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Abstract. Computational vision models that attempt to account for

perception of depth from motion usually compute the optical 
ow �eld

�rst. From the optical 
ow the ego-motion parameter are then estimated,

if they are not already known from a motor reference. Finally the depth

can be determined. The better the ego-motion parameters are known

by extra-retinal information to be restricted to certain values before the

optical 
ow is estimated, the more reliable is a depth-from-motion algo-

rithm. We show here, that optical 
ow induced by translational motion

mixed with speci�c rotational components can be dynamically mapped

onto a head-centric frame such that it is invariant under these rotations.

As a result, the spatial optical 
ow dimension are reduced from two to

one, like purely translational 
ow. An earlier introduced optical 
ow al-

gorithm that operates in close approximation of existing brain function-

ality gains with this preprocessing a much wider range of applications in

which the motion of the observer is not restricted to pure translations.

1 Introduction

One of the chief problems in computational vision is the three-dimensional re-

construction of a static scene from two-dimensional images [1]. Motion parallax is

one of the depth cues that can be used to recover the three-dimensional structure

of a viewed scene [2], [3]. Motion induces a velocity �eld on the retina called the

optical 
ow [4]. In the most general motion case, i. e., object plus ego motion, the

resulting curved optical 
ow �eld pattern cannot be resolved for depth analysis

without additional assumptions [5] and even if simplifying assumptions are made,

the problem of depth-from-motion remains rather complex.

The goal of this study is to generalize a neuronal algorithm one of us (FW)

developed earlier [6]. So far this algorithm analysis radial optical 
ow �elds, ob-

tained by translational motion towards an object. The central advantage of this

algorithm is that all computations remain local, which permits parallelization

(see below). We now introduce a preprocessing step, that maps the visual data



such that the algorithm can still operate in parallel even when the 
ow �elds are

more complex. The preprocessing is actually a global operation in the sense that

it e�ects the whole optical 
ow �eld, but it is strictly independent of any ex-

ternal information, such as the viewed scene, and can therefore be implemented

separately. The main focus for our depth-from-motion algorithm is on a close

approximation of existing brain functionality, i. e. (cortical) sensor maps, and

local (neuronal) operations.

Radial 
ow �elds are one of the simplest optical 
ow �elds and are obtained

when the observer is moving straight ahead with �xed gaze towards the direction

of the translation. The optical 
ow has then a �xed point, called the focus of

expansion (FOE). All optical 
ow trajectories move outwards from the FOE. It is

readily seen that the motion in such a radial 
ow �eld (RFF) is one-dimensional

in polar coordinates, along the radial coordinate. The possible reduction of the

spatial dimensions of the optical 
ow �eld can be seen as the main reason why

there is a simple relation between the 
ow velocity and the distance between

objects and observer. However, RFF exits only for rather restricted motion, i. e.,

purely translational motion.

The 
ow velocity vp at a certain point p of the RFF is reciprocally propor-

tional to the Cartesian coordinate Z (depth).

Z �
1

vp
(1)

One of the Cartesian coordinates (X ,Y ,Z) of objects can therefore be recovered

from the optical 
ow, except for a scaling constant. Two other coordinates are

actually already implicitly known as the eccentricity � and the azimuth � of the

retinal frame. These can be interpreted as the polar and azimuthal angles in

three-dimensional spherical coordinates (�,�,�). The unknown radius �, that is,

the only spherical coordinate that was lost by the central perspective projection,

is given by � = Z�=f , where f is the focal length of the visual system. At last,

the scaling constant in the Z coordinate (Eq. 1) can be eliminated, if the velocity

of the ego-motion is known to the observer, for example by a motor reference.

With these relations the three-dimensional world can be reconstructed.

The optical 
ow �eld and its relation to the distance between objects and

observer is far more complicated, when there are rotational components in the

ego-motion. When, for example, the direction of gaze changes while the body

is moving straight, the directions of the optical 
ow �eld are not independent

of the distance of objects. Therefore the direction of the optical 
ow �eld can

not be known a priori. In this case, a two-dimensional correlation problem must

be solved to obtain the optical 
ow direction and magnitude. Additionally, all

ego-motion parameters must be known to re-construct a three-dimensional scene

from the optical 
ow [7], [8]. Instead of analyzing the two-dimensional optical


ow �eld, we suggest a dynamical mapping of the visual data such that the

spatial dimensions of the resulting 
ow �eld are reduced to one and the same

neuronal algorithm can be applied after this preprocessing as already used for

purely translational motion.
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Fig. 1. Architecture of the two layer neuronal network. The input layer consists of

receptive �elds sampling the optical 
ow. Each receptive �eld projects to a neuron

with a memory bank in the processing layer. A separate neuron represents a structure

mapping eye-positions. A visual tokens (T) is passed from the receptive �eld along

the exemplarily shown grey connections towards the memory bank of a consecutive

neuron. A head-centric representation of visual input is achieved by dynamically map-

ping the receptive �eld positions according to the direction of gaze. To re-construct

three-dimensional position of viewed objects, the processing layer needs only locally

exchanged information in one spatial direction (from left to right).

2 The RFF-Algorithm

One of us (FW) introduced earlier an algorithm that eÆciently analysis an RFF

and reconstructs the viewed three-dimensional scene [6]. Details of the algorithm

should be taken from that reference, but we will shortly describe its basics.

Since the optical 
ow directions are �xed in an RFF, only the 
ow velocity is

unknown. The velocity is measured by the time a speci�c visual token takes to

pass successive points (\receptive �elds") located on the retina at eccentricity

�n and �n+1 on a single radial line with azimuth �. As the correspondence token

changes in gray-level were chosen. When a signi�cant change in gray-value is

registered at a receptive �eld, this gray-level value is passed from �n, via a

\neuron" nn to a memory bank of a neuron nn+1 with the adjacent receptive �eld

at �n+1 (Fig. 1). The time taken to \see" this expected gray-level value on the

receptive �eld �n+1 is proportional to the depth of the object generating the gray-

level token (Eq. 1). The RFF-algorithm was successfully tested on real images

in real time, in other words it is suÆciently fast and noise robust. Head-centric

maps [9], [10] are used now for the RFF-algorithm, and therefore straight head

motion can be combined with eye-gaze movements. Any other algorithm, that

is developed for one-dimensional RFFs, can as well pro�t from the dynamical

mapping strategy introduced here. However, we would like to emphasize, that

the main motivation of preprocessing the optical 
ow is that the remaining

computations are strictly performed locally and thus can be done in parallel.
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Fig. 2. Geometry of the layout of receptive �elds along one radial component of the

optical 
ow. The �rst receptive �eld �0 is set close to the focus of expansion (FOE)

and de�nes the starting �eld of the �rst hyperbolic section. The second receptive �eld

�1 is placed at the distance dmin from the �rst in the direction away from the FOE. In

the example shown here, only one more receptive �eld �2 �ts on this hyperbolic section

before the distance of successive receptive �eld becomes too large. �2 is therefore the

starting receptive �eld for the next hyperbolic section.

3 Dynamical Mapping

To map the retinal 
ow �eld to a head centric frame, the retina is initially

sampled by point-like receptive �elds (top layer in Fig. 1), such that the layout

of the receptive �elds matches the RFF. The receptive �elds are placed on a

polar grid de�ned by m radial axes expanding from the FOE. If the distance

of successive receptive �elds increases hyperbolically, the optical 
ow is sampled

uniformly along one radius (Eq. 1). However, only few receptive �elds would �t on

a radial axis, when their positions increase hyperbolically. Therefore, the overall

layout is composed of pice-wise hyperbolic sections. The design is arranged in

the following way. The �rst receptive �eld of a hyperbolic section (�0) is set close

to the FOE at position d. The second receptive �eld is placed at �1 = �0+ dmin,

where dmin is the minimal allowed distance of receptive �elds. All subsequent

positions increase hyperbolically, until a maximal receptive �eld distance dmax

between neighboring receptive �eld positions is reached. The next receptive �eld

position is then set again the minimal distance dmin away from the former and

a new hyperbolic section starts. This leads to:



A B

Fig. 3. Layout of receptive �eld grid with m = 8 radial axes. (A) If heading direction

and direction of gaze coincide all radial axes of the receptive �eld grid are identical.

(B) In the oblique case (� = constant 6= 0) the FOE is shifted and the receptive �eld

grid has only a two-fold instead of a 8-fold cyclic symmetry for rotations about the

FOE.

�n+1 = d
d+ dmin

d� n dmin

; (2)

where d denotes at each hyperbolic section the �rst receptive �eld position.

Receptive �eld positions, that are placed according to Eq. 2, optimally sample

optical 
ow, only if the motion direction and direction of gaze coincide. When

these directions di�er by a constant angle �, these receptive �eld positions must

be re-mapped to sample the 
ow equally well. Since in arti�cial visual systems

the projection plane is usually 
at, the transformation due to eye rotation about

� must be lifted to a transformation of a 
at plane. (Note that all equations

concerning the projection plane, starting from Eq. 1, were derived for a 
at

retina, but these equations can be adapted to curved projection planes.) Two-

dimensional Cartesian coordinates on the 
at plane will be denoted with small

letters (x,y). After a gaze shift � about the Y axis (angle of yaw) the optical


ow is transformed according to lifted rotation:

x
hc(�) = f

x cos�� f sin�

f cos�+ x sin�
and y

hc(�) = f
y

f cos�+ x sin�
(3)

To derive this equations see any book on projective geometry or computer

graphics (e. g. [11]). It is a handy but not necessary feature of these mapping

functions that straight lines are conserved: the optical 
ow is still along straight

radial lines, thus justifying the term RFF also for � = constant 6= 0 (oblique

case). The FOE is shifted by f tan (�), but an oblique RFF has only a two-fold
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Fig. 4. A teapot viewed with stable and variable gaze. The position of the teapot in

Cartesian coordinates (X,Y ,Z) can be detected on a retinotopic map by the RFF-

algorithm only when the gaze is pointing toward a �xed direction (A and B). The solid

line is a reference to the actual position of the teapot, while the grey data points are

the computed position of the visual tokens. If the direction of gaze varies while the

observer is moving, the algorithm makes systematic errors (C and D). If the detected

position of the teapot is to remain stable, this algorithm must operate on a head-centric

map (E and F). See also text.

instead of a m-fold cyclic symmetry for rotations about the FOE, because the

mapping is not conformal (Fig. 3).

The index hc in Equation 3) indicates that these coordinates are head-centric

while without index they are retinotopic. On a head-centric map, the optical 
ow

induced by translational motion combined with gaze shifts is congruent with an

RFF. In other words, the RFF-algorithm is invariant under eye-gaze movements.

4 Results

An observer moving straight without changing the direction of gaze can ade-

quately detect the three-dimensional position of the edges of objects in view by

the RFF-algorithm [6]. For example, viewing a teapot and determining the opti-

cal 
ow �eld velocities in the corresponding RFF, produces the three-dimensional

coordinates, shown in front view (Fig. 4 A) and top view (Fig. 4 B). These co-

ordinate points outline the contour of a simulated three-dimensional teapot as
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Fig. 5. Performance of the RFF-algorithm operating on a retinotopic map compared

to a head-centric map obtained by dynamically mapping both with increasing eye-gaze

movements. While on a head-centric map the performance is stable, on the retinotopic

map is fastly deteriorates. On a retinotopic map one can take realizable receptive �eld

positions positions into account improving the accuracy almost by a factor of two (left

bar).

seen and detected by the RFF-algorithm. Note that the depth coordinate Z,

shown in the top view (Fig. 4 B), is the actual output of the RFF-algorithm.

The position of the edges in the other two spatial coordinates, X and Y (the

contour of the object in front view of Fig. 4 A) are projected onto the retina.

Therefore they are already implicitly known, except for a scaling constant.

The detection of the teapot deteriorates when the straight body motion is

combined with eye-gaze movements (front view Fig. 4 C, and top view D). There

is even a shift of the projection of the teapot in the X-direction, that is, in the

direction of one implicitly known coordinate (Fig. 4 C). This shift is inherently

in the retinotopic map. Such a map can not statically store spatial locations,

because the spatial registry between retina and external space changes every

time the eyes move. To be precise, edges of the teapot that are located on the

retina right (left) from the FOE are accelerated (slowed down) by the additional

rotational 
ow component, when the gaze rotates clock-wise about the Y -axis.

This change in the 
ow velocity is falsely interpreted by the RFF-algorithm as an

edge too near (far), as shown by the tilt in Fig. 4 D. If the retinal coordinates are

mapped on a head-centric map by continuously checking the eye position, thus

taking the rotational shift into account, the RFF-algorithm can operate on the

resulting head-centric optical 
ow �eld. On a head-centric map, the performance

of the RFF-algorithm is invariant under gaze sifts. (Fig. 4 E and F).

To quantify the performance of the RFF-algorithm on both the retinal 
ow

�eld and the head-centric 
ow �eld, we de�ned a standard detection task:



the three-dimensional reconstruction of a centric viewed square plane. For �xed

direction of gaze this corresponds to a situation where edges move with hyper-

bolically increasing velocity along the receptive �elds of an individual radial line.

The angles between the edge and the radius vary between 0Æ and 45Æ. The av-

erage error in the detected three-dimensional position of the square plane was

normalized to 1 for �xed direction of gaze (Fig. 5). If the gaze direction rotates

step wise by a total angle between 1Æ to 4Æ about the Y -axis, the error increases

when the RFF-algorithm works on retinal optical 
ow �elds, as expected (see

Fig 5). On head-centric optical 
ow �elds the performance of the standard de-

tection task is stable. Note that for �xed direction of, gaze one can introduce

correction terms taking into account the actual static location of the receptive

�elds, which must lie on a square pixel grid. Therfore a receptive �eld location

can not exactly obey Eq. 2. The error decreases by almost a factor of 2, with

these correction terms, but these terms are not straightforwardly obtained for a

head-centric map.

5 Discussion

Purely translational ego-motion induces an RFF in the retina, that contains re-

liable and rather easily accessible information about the structure of the viewed

three-dimensional scene. In polar coordinates the RFF is only along the ra-

dial dimension and therfore this 
ow �eld is essentially one-dimensional in any

retinotopic map for a speci�c curve-linear coordinate system. For example, in

the primary visual cortex radial 
ow is mapped along parallel alined neurons

[12]. And indeed some animals, e.g. the house
y [13] or birds [14], seem to re-

duce the optical 
ow to a single, translational component. However there will

often be additional rotational components in the optical 
ow, foremost in form

of small saccades or smooth pursuit eye movements. As soon as a rotational

component is mixed with translation motion, the optical 
ow is two-dimensional

in any coordinate system of a retinotopic map. In this case, deducing depth from

optical 
ow is far more complicated. We showed that with a dynamical mapping

strategy of visual space, the e�ect of eye-gaze movements on the optical 
ow can

be eliminated. The resulting 
ow �eld on a head-centric map is congruent to the

one induced by pure translational motion. In other words, dynamical mapping

induces an optical 
ow invariant under eye-gaze shifts.

Can other rotational components than eye-movements, e.g. head rotation

that could be mapped into a stable body-centric frame, be accounted for in

a similar way? In all cases in which rotational components come together with

translational in the ego-motion the resulting optical 
ow is two-dimensional. The

condition to reduce the spatial dimension of the 
ow �eld by dynamically map-

ping is that the axis of rotation must include the view point of the perspective

projection. This is in good approximation true for eye-gaze movements and with

less accuracy also for head rotations, or body rotation about the central body

axis. Generally, the larger the distance between rotation axis and view point is,

the farer away must objects be, to be accurately detected by the RFF-algorithm.



If the heading direction changes slowly the center of rotation is far away from

the view point but then the resulting trajectory can approximately split into

linear parts in which the translation is again translational. Furthermore, if the

rotation angle is too large, viewed object disappear on one side of the visual �eld

and new objects come into existence on the other. Therefore the rotation must

be small enough to have suÆcient time to determine the distance of the object.

Taken these facts together, eye-gaze movements are the most likely rotation that

could be �ltered from the optical 
ow by dynamical mapping.
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