faster than this equilibrium can be reached, the
connection between two neurons could in principle exhibit a hysteresis. To test this, we simu-
late its behaviour while we repeatedly increase the presynaptic activity or postsynaptic influ-
ence stepwise until they are close saturation (v = 0.99) and then decrease them again to v = vtss.
Thus, the system is on average exposed to an intermediate stimulation, where both attractors
exist, but experiences both very high and very low stimulations during one stimulation cycle.
As an indicator, whether the system behaves differently after low as compared to after high
stimulation, we use the average number of synapses. We calculate this number for each step of
such a stimulation cycle in the following way: the number of synapses is averaged over the
time-interval with constant influences (separately for increasing and decreasing). Afterwards,
the time-averages for each step are also averaged over all cycles.

Indeed, the average number of synapses shows a hysteresis loop when changing either influ-
ence (Fig. 7C and D). This means that the number of synapses can in fact depend on the
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system’s history. As already mentioned, this is only possible if the system does not reach its sta-
tionary probability distribution.

In the activity regime with two attractors, the probability that the Markov-Chain describing
our structural plasticity process jumps from one basin of attraction to the other becomes very
small. Thus, if the system is allowed to stay in the activity regime with two attractors for suffi-
ciently small times in our simulation, we expect no transitions between the basins of attraction.
Thereby, the two parts of the Markov-Chain become effectively unconnected (i.e. ergodicity
breaking) and the system can be expected to stay in one basin of attraction. By de- or increasing
the stimulation, one of the attractors vanishes and the whole Markov-Chain becomes effective-
ly connected again with higher probabilities. Thus, the probability mass quickly shifts towards
the remaining attractor. When the system is then brought back into the two-attractor regime,
the Markov-chain separates again into two effectively unconnected parts and the system is very
likely to stay in the attractor, it has been brought to.

However, the disconnection of the two parts is not due to a changing probability to jump to
another state, as at least pbuild is constant. Instead, the disconnection is a result of the low prob-
ability to be at the boundary of the basin of attraction, where creating (or deleting) one synapse
already leads to a transition to the other basin of attraction. Thus, the probabilities p[S] of the
number of synapses between the two peaks must be very low. As this is a feature of the experi-
mental probability distributions, we expect all systems, which exhibit biological connectivity
and a structural plasticity, which can be described similarly, to undergo this effective discon-
nection of the parts of the Markov-Chain and, thus, also to show a hysteresis. Furthermore,
these low probabilities, to be at the boundary of the basin of attraction, can only emerge due to
intermediate states between the two attractive fixed points. These states only exist for the multi-
synaptic system.

Discussion
We presented a biological plausible, simple model for stochastic structural plasticity in adult
networks and analysed its interaction with different synaptic plasticity rules and neuron mod-
els. Remarkably, we find that biological connectivity, i.e. the probability distribution of the
number of synapses from one neuron to another, can only be explained when this structural
plasticity interacts with synaptic plasticity rules leading to increasing synaptic weights along
with stronger postsynaptic activities, which corresponds to the basic idea of Hebbian plasticity
[5]. Additionally, the firing frequency of the neuron likely grows sublinearly with the input cur-
rent. We further show that a model, which fulfils these constraints, can account for experimen-
tal datasets from different cortical layers at different activities, which are ordered in the same
way as experimentally observed activities in those layers. Furthermore, although this is not ex-
plicitly implemented in our model, the connectivity can be controlled via pre- and postsynaptic
stimulation. Along this line, we demonstrate that the number of synapses may exhibit a hyster-
esis when altering the pre- or postsynaptic stimulation. The hysteresis emerges from a very
small probability that the system is close to the boundary of its actual basin of attraction. This
can be assumed for all systems which exhibit the experimentally observed connectivity in long-
term equilibrium.

Faster synaptic plasticity mechanisms and fluctuations
In this work, we use rate-based neurons and rate-based synaptic plasticity rules. However,
there exist synaptic plasticity mechanisms on faster time scales, as, for instance, spike-timing-
dependent plasticity (STDP, [56]). On the time scale of our model, the effects of such plasticity
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mechanisms would appear as fluctuations of the weight or fluctuation of the volume of the cor-
responding dendritic spine respectively.

Accordingly, it has also been shown that the volume fluctuations partly depend on NMDA-
receptor activation [13], which is associated with STDP. However, blocking of the NMDA-re-
ceptors shows that there are also other fluctuation sources.

As a consequence of such fluctuation, the weights or volumes are rather broadly distributed.
Still, for each weight or volume in the distribution there is a certain probability for deletion in a
certain time interval, as the fluctuations could have driven it beyond some deletion threshold.
As both, the individual deletion probability and the distribution are unknown, we assume that
one can directly calculate the expected deletion probability for the whole weight (volume) dis-
tribution from the characteristic weight wij emerging from synaptic plasticity via equation 1.
Thus, the fluctuations can be viewed as the underlying reason for the stochastic deletion in this
model and faster plasticity mechanisms should be already implicitly included. Along this line,
the parameter a would correlate with the width of the resulting weight distribution and, so,
with the strength of the fluctuations. As already described, volume or weight fluctuations are
the basis of the synapse deletion probability in our model, such that we hypothesise that it al-
ready covers the influence of faster plasticity mechanisms.

The above argumentation relies on the assumption that spike-timing-dependent plasticity
on average leads to undirected changes of the weight, which can be modelled as fluctuations.
However, persistent strong temporal correlation between neural activities could alter the result-
ing synaptic weights strongly. In the case when the weights only depend on correlation of the
firing between pre- and postsynaptic neuron, we could use this correlation instead of the post-
synaptic firing in our analysis. Then, to fulfil the necessary condition for case six, the weight
would have to grow with this correlation. Moreover, it is also reasonable that the correlation
saturates at some point and, thus, also the sufficient condition can be fulfilled. Therefore, even
when synaptic weights depend on correlations between the neuronal firing, the essential state-
ments of our analysis remain true.

Yet, firing correlations and rates can also jointly determine the synaptic weight, together
with many other factors like conduction delays, sub-threshold potentials [57] or molecular
concentrations [24]. In that case, the interaction between the plasticity mechanisms would
yield even more complex dynamics and our analysis has to be extended by these mechanisms.

Potential synapses
In the presented model, we assume that the number of potential synapses between two neurons
is constant. For adult networks, this is realistic, because the number of potential synapses is de-
rived from the morphology of axons and dendrites, which has been observed to be quite stable
in adult networks [12, 58]. However, there is evidence for large-scale morphological changes of
axons and dendrites during development or after major injuries [1, 59]. Moreover, changes of
the morphology depend on calcium concentration [60–62], which can be seen as a low pass fil-
tered version of the neural activity. Thus, in order to account for early development or recovery
from major injuries, our model would have to be extended by a dynamic number of potential
synapses, which depends on the neuronal activity (see, e.g., [28]). However, for healthy adult
networks this seems not to be necessary.

Activity-dependent synapse formation or removal
Although experiments show an experience-dependent rate of spine formation [42, 49, 52, 63]
or removal, the presented model assumes activity-independent synapse formation or removal
probabilities. We do so because these effects might as well be a result of experience-dependent
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synaptic plasticity of the weights which leads to stabilisation or destabilisation of the corre-
sponding dendritic spines [64, 65] without any direct activity dependence in the building or re-
moval probability. However, we want to shortly discuss if and how an explicit activity-
dependence of the probabilities would qualitatively change the presented results. For this, one
has to consider that the equilibrium distributions of the number of synapses between two neu-
rons are dominantly determined by the ratio between building and removal probability. Thus,
if both formation and removal probability change similarly, their ratio, and, thus, the equilibri-
um probability distributions of the number of synapses, will not change and our results remain
valid. Only the dynamics of the system would become faster or slower.

Otherwise, when the activity-dependent changes can be written as factors in pdel and pbuild,
only the ratio of those changes will influence the equilibrium probability distribution, while the
absolute values will only influence the speed of convergence. Thus, when only considering the
equilibrium probabilities, the whole activity-dependence can be modelled by a activity depen-
dence of one of the probabilities: e.g., a building probability which increases with activity (com-
pare [66]) corresponds to a deletion probability which decreases with activity. Both cases can
be modelled by a (postsynaptic) activity-dependent term with a negative slope in pd. As a con-
sequence of that, the v�i � w�

ij-relation would need an even stronger positive slope to fulfil the

necessary condition.
Only when the building probability decreases or the removal probability increases with ac-

tivity (homoeostasis) the dynamic of the system would change qualitatively and would not
yield the same constraints as we find in our analysis.

Information storage
The topology of neuronal networks has always been proposed to provide information storage
capacity. Accordingly, the emergence of a hysteresis implies that the dynamic of a single con-
nection is influenced by its past and, thus, also stores information about it. Systems with similar
attractor structures (hysteresis) have been shown to store information, e.g., in computer-hard-
drives but also in biological [67] and neuronal systems [68, 69].

It has already been shown that an autonomous network with homoeostatic structural plas-
ticity follows a hysteresis during connectivity build-up in a self-organized way [26]. In contrast,
the hysteresis loop in the current study is controlled by external stimulations.

In previous studies, the storable information of a single synapse is deduced from the number
of possible topologies of a network, given by the number of possibilities to select a certain num-
ber of synapses from the pool of potential synapses [70, 71]. This relies on the assumption, that
two different selections of the same number of synapses can be distinguished, which is only
possible when considering the morphology of the neural system. However, the behaviourally
relevant output of neural networks is rather determined by neuronal and synaptic dynamics
than by morphology itself. Thus, we suggest that two topologies must be distinguishable from
the network dynamics in order to represent two different states. In our model, by construction,
all possible choices of the same number of synapses from one presynaptic neuron yield the
same postsynaptic dynamic. Thus, they cannot be distinguished and code the same state. This
leads to a decrease in the information capacity per synapse, which could be prevented by ex-
tending our model by morphology or other ways to distinguish multiple synapses (delays,
shapes of postsynaptic potentials, etc.).

A further decrease in information capacity per synapse can be expected from fluctuations of
the number of synapses. For example, on the time scale of the shown hysteresis, these fluctua-
tions effectively allow us to determine only the basin of attraction the system is in. Thus, the
sum of the information capacity of all synapses on one connection is maximally one bit.
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The advantage of a multiple-synapse connection for information storage as compared to
single-synapse systems reveals itself in the duration of learning and forgetting: The system is
fluctuating around the attractive states and only transits to the other basin of attraction with a
very low probability. This implies that the transition- or forgetting-time of the system exceeds
the time, which is needed to build or remove a single synapse.

It was shown that in a structurally similar class of models - the so-called cascade models [72,
73] - the lifetime of memories is enhanced. In these models, connections can be in a weak or a
strong state (comparable to the two basins of attraction in our model) consisting of several
sub-states (number of synapses). Two plasticity mechanisms, synaptic plasticity and metaplas-
ticity, are modelled by stochastic transitions between states and sub-states respectively. In our
model, both transitions would be changes in the number of synapses, which either end up in
the same or in the other attractor. Although, in our model, the sub-states are not exactly ar-
ranged as a cascade, the dynamics of the single connection is determined by the interaction of
multiple exponential processes with widely ranging time scales (see Text S6). Due to the struc-
tural similarity, we would expect in our system similar power-law forgetting of stored memo-
ries as in the cascade model, which relates well to forgetting measured in humans [74–77].

Besides the functional form of the forgetting curve, another important problem has to be
solved to model learning by a neuronal system: the system must always be plastic enough to
form new memories, but also keep traces of old memories during acquiring new ones. This
problem has been termed the plasticity-stability dilemma [78]. In the context of synaptic plas-
ticity, neuronal systems with bistable synapses, which only switch their state due to extraordi-
nary (high or low) activities [79], have been proposed to solve this problem [80]. In the context
of structural changes, the results from above as well as previous work [40, 43] suggest that bis-
table dynamics also govern the number of synapses between two neurons. Our results now
demonstrate that collective dynamics of synapses can store information about the system’s his-
tory and that, comparable to synaptic plasticity case, the number of synapses can be shifted to
either basin of attraction due to high or low activities. Thus, we expect that the here proposed
interaction of synaptic plasticity and structural plasticity can be used similarly to tackle the
plasticity-stability dilemma for memories stored in the network structure.

Materials and Methods

Model
Each connection from neuron j to i in our model has a certain number of potential synapses
Pij. At each time step of the simulation and each of those locations, the probability to create a
functional synapse is pbuild = const. The number of realised synapses is denoted by Sij and each
of these synapses has a weight wij,k with k 2 {1, . . ., Sij}. The time development of those weights
is described by a synaptic plasticity rule, a differential equation for the weight wij,k, which only
depends on local quantities accessible by the synapse (pre- and postsynaptic activities (vj, vi)
and the weight itself) and is required to have a stable fixed point w�

ij½vi; vj�. Every realised syn-
apse can be deleted with a weight-dependent probability

pdel½wij;k� ¼ prbuild expð�a2w4=3
ij;k Þ:

Neuronal activities are determined by a nonlinear function F (the input-output curve) of the
inflowing currents:

vi ¼ F
X
j 6¼i

XSij
k¼1

wij;kvj þ Ii

" #
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where Ii denotes neuron specific influences from outside the modelled network, e.g., inhibitory
input or thalamic afferents. For the function F we use the sigmoidal function F[x] = (1 + exp
(−x))−1 if not stated differently.

Equilibrium distribution
Synaptic plasticity is fast compared to structural changes [48]. Thus, we assume that the weight
has converged to its fixed point w�

ij before a structural change takes place. As the fixed weight

and the corresponding fixed postsynaptic activity v�i can be determined only from the actual
number of synapses Sij, the deletion probability also only depends on Sij. Thus, if we interpret
the number of synapses as states of the system, the transition probability to any other state only
depends on the actual state. Therefore, similar as in [43], the system can be treated as a Markov
process. The transition probabilities from l to k synapses are given by

Mkl ¼

Xminfl;P�kg

x¼0

l

x

0
@

1
Apxdel;l � ð1� pdel;lÞl�x

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
remove synapses

P � l

kþ x � l

0
@

1
Að1� pbuildÞP�k�x � pkþx�l

build|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
form k � l þ x synapses

if k > l

Xminfk;P�lg

x¼0

l

l � kþ x

0
@

1
Apl�kþx

del;l � ð1� pdel;lÞk�x

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
remove l � k þ x synapses

P � l

x

0
@

1
Að1� pbuildÞP�l�x � pxbuild|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
form x synapses

if k � l:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð5Þ

where pdel;l ¼ pdel w�
ij½vi½S ¼ l�; vj�

� �
. As this is a strictly positive stochastic matrix, the Frobe-

nius-Perron-theorem guarantees the existence of a stationary distribution, which can be calcu-
lated as the eigenvector for eigenvalue 1. This calculation may be numerically difficult as the

entries of the matrix are distributed over many orders of magnitude (e.g., p0build . . . p
Pij
build).

However, to estimate the stationary distribution analytically one can use the first step ap-
proximation [43]. In this approximation, we allow the system only to increase or decrease its
number of synapses by one during one time step. Thus, the states of the Markov-process are
connected as a sequence. Once the system has reached its stationary state, the system is in de-
tailed balance, i.e. the probability flow between two neighbouring states S − 1 and S cancel out,
such that the probability of either state remains constant:

p½ðS� 1Þ ! S� ¼ p½S ! ðS� 1Þ� ðdetailed balanceÞ

with p½ðS� 1Þ ! S� ¼ p½S� 1�|fflfflfflffl{zfflfflfflffl}
state probability

� ðP � Sþ 1Þ � pbuild|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
transition probability

p½S ! ðS� 1Þ� ¼ p½S�|{z}
state probability

� S � pdel½w�
ij½vi½S�; vj��|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

transition probability

:
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From this we calculate the ratio between the probabilities of two neighbouring states in the sta-
tionary probability distribution

p½S�
p½S� 1� ¼

ðP � Sþ 1Þ
S

pbuild
pdel½w�

ij½vi½S�; vj��
only by knowing the fixed weights w�

ij½vi½S�; vj� for each number of synapses. The state probabili-

ties can now be recursively calculated from p[0]

p½S� ¼ p½0� � P

S

 !
pSbuild

YS
Ŝ¼1

p�1
del;Ŝ with pdel;S :¼ pdel½w�

ij ½vi½S�; vj��: ð6Þ

Finally, p[0] can be obtained from normalization

p½0� ¼
XP
S¼0

P

S

 !
pSbuild

YS
Ŝ¼0

p�1
del;Ŝ

 !�1

: ð7Þ

Investigated synaptic plasticity rules
The investigated synaptic plasticity rules [18–20, 25] are summarised in Table 2.

Parameters and their values used for Figure 3
Weight boundaries wmin = 0.04, wmax = 0.95; learning rate m arbitrary; presynaptic activity vj =
0.08; synaptic scaling characteristic activity vtss = 0.05; synaptic scaling velocity parameter k =
1; BCM threshold y = 0.1; fixed weight for BCM with sliding threshold 0.5 (omitting any as-

sumptions about the inverse input-output-curve F−1 and inverse target activity ~y of BCM ).
The last panel was obtained from simulating the spike-timing-dependent plasticity rule from
[24] with the therein provided parameters for cortical neurons (see below).

Simulation of the calcium-based plasticity rule
As an example of a realistic spiking plasticity rule, we simulated the calcium-based plasticity
rule proposed in [24]:

tw
dwðtÞ
dt

¼ gpð1� wðtÞÞY½cðtÞ � yp� � gdwðtÞY½cðtÞ � yd�

dcðtÞ
dt

¼ �cðtÞ=tc þ
X
k

Cpredðt � tpre;kÞ þ
X

l

Cpostdðt � tpost;lÞ

Table 2. Rate-based synaptic plasticity rules and their v*i − w*
ij-dependencies.

rule differential equation _wij feedforward w�
ij feedback w�

ij

Hebb with hard boundaries _wij ¼ mvjvi with wij 2 [wmin, wmax] wmax wmax

Bienenstock-Cooper-Munro rule . . . with fixed-θ and hard boundaries . . . with
sliding threshold θ = θ[t]

_wij ¼ m � vjviðvi � yÞ with wij 2 [0,wmax] fixed point:

y ! ~y � v�
i
2

wmin; wmax
F�1 ½~y�1 ��Ii

vj

wmin; wmax
F�1 ½~y�1 ��Ii

~y�1

Oja rule _wij ¼ mðvjvi � wijv
2
i Þ vj

vi
1

Hebb rule with weight-dependent scaling _wij ¼ mvjvi � mk�1ðvi � vtssÞw2
ij

ffiffiffiffiffiffiffiffiffiffi
kvi vj

vi�vtss

q ffiffiffiffiffiffiffiffiffiffi
kv2

i
vi�vtss

q
fixed-θ BCM rule with weight-dependent scaling _wij ¼ mvjviðvi � yÞ � mk�1ðvi � vtssÞw2

ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kvj vi ðvi�yÞ
vi�vtss

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
kv2

i
ðvi�yÞ

vi�vtss

q
doi:10.1371/journal.pcbi.1004031.t002
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whereY denotes the Heavyside-stepfunction and tpre,k and tpost,l are the times of the kth pre-
synaptic spike and the lth postsynaptic spike. We neglected the bistable potential term, as such
a variation can be assumed to have no effect on the ability of this rule to account for various
plasticity experiments [24]. However, this allows us to integrate the differential equations ana-
lytically between two occurring spikes (see Text S7). At low rates, this integration method al-
lows simulation until weights have converged.

To obtain the fixed weight for a certain combination of pre- and postsynaptic rates, 500 con-
nections were simulated simultaneously with stimulation from independent Poisson-inputs
with these rates. After fixed time intervals, which covered at least 200 spikes from each site, the
mean and standard deviations of the weights in the ensemble were evaluated. The simulation
was stopped when the mean fluctuated around a stationary value and these fluctuations were
smaller than the target accuracy of 0.005. For both, Fig. 3 and 6, the parameters for cortical
slices were used [24]: tw = 346.361 s, yp = 1.3, gp = 725.085, yd = 1.0, gd = 331.909 tc = 22.7 ms,
Cpre = 0.5617, Cpost = 1.2396. For the feedforward system in Fig. 3, we used a presynaptic activi-
ty of vj = 8 Hz. The error bars represent one standard deviation.

Monte Carlo p-values
As the experimental datasets [10, 36–39] only contain little statistics and several numbers of
synapses which were not observed, standard statistical tests are not suitable for our study. In-
stead, we use the following method to generate p-values to test if the experimental data can re-
sult from a model distribution p[S]: we sample from this distribution Nexp times, where Nexp

represents the number of neuron pairs investigated in the experiments (this number sometimes
had to be estimated by dividing the number of connected pairs by the connection probability
in that experiment). The sampled data is sorted into a relative frequency histogram psample and
compared to the model distribution p[S] by determining the squared error

SE :¼
XP
S¼0

ðp½S� � psample½S�Þ2:

This process is repeated for NMC times (typically NMC = 1000) to obtain an estimate for the
probability distribution of the error SE which results from randomly sampling from p[S]. Final-
ly, we evaluate the squared error SE for the experimental distribution pexp[S] and determine the
p-value as the probability to obtain a larger squared error from random sampling.

Confidence regions of the adaptive exponential integrate-and-fire
neuron
We simulated the adaptive integrate-and-fire neuron given in [54] stimulated by noisy current
I (snoise = 0.05�I) with a forward Euler algorithm. The average spiking rate as a function of the
input current was determined over intervals of 2500 s with currents increasing by steps of 0.5
pA in an interval from 600 pA to 1450 pA. The weights resulting from the calcium-based plas-
ticity rule were simulated as described above and scaled with w0 = 0,035 nA Hz−1. Both simu-
lated curves were then transformed to continuous functions by interpolating between the
simulated values. For those functions, the fixed postsynaptic activities and weights were solved
and used in the further analysis as described for Figs. 4 and 5.

Simulations
Simulations were carried out in C. For each time step of the simulation, the following calcula-
tions were performed for all neurons: (1) calculate new firing rates from the standard sigmoidal
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input-output curve; (2) calculate weights from the learning rule by using a classical Runge-
Kutta algorithm (4th order) for integration; (3) calculate deletion probabilities and delete syn-
apses; (4) create synapses at vacant potential synapses. New weights were initialized with

w0 ¼ 0:05
ffiffiffi
k

p ð1� vtssÞ�1=2.
For the fixed-threshold BCM rule with weight-dependent scaling

dwij

dt
¼ mðvjviðvi � yÞ � k�1ðvi � vtssÞw2

ijÞ

the following parameters were used in all simulations: m = 0.2, k = 9, y = 0.08, and vtss = 0.1.
The synapse creation probability was set to pbuild = exp(−16.0) and the removal probability

was determined using r = 0.125 and a = 2.0.
To obtain the hysteresis curves, the stimulations I{i,j} were repeatedly altered in a way that ei-

ther the presynaptic activity or the postsynaptic activity at S = 0 synapses increased in steps of
0.01 until they reached 1.0 and then decreased again until they reached 0.05 (= 1 stimulation
cycle). Each of those stimulations was applied for an interval of 6 � 105 time steps for the post-
synaptic and 6 � 106 steps for presynaptic hysteresis curve. For each of those stimulation inter-
vals, the average number of synapses of the stimulation-interval was saved. After simulation,
these time averages were averaged over all stimulation cycles (2612 for postsynaptic and 1141
for presynaptic hysteresis).

Supporting Information
S1 Supporting Text. Error estimation for experimental datasets. In this text we estimate
confidence intervals for the experimentally obtained probability distributions for the number
of synapses between two neurons and evaluate error measures from previous work [43] which
would result from these intervals.
(PDF)

S2 Supporting Text. Derivation of the fixed-points of the different plasticity rules.
(PDF)

S3 Supporting Text. Input-Output-relations of different neuron models.We simulated the
Input-Output relations of different neuron models to demonstrate that a concave Input-Out-
put-relations is a common feature.
(PDF)

S4 Supporting Text. Comparison of predicted distribution with simulations. For layer IV,
the probability distributions from the experiment and the analysis with approximations are
compared to a distribution obtained from a full simulation of the model dynamics.
(PDF)

S5 Supporting Text. Sensitivity to the power of wij.We show that the demonstrated effects

do not strongly depend on thew4=3
ij -dependency in the deletion probability by repeating the

analysis from Fig. 4 to 5 for aw2
ij -dependency.

(PDF)

S6 Supporting Text. Relation to cascade model. In this text the similarities and differences to
the cascade model are discussed in greater detail.
(PDF)
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S7 Supporting Text. Integration of the Graupner-Brunel plasticity rule. This text describes
how the calcium based plasticity rule [24] is analytically integrated for the simulations.
(PDF)

S1 Supporting Table. Learning rules and conditions. For a broad variety of learning rules
this table indicates whether the fixed weights fulfil the necessary or the sufficient condition.
(PDF)
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