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a b s t r a c t 

The bursting of action potential and sparse activity are ubiquitously observed in the brain. 

Although the functions of these activity modes remain to be understood, it is expected that 

they play a critical role in information processing. In addition, the functional role of ret- 

rograde signalling in neural systems is under intensive research. Therefore, we propose a 

bio-inspired neural network that is capable of demonstrating these activity modes as well 

as shifting themselves from normal to bursting or sparse modes by changing model pa- 

rameter values. Accordingly, we model diffused retrograde signalling with different activ- 

ity patterns in dendrites and presynaptic neurons. Using in a three-layered spiking neural 

network, simulation studies are conducted using different conditions and parameter values 

to find factors underlying the change in firing rate of output neurons. Our findings propose 

the application of retrograde signalling as a known synaptic mechanism for the develop- 

ment of artificial neural systems to encode environmental information by different spiking 

modes. 

© 2017 Elsevier Inc. All rights reserved. 
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1. Introduction 

Neurons communicate with other neurons by transforming synaptic input patterns into output spike trains. This mode

of communication strongly depends on the properties of voltage-gated conductance in neuronal membranes. Biological neu-

ral systems are equipped with complex molecular and synaptic mechanisms [15,45] . Specifically, synaptic mechanisms play

a key role in memory and learning processes that take place across different time scales [40,36] . Although understanding

the function of neural systems at different time scales is a challenge for modern neurosciences, theoretical and computa-

tional studies may help understand and interpret experimental findings by shedding light on how single neurons and neural

populations encode, store and retrieve information [27] . Moreover, to develop artificial architectures that show animal-like

behaviours, we must understand the principles of information processing in the neural systems and how they trigger be-

haviours. 

Bursting is a firing mode of neurons which is characterized by high frequency spikes, followed by a period of relative

silence [7] . 

Neurons in a variety of biological neural systems exhibit correlated activity. Understanding how input correlations are

processed and transmitted from a layer of neurons to the next neural layer has been studied. Recently, it has been shown
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that neural bursting can be generated intrinsically in neurons themselves or as a result of stimulation by network activity

[24] that plays a central role in enhancing output correlations of a neural layer. Another observed firing mode of neurons

is sparse spiking –low firing rate- which is observed in some brain regions such as the dentate gyrus in the hippocampus

[11] or auditory cortex [26] . 

Activity in cortical networks is heterogeneous, sparse and often precisely timed. The functional significance of sparseness

and precise spike timing has been under intense debates. Some studies have provided an account for the developmental

and synaptic mechanisms that shape neuronal discharge sparse patterns in cortical activities [40] . 

It is believed that feedforward or feedback inhibitory circuits in neural networks plays a role in controlling sparse activity

of cortical neural networks [23,32,10] . These inhibition mechanisms play a key role in memory processes in insects [13] .

In addition, the homeostatic feedback mechanism in synapses is one of the stabilizing mechanisms in which diffusion of

retrograde messengers from postsynaptic to presynaptic neurons as a consequence of action potential reach axonal terminals

[35] . These mechanisms equip neurons and neuronal circuits to sense how active they are and to adjust their firing to keep

this activity within some target range [34] . In addition, biophysical features of neurons including factors that determine

excitability of neurons are other mechanisms that impact sparse and burst spiking neural activities [8] . 

Although neurons mainly communicate via generating action potentials in short time scales, this is not the only way

they transmit information to other neurons in order to induce changes including the stimulation of postsynaptic neurons.

In response to stimulation from presynaptic neurons, neurons may generate chemicals of different types that are diffused

into presynaptic neurons [15,25] . These chemicals may induce some changes in the cellular and molecular activities that

eventually result in a change of electrical activity of neurons at different time scales [4] . The importance of some of these

non-synaptic mechanisms in healthy and abnormal neural functions is relatively well-known [14] . 

Retrograde signalling in neurons plays a role in information processing in healthy brains while abnormal retrograde

signalling (low or high levels of retrograde messengers) may lead to brain disorders [28,29,38] . Nitric oxide is one of the

well studied fast diffused retrograde messengers, and its abnormal levels are shown to lead to psychiatric disorders [1] .

Further, repetitive synaptic activity can induce persistent increase or decrease of synaptic efficacy. Retrograde signalling as

diffused chemicals from postsynaptic neuron to presynaptic neurons is essential for the induction of long-term potentiation

(LTP) or long-term depression (LTD) [30] . 

One of the changes that such retrograde signals can induce in presynaptic neurons is an increase or decrease in the

probability of neurotransmitter release from presynaptic neurons [9] . The importance of neurotransmitter release probability

as a consequence of presynaptic activities of different neuron types and its role in encoding efficiency of neural systems has

been studied using computational modelling [9] . Regarding the initial probability of neurotransmitter release in different

neurons, synapses are categorized as filters of information [2] . The initial value of release probability is believed to be

justified by diffused retrograde signalling from postsynaptic into presynaptic neurons. These mechanisms, in combination

with synaptic and intrinsic excitability, have been studied to determine the overall effect on the activity of neural population

to encode and store the information from different sources of stimulations [37] . 

Biological neurons have complex and diverse shapes and sizes, and electrophysiological features. Therefore, to simulate

their function in a network, it is necessary to simplify biological features of neurons. Artificial Neural Networks incorporate

basic information processing from biological neurons and their biophysical features that process sensory input processing

and generate action potential to transfer information to the networks [21] . Models that simplify neuronal electrophysiology

are computationally efficient but they are generally very abstract to be used in biologically realistic simulations [20] . 

Some simulation techniques of neuron models that consider biophysical feature of neurons in details are computationally

expensive and unsuitable for the simulation of large aggregate of neurons, such as network simulations [20] . 

Bio-inspired neural networks developed with different architectures (e.g., multilayer perceptron classifiers [19] ) have

many industrial applications including optimization [41] , dealing with large scale datasets [6] , and image processing (e.g.,

handling the human pose recovery problem [17,18] ). For this purpose, retrieving of images with sparse coding by artificial

neurons has been effectively used. 

One of such bio-inspired neural systems is deep neural networks which have been used to solve image processing prob-

lems by high-dimensional sparse representation [43] . In this line of research, to obtain an appropriate description of images,

multimodal features have been considered for describing images. For this purpose, recently, a novel deep multimodal dis-

tance metric learning combines these multimodal features [44] . 

In this study, we have developed a three-layer feedforward neural network model using a hypothetical mechanism of

changing the probability of neurotransmitter release that is induced by diffused retrograde messengers from postsynaptic

neurons. Synapses that show production and diffusion of retrograde messengers from a postsynaptic neuron in response

to presynaptic stimulation are considered as a closed loop [22] . In this study, we have modelled controlling of neurotrans-

mitter release by a closed loop in presynaptic and postsynaptic cellular machinery. The neural system is able to decrease

or increase the probability of neurotransmitter release in response to different levels of stimulation. The role of different

model parameter values is examined using simulation studies to investigate neural system’s dynamic activation in differ-

ent conditions of stimulation. Such feedforward neural system as divergence-convergence architecture is found in many

sensory-perception loops in animals’ brains. Two well-known examples are Drosophila olfactory system and information pro-

cessing in hippocampus. In the insect brain, activated neurons in Antennal Lobe (about 150 neurons) transmit information

to Mushroom Body (memory center of insects that includes about 2500 neurons) [16] . The activated neurons in Mushroom

Body project to few Output Neurons that elicit avoidance behavior. In the rat hippocampus, about 20 0,0 0 0 neurons in the
Please cite this article as: F. Faghihi, A .A . Moustafa, Sparse and burst spiking in artificial neural networks inspired by 
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Fig. 1. The neural network architecture. The neural network is composed of three layers: sensory, hidden and motor neurons layer (the spiking of one 

neuron of the motor neurons layer is studied in the simulations). A presented stimulus activates a set of neurons in the sensory layer and consequently 

leads to the activation of neurons in the hidden layer. The stimulation may trigger the motor neurons layer to spike with different rates depending on the 

incoming input. The spike trains of the motor neurons are used to measure mutual information between the motor neurons and the stimulus. Moreover, 

the spiking pattern can be used to evaluate the system efficiency to encode stimuli. The dynamic model of the synapses between hidden neurons and 

motor neurons include production and diffusion of retrograde messenger (RM) as chemicals from a post-synaptic site (motor neurons) into a presynaptic 

site (hidden neurons layer) induced by action potential of the hidden layer (AP). According to the concentration of a diffused retrograde messenger in the 

hidden layer neurons in a successive time bin the probability of neurotransmitter release in the next time bin is determined. 

Table 1 

Parameters of the Integrate and Fire neuron 

model used in the neural system. 

Parameter value 

V rest resting potential −84 mV 

V thresh threshold of spiking −25 . 8 mV 

V recov recovery threshold −40 . 2 mV 

V spike spike potential 9 . 5 mV 

g leak membrane conductance 0 . 26 nS 

C membrane capacitance 0 . 26 nS 
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Entorhinal Cortex are connected to about 1,20 0,0 0 0 neurons in the dentate gyrus. Activated neurons in the dentate gyrus

send information to about 30 0,0 0 0 neurons of CA3 [5,31] . The connectivity rate of these layers is not known. However,

by following the neural architecture of layers that demonstrate divergence-convergence we are able to consider different

connectivity rates in simulation studies. 

2. Model 

2.1. Neural system architecture 

The developed neural system in the study is constructed as a three-layer feedforward neural network. It is inspired by the

divergence-convergence architecture of insects’ olfactory system and is composed of a sensory layer containing 10 neurons

(first layer or L 1 ), hidden layer containing 60 neurons (second layer or L 2 ), and 10 motor neurons (third layer or L 3 ) ( Fig. 1 ).

In Fig. 1 one of the motor neurons is shown. The sensory layer is activated by stimuli and their activities are modelled

using a probabilistic approach. Specifically, the probability of firing of neurons is defined as the probability of one spike

in each time bin that is represented as ‘1’. Hence, for each probability of firing, a spike train is constructed as ones and

zeros such that the frequency of occurrence of ones are close to the probability of firing. The levels of stimulus intensity

are presented as different probabilities of firing of the activated neurons in the sensory layer. Each stimulus input triggers

spiking of a random 50% neurons of the sensory layer and sending information as spikes in time bins each equal to 10 ms. 

The sensory layer and hidden layer are connected according to a connectivity rate ( C 1 ). The connectivity rate is defined

as the probability of connecting a neuron in the hidden layer into neurons of the sensory layer. The activity of the neurons

in the hidden layer is modelled as an Integrate and Fire neuron ( Eq. 1 ) constrained by electrophysiological data of honeybee’s

olfactory system [42] is represented in Table 1 . The hidden layer is connected into the motor neurons layer ( L 3 ) represented

as connectivity rate ( C 2 ) where their activity is also modelled as integrate and fire neuron. 

C 

dV 

dt 
= − g leak ∗( V − V rest ) + I ( t ) ; dt = 0 . 01 (1)

where I(t) is the current into neuron in a time bin ‘t’. 

g and V denote membrane conductance and membrane potential of L and L neurons, respectively. 
leak 2 3 

Please cite this article as: F. Faghihi, A .A . Moustafa, Sparse and burst spiking in artificial neural networks inspired by 

synaptic retrograde signaling, Information Sciences (2017), http://dx.doi.org/10.1016/j.ins.2017.08.073 
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Fig. 2. The production of retrograde messenger in post-synaptic neuron (third layer) induced by total current from pre-synaptic neurons (second layer). 

Different model parameters ( α values ) determine the level of a produced retrograde signal at a given current. 
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The current into L 2 neurons and L 3 neurons are modeled as Eq. (2) 

˙ I = −I ( t ) / τI + 

∑ 

t p 

δ( t − t p ) ; τI = 30 ms (2) 

where I(t) denotes current into a postsynaptic neuron in time bin ‘t’. where δ( t − t p ) is the Dirac function that step-increases

the variable I. ∑ 

t p 
δ( t − t p ) is the sum of the received spikes as input in a given time bin. The input intensity depends on both firing

rate of pre-synaptic neurons, connectivity rate of layers and probability of neurotransmitter release in each pre-synaptic

neuron. t p is the time bin in which a spike is received. The total amount of current that a neuron in L 3 receives from

connected neurons of L 2 at the end of each time bin (t) triggers the post-synaptic neuron to produce retrograde messenger

( Eq. 3 ). α determines the level of produced and received retrograde messenger for a given level of current into post-synaptic

neuron ( Fig. 2 ). 

RM ( t ) = exp 

(
−α/ I tot 

)
(3) 

where I tot denotes total current into postsynaptic neurons at the beginning of time bin ‘ t ’. 

In this study, in all simulations α = 120 is used. 

To model the effect of retrograde messenger produced in post-synaptic neurons ( L 3 ) and received by pre-synaptic neu-

rons ( L 2 ) we considered different retrograde messengers with slow to fast effect on neurotransmitter release machinery by

τRM 

values ( Eq. 4 ). 

R M e f ( t ) = RM 

t 

τRM 

exp 

( −t 

τRM 

)
; τRM 

= [ 10 200 ] (4) 

where RM in the right hand of Eq. 4 is the total amount of received retrograde messenger by a L 2 neurons at the end of

each time bin. 

Low τRM 

values induce fast effect on release machinery and fast decay of effect as well. High τRM 

values induce slow

effect and slow decay of activity of release machinery ( Fig. 3 ). Fig. 3 shows the increase and decay of retrograde messenger’s

effect on presynaptic neuron triggered at time bin equal to 1. In the simulations where RM may produce in a sequence of

time bins, R M e f may increase over time. 

2.2. Synapse dynamics 

The spiking activity of each neuron in L 2 may result in neurotransmitter release into the cleft that consequently leads to

influx of current into the postsynaptic site ( L 3 ) ( Eq. 2 ). 

The neurons in L 2 has an initial release probability that can be decreased or increased through neuronal activity and dif-

ferent stimuli representation conditions that occur by the synaptic dynamics model developed in this study. In this model,

it is assumed that presynaptic neurons are equipped with release machinery with an activity threshold ( θ) that determines

either decrease or increase in neurotransmitter release probability that is calculated at the end of each time bin. Two pa-

rameters, K and M, are used in order to modify the decrease or increase of the release probability, respectively. If the level

of induced activity of release machinery in each time bin gets a lower value compared to the threshold ( θ ) ( Eq. 5 ) then the

system increases the previous release probability ( Eq. 6 ); otherwise, it leads to the decrease in the neurotransmitter release
Please cite this article as: F. Faghihi, A .A . Moustafa, Sparse and burst spiking in artificial neural networks inspired by 
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Fig. 3. The effects of diffused retrograde signalling from a post-synaptic neuron on activity of pre-synaptic neurons. This activity acts as a part of the 

‘controller’ to determine probability of neurotransmitter release into a post-synaptic neuron. Different parameter values ( τ) determine the biophysical 

features of retrograde signal like diffusion into a pre-synaptic neuron and induced activity inside a pre-synaptic neuron. Higher τ values demonstrate 

retrograde signalling that are slowly diffused and act on pre-synaptic neurons. 

Table 2 

Summary of notations. 

L 1 −3 layers in feedforward neural network 

r 1 −2 connectivity rates of layers 

I(t) current into postsynaptic neuron 

δ Dirac function 

t p time of receiving a spike ∑ 

I total current into I&F neuron 

RM(t) retrograde messenger concentration 

R M e f (t) induced changes in presynaptic neuron by RM 

α parameter of retrograde messenger production 

τRM parameter of diffusion of retrograde messenger 

θ threshold of R M e f to increase or decrease P rel 

K, M parameters of release probability 

E(t) error function 

P rel release probability 
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probability expressed as Eq. 7 . The difference between release machinery and the threshold can be expressed as ‘error ( E )’ .

For the sake of simplicity in implementing the model, release probability is calculated and updated as a difference equation

at the beginning of each time bin. 

E ( t ) = R M e f ( t ) − θ ; θ = [ 0 . 5 10 ] (5)

If E ( t ) < 0 

P t+1 
rel 

= P t 
rel 

+ M. ( E ( t ) ) 
2 (6)

If E ( t ) > 0 

P t+1 
rel 

= P t 
rel 

− K. ( E ( t ) ) 
2 (7)

K and M determine the rate of increase or decrease in release probability in the successive time bin. Initial release proba-

bility in all simulations is set to 0.95. 

Using the changes of release probability expressed as Eqs. 5 to 7 some simulations are run in order to study the role of

model parameters in different conditions. Summary of notations defined and used in the model is resented in Table 2 . 

2.3. Robustness of the system 

The developed neural system demonstrates both sparse and burst spiking. To study how model parameter values ensure

burst spiking activities in high level of stimulation (as L 1 neurons firing rate equal to 0.7), K and M values are set to 0.2

and 0.1, respectively. Then the stimulation level is lowered and the optimal values of θ and τRM 

are investigated to keep the

L firing rate at high levels. To obtain sparse spiking activities in high level of stimulation (as L neurons firing rate equal to
3 1 
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Fig. 4. Closed-loop based dynamics of neurotransmitter release probability and induced release machinery activity in a pre-synaptic neuron by diffused 

retrograde messenger from post-synaptic neuron at threshold ( θ ) equal to 1. The change in release probability as a result of increase in release machinery 

activity affects current into post-synaptic neurons. Consequently, the change of current into post-synaptic neurons alters release machinery activity that 

change release probability over time. For all simulations in this figure K and M values are used as 0.02 and 0.2, respectively. τ is set to 5 in the simulation. 
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0.2), K and M values are set to 0.2 and 0.1, respectively. Then the stimulation level is increased and the optimal values of θ
and τRM 

are investigated to keep the L 3 firing rate at low levels ( Fig. 9 ). 

2.4. Computational complexity of the system 

The proposed neural system incorporates a bio-inspired synaptic mechanism to show robustness to environmental

changes that is modeled as different stimulation into L 1 neurons and is expressed as L 1 firing rate. It is expected that

such simplified mechanisms do not increase running time of the algorithm remarkably when network size is increased. For

this purpose, the running time of the algorithm in different network sizes and corresponding connection numbers are mea-

sured ( K and M values are set to 0.2 and 0.1, θ= 4 and τRM 

= 50) ( Fig. 10 ). Further, the running time is measured for both

the Integrated and Fire neuron and Izhikevich neuron model [41] . 

2.5. Simulations 

The stimulation of the neural system from the environment is modeled as randomly selected 50% neurons in L 1 in each

algorithm’s run. Firing rate of L 1 neurons is modeled as a probabilistic approach described in the method. L 2 neurons are

activated as Integrate and Fire neurons and their spiking patterns in each time bin are integrated and used to stimulate L 3 
neurons (motor neurons). L 3 neurons’ activity is modeled as Integrate and Fire neurons and the average of their activities

in each time bin is collected and the mean is presented. 500 times run of algorithm is used to calculate mean firing rate of

L 3 neurons in all simulations. Connectivity rate of layers is also modeled as a probabilistic approach where each rate value

is considered as probability of connecting of L 1 to L 2 or L 2 to L 3 . In each algorithm run (and fix connectivity rate) new

connectivity matrix of layers are constructed. In all simulations 200 seconds stimulation of L 1 neurons is applied as time

window time to collect data. In each second 100 time bins is considered to measure average neurons activity (spikes). 

3. Results 

The main aim of this study is to model a closed loop synaptic mechanism in postsynaptic neurons in a feedforward

network that enables them to control neurotransmitter release from presynaptic neurons in response to different levels of

input intensities. In our neural system, spiking activity of L 3 depends strongly on input from L 1 andthe parameter values.

Moreover, connectivity of layers plays an important role in transferring information from L 1 to L 3 . Therefore, it is important

to study changes in firing rate of L 3 in different conditions and parameter values. The neurotransmitter release from L 2 to

L 3 in the model depends on K and M values that determine change in probability of neurotransmitter release in each time

bin and threshold of the release machinery ( θ ). Therefore, the dynamic of release machinery (RM induced activity) and its

impact on probability of neurotransmitter release can be studied. Fig. 4 A,B demonstrates the relationship between change

of release probability and activity of release machinery in 200 time bins of stimulation of L 2 neurons for θ = 2 . In this

simulation, K is set to 0.01and M is set to 0.2. The threshold ( θ ) determines the tendency of pre-synaptic neuron to increase

or decrease in release probability in each time bin. High threshold values leads to an increase in release probability over

stimulation time. 

To study the role of different K and M values in firing rate of L 3 neurons, threshold values ( θ ) equal to 1 to 4 are studied

to measure firing rate of L 3 neurons ( Fig. 5 A-D). These simulations show that for all threshold values low K and high M

values lead to higher firing rate of L 3 neurons. In addition, an increase in θ value results in an increase in firing rate of L 3 
neurons. In these simulations τ isset to 10 and firing rate of L neurons is set to 0.9. In order to study the role of different
1 
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Fig. 5. The firing rate of motor neurons for different K and M parameter values and τequal to 10. Figures A to D show firing rate for different K and M 

values and different thresholds of the controller. Higher threshold values cause a higher firing rate of motor neurons. The low threshold value decreases 

release probability and results in a decrease in current into motor neurons. In all conditions, lower K values and high M values lead to an increase in the 

average firing rate of motor neurons. 

Fig. 6. Average firing rate of the motor neurons for different K and M parameter values for θ = 2 . To study the effect of incremental τ values on the firing 

rate of the motor neurons τ equal to 20, 40, 60 and 80 are used ( A to D ). The simulations show that an increase in τ value leads to decrease in firing rate 

of motor neurons for all pairs of K and M . 
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τ values in the process of firing rate of L 3 neurons, simulations are run for θ = 2 and τRM 

= 10 to 80. Simulations show

decrease in K value and increase in M value lead to an increase in firing rate of L 3 neurons. Moreover, an increase in τRM

values decreases the firing rate of L 3 neurons ( Fig. 6 A-D). 

These results suggest that investigating the role of different θ and τ values in the firing rate of L 3 neurons. Fig. 7 shows

the simulations for K = 0.01 and M = 0.2 values. Fig. 7 A,B shows the results for connectivity between L 3 and L 2 equal to 0.4.

Fig. 7 C,D shows the results for connectivity between L and L equal to 0.9. As the firing rate of L neurons may change
3 2 1 
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Fig. 7. Average firing rate of motor neurons for different θ and τ values . For each pair of θ and τ value, an average firing rate of the motor neurons for 

K equal to 0.01 and M equal to 0.2 is calculated. In figure A and B connectivity between second layer and the motor neurons is set to 0.9 and in figure C 

and D it is set to 0.3. The firing rate of the first layer is set to 0.4 ( A, C ) and 0.8 ( B, D ). In all simulations, lower τ and higher θ higher values increase the 

firing rate of the motor neurons. 
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in different stimulus presentation, different firing rate of L 1 neurons is also studied. For this purpose, K = 0.01 and M = 0.2

values are used for different θ values are used in the simulation for connectivity rate between L 3 and L 2 equal to 0.9 ( Fig. 8 A)

and equal to 0.2 ( Fig. 8 B). For each connectivity rate, average firing rate of a L 3 neuron ( > 0) is calculated ( Fig. 8 C,D). These

results show the possibility of controlling spiking activity of L 3 neurons by change in threshold value of L 2 neurons. 

Fig. 9 A,B shows the robustness of the system to different levels of stimulation to observe sparse and burst spiking by a

change in θ and τRM 

. The results demonstrate that a gradual increase in τRM 

and decrease in θ leads to keep firing rate of L 1 
neurons at low levels (sparse spiking) when incremental levels of stimulations are presented to the system. To obtain burst

spiking in decremented changes in stimulation level, θ values are decreased and τRM 

values are increased. Fig. 10 A,B demon-

strates the impact of network size and number of connections in the network on time of running the model ( Fig. 10 C,D).

The results show that the model using Integrate and Fire model works faster than the model using Izhikevich neuron model.

The results also show the impact of size on running time for both model neurons. 

4. Discussion 

Exploring the mechanisms that enable animals’ neural systems to detect and encode stimuli in an environment plays an

important role in understanding information processing in the brain. 

Biological neurons are characterized by their different firing rate in response to stimuli according to stimulus intensity.

Some neurons show burst spiking, while others show sparse spiking activity. Understanding the neural mechanism of spik-

ing of different neurons in the brain plays a critical role in understanding the encoding and decoding mechanisms and

applying them in artificial neural systems. It is likely that some neurons rely on some dendritic mechanisms like control-

ling of neurotransmitter release by retrograde signalling to control the flow of activation signals from presynaptic neurons.

However, neurons have no direct control on spiking activities of their inputs (the spiking of presynaptic neurons), though

they may indirectly control the flow of information into their dendrites. Such mechanisms give the capability to control

fluctuations in neuronal population activities triggered by stimuli in the environment. Specially, the role of retrograde sig-

nals from postsynaptic to presynaptic neurons to change the probability of neurotransmitter release of presynaptic neurons

is relatively well-known. Such changes in neurotransmitter release as a function of presynaptic neurons’ activities can help

prevent wasting neural metabolic energy to produce, release and uptake of neurotransmitters through neuronal communi-

cation. 

There are other simulation method that model neurotransmitter release based on spike timing [33] , based on parameters

influencing high calcium microdomains [3] . The role of interaction of fast retrograde signalling with Hebbian Plasticity to

generate high encoding feedforward neural system has been theoretically studied [12] . In this work, a feedforward neural
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Fig. 8. The firing rate of the motor neurons vs. the firing rate of the first layer and different θ values at the connectivity rate between the second layer 

and the motor neurons are equal to 0.9 ( A ) and connectivity is equal to 0.3 ( B ). C . Mean of the firing rate of motor neurons vs. different θ values over firing 

rate of the first layer between 0.2 and 1.0 for connectivity is equal to 0.9 ( C ) and over 0.35 and 1.0 for connectivity is equal to 0.3 ( D ). The simulations 

show that different levels of motor neurons spiking rate the systems can be controlled by change in θ value. K value and M value used in the simulations 

is equal to 0.01 and 0.2, respectively. τ equal to 10 is used in all simulations. 
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network is presented that is able to detect stimuli. The synaptic mechanism that is modelled in the synapses between mo-

tor neuron and presynaptic neurons enables the motor neuron to control the levels of input they receive over time. The

controlling system acts as a closed-loop system that includes the production of different kinds of retrograde messengers in

a postsynaptic neuron in response to influx current and their effect on neurotransmitter release from a presynaptic neuron.

In our work, we presented a retrograde signaling based hypothetical mechanism for controlling neurotransmitter release in

bio-inspired neural networks constrained by neurobiological data from insects’ memory systems. Such changes in neuro-

transmitter release influence the current into a postsynaptic neuron in each successive time bin. The amount of produced

retrograde messenger in response to a given current in a time bin is determined by α parameter. In this study a moderate

α value equal to 120 is used in all simulations. However, by changing α values, one can study the role of changes in firing

rate of the neural system. Different retrograde messengers have a different rate of diffusion into presynaptic neurons and

different speed of affecting the release machinery of the presynaptic neurons. 

To our knowledge, this is the first work to model controlling of neurotransmitter release in sparse and burst spiking

neurons robust to stimulation changes by a retrograde signalling based closed loop. The role of retrograde signaling from

postsynaptic neurons into presynaptic neurons on release probability is known; however, the mechanisms of retrograde

signalling’s effect on cellular level and at different time scales are not fully known. Inspired by these observations, we

developed a neural network model that can be applied in artificial systems including cognitive robotics where spiking neural

networks are used to construct simple sensory-perception loops. Although variation in biophysical characteristics of neurons

that induce sparse and burst spiking modes and their functional importance are under research, we assumed that retrograde

signaling can play a critical role in controlling release probability (and so controlling functional spiking) when the neural

system exist in dynamic environment with fluctuating stimulations. Moreover, this assumption and simplified controller

developed in this study allows using a bio-inspired neural mechanism in artificial systems in the future. 

In this work, in order to exhibit any spiking mode, electrical properties of presynaptic neurons are not affected. Instead,

at the synaptic level, the probability of neurotransmitter release changes as a closed loop that modifies ‘functional spiking

of neurons’, which is defined as spikes that trigger neurotransmitter release into the synaptic cleft. This work proposes

novel experimental studies on the cellular mechanisms of neural adaptation to changes in stimulation of neurons in short

term scale. This helps develop efficient artificial neural systems that exhibit different spiking patterns and able to shift from
Please cite this article as: F. Faghihi, A .A . Moustafa, Sparse and burst spiking in artificial neural networks inspired by 

synaptic retrograde signaling, Information Sciences (2017), http://dx.doi.org/10.1016/j.ins.2017.08.073 

http://dx.doi.org/10.1016/j.ins.2017.08.073


10 F. Faghihi, A .A . Moustafa / Information Sciences xxx (2017) xxx–xxx 

ARTICLE IN PRESS 

JID: INS [m3Gsc; August 23, 2017;3:9 ] 

Fig. 9. Robustness of the systems in relation to changes in its stimulation by L 1 neurons (K and M value are set to 0.2). A. Sparse spiking activity of L 3 
neurons by using optimal parameter conditions shown in B.B. Optimal parameter values to obtain minimum change in firing rate of sparse activity of L 3 
neuron. At higher levels of stimulation (higher firing rate of L 1 neurons), τ should be increased while an increase in θ is required to keep L 1 firing rate at 

low values. For low stimulation as initial conditions, τ and θ values are set to 50 and 4, respectively. C. Burst activity of L 3 neurons for optimal parameter 

values shown in D. D. Optimal parameter values to obtain minimum change in burst activity of L 3 neuron. At lower levels of stimulation (lower firing 

rate of L 1 neurons, τ should be increased while a decrease in θ is required to keep L 1 firing rate at high values when stimulation is lowered. For high 

stimulation as initial conditions, τ and θ values are set to 10 and 10, respectively. 
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a spiking to a different mode. This simply occurs due to a change in two model parameters τRM 

and θ. Therefore, this

synaptic closed loop allows for the development of Spiking Neural Networks with self control capabilities to be used in

artificial systems including robotics. 

The model exerts the biophysical features of retrograde messengers as different levels of τRM 

values. The results show

that low τRM 

values leads to a higher firing rate of motor neurons due to a fast effect as well as a fast decay. But high τRM 

values lower firing rate as a consequence of accumulation of induced activity by retrograde messengers in pre-synaptic neu-

rons. However, the neural system may benefits from high τRM 

values for long-term memory where the system needs to keep

its high or low firing rate over a long time. Another parameter of the model that is involved in information processing of the

developed neural system is the threshold of the release machinery ( θ ). In our model, an increase in threshold value leads

to an increase in motor neuron’s firing rate for a given M and K values and τRM 

value equal to 10. In general, high M and

low K values result in higher motor neuron’s firing rate. In the simulations, fixing threshold value and increasing τRM 

value

resulted in a decrease of motor neurons firing rate. As the neural system showed robustness to fluctuation of firing rate of

first layer neurons for a given θ value, Fig. 8 proposes a controlling mechanism of motor neurons’ firing rate by changing θ
values. If such a neural system is expected to show sparse spiking, it exerts lower θ values while high θ values equipped

the neural system with burst spiking activity. 

The theory that is presented here is on the mechanism of homeostatic regulation of neurotransmitter release as a prob-

abilistic event by postsynaptic dendrites. It is based on hypothetical protein machinery or biochemical pathway that acts

according to its activity level compared to its threshold of shifting increases or decreases in release probability. This study

assigns an important role for a molecular mechanism in the neurons that are able to help modify synaptic information flow.

Therefore, it proposes experimental investigations to test such hypothesis involved in dendritic computations. 

Theoretical studies can help understand neuronal computations using novel models and simulations that can also be used

in developing artificial spiking neural systems. One of the challenges in developing next generation of artificial systems (e.g.
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Fig. 10. Numerical results on the computational complexity of the model to study the impact of neuron model used in simulations. Integrate and fire 

vs. Izhikevich models are compared. The time of running algorithm for a given set of parameter values versus network size and network connections are 

shown in (A, B) and (C, D), respectively. Initial size of the network in all simulations is 10, 60 and 10 neurons in L 1 , L 2 , and L 3 , respectively. The connectivity 

rate of L 1 -L 2 and L 2 -L 3 is set to 0.9 and 0.3, respectively. A. Network size is between 1 and 100 times initial size of the network and between 1 and 20 in 

B . Time of running program is measured versus total number of connection of layers for whole network size ( C ) and network size between 1 and 20 ( D ). 

The results show that compared to the Izhikevich model, the Integrate and Fire model can lead to a lower running time of the algorithm. 
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navigating robots) is how to implement the efficiency of animals’ brain in encoding complex environments enriched with

different kinds of stimuli that should be detected, encoded and stored in the neural networks [37] . Therefore, one fun-

damental step to generate new artificial systems would be to understand basic information processing in neural circuits

underlying behavior (e.g. learning tasks). This includes understanding molecular, cellular, synaptic and network level mech-

anisms. This study is aimed to illustrate the potential of developing bio-inspired neural systems that are equipped with

simplified synaptic communication in biological neurons. One challenge for developing a class of spiking neural networks is

how to implement a simplified model of complicated cellular mechanisms in biological neurons. For this purpose, we pro-

pose to investigate the possibility of new classes of bio-inspired neural networks that are highly similar to biological neural

systems. 

The structural and physiological parameters in biological neural systems determine their capability to exhibit cognitive

functions like learning and memory. The existence of different mechanisms of information processing strongly depends on

the brain region and neuron type. Combining different mechanisms at different levels (molecular, synaptic, cellular and

network)across different time scales of an event into models, may play an important role in exploring neural circuits of

different cognitive capabilities of animals’ brains. For example, neural systems may gain benefits from STDP and Hebbian

mechanisms in combination with retrograde signalling based mechanisms. However, it is necessary to develop simulations

using integrated mechanisms in different paradigms to explore the importance of such combined mechanisms. The work

presented here can enhance our understanding of complex strategies that have been developed through evolution and used

by the human and animal brain for information processing and intact behaviour. 
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5. Conclusion 

Brain-like artificial architectures using spiking neural networks (SNN) have many industrial applications including cogni- 

tive robotics [39] . To achieve this goal the main challenge is to understand morphological and electrophysiological variations

observed in biological neural networks. Studying the cellular and synaptic mechanisms and function of sparse and burst

neuronal activities play critical role in understanding how information is transformed in brains. 

By exploring the role of neuronal architecture and information processing of different neural systems, biologically plau-

sible brain-like artificial systems can be developed in future. 

In this work some synaptic and cellular and network knowledge on biological systems are used to develop a feedforward

neural system that is capable to control the functional activity of its neurons in different levels of environmental stimulation.

Simplified mechanisms implemented in this work allow industrial application of the model and propose some possible

mechanisms in neurons to investigate as well. 

This work proposes novel experimental studies on the role of retrograde signaling in short time scale on the controlling

of neurotransmitter release of presynaptic neurons by postsynaptic neurons. This work presents a cellular hypothesis on

how neurons exhibit persistent sparse or burst spiking activity by changing their probability of neurotransmitter release in

synapses. 
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