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The  analysis of  the depth coordinates 
of objects in a visual scene is of vital 
importance f o r  animals as well as in tech- 
nological applications like autonomous robot 
navigation or product quality control. I n  
the two-dimensional camera projections 
of a three-dimensional visual scene depth 
information i s  initially lost but can be 
recovered when using two cameras in a 
stereoscopic setup. The  projection of a n  
object located at a finite distance from the 
camera will be laterally displaced in the 
left camera image as compared to  the right 
camera image. This displacement, called 
disparity, can then  be used to  retrieve the 
depth coordinate of the object. In principle 
this can be done by locally cross-correlating 
the left and the right camera images. In 
1988 Sanger [l] proposed as a n  alternative 
that instead also the phase relation between 
two spatial band-pass filter responses (Gabor 
filters) could be used to  measure the local 
disparity. Simple cells in the visual cortex 
have receptive fields which can be described 
as Gabor filters (spatial band-pass filters) 
[2, 3, 41. Most of  t hem are driven binocu- 
larly and tuned t o  respond most  strongly t o  
stimuli at  a certain preferred distance f rom 
the fixation plane [5, 6, 71. Cortical complex 
cells receive input f rom simple cells. As a 
consequence also complex cells implicitly 
encode visual depth [8]. Here we formalize 
the computational procedure which could 
underlie the extraction of depth information 
f rom complex cell responses and solve 
it analytically f o r  two different stimulus 
situations. The  theory predicts that .a 
strong discrepancy should exist between the 
actual and the perceived depth of sine-wave 
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luminance modulated (“grating”) stimuli: 
If the spatial frequency of the grating is 
increased it should appear to  move closer to  
the observer. 

In general there are several strategies of 
how to retrieve depth information from a 
sequence of images, like depth from motion 
(flow-field analysis), depth from shading and 
depth from stereopsis, on which we concen- 
trate in this article. In a stereoscopic ap- 
proach usually two cameras are mounted 
with a horizontal distance between them. 
As a consequence objects displaced in depth 
from the fixation point are projected onto 
image regions which are horizontally shifted 
with respect to the image center. This shift 
is called disparity and it can be used to de- 
termine the depth of the object. Due to the 
geometry of the optic system it is thereby 
sufficient to restrict disparity analysis to the 
projection of corresponding linear segments 
(lines) in the left and right eye (epipolar line 
constraint). It is therefore not necessary 
to extend the problem to two dimensions, 
which raises computational complexity. It 
can, however, improve the results. 

In the most straightforward approaches 
that address the problem of depth from 
stereo, the disparity is computed by search- 
ing the maximum of the cross-correlation 
between image windows along the epipolar 
lines of the left and right image. More re- 
cently spatially localized band-pass filters 
have been utilized to  compute the dispar- 
ity. This method computes the convolution 
between Gabor kernels (Eq. 1) and the left 
and right image parts. The alternating sub- 
field arrangement in simple cells has been 
successfully described by such Gabor func- 
tions [3, 41. A Gabor function is a sine-wave 
multiplied and, thus, damped by a Gaus- 
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sian envelope [2]. Thus, these cells repre- 
sent localized spatial band-pass filters which 
are tuned to the resonance frequency k of 
the sine-wave and located at  xo in the vi- 
sual field where the Gaussian envelope has 
its center. In complex notation: 

where U is related to the width of the re- 
ceptive field. The phase parameter 4 repre- 
sents the fact that most cells in the visual 
cortex have a receptive field which is mixed 
from a pure cosine- and a pure sine-type. 
We will set xo and 4 to zero because they do 
not affect our results except by adding un- 
necessary mathematical complexity. Thus, 
in Eq. 1 the real component represents the 
cosine- and the imaginary component the 
sine-shaped receptive fields in Fig. 1. These 
are the archetypes of receptive fields that ex- 
ist in monocularly driven simple cells. The 
linear part of the response of such a cell 
is given by the convolution of the receptive 
field with the stimulus f(x): 

MI,,(%) = G(z) * f t , r ( z )  (2) 
+a 

- - [, G(a: - ~ ’ ) f i , ~ ( ~ ’ ) d z ‘  

In the case of stereo-vision the responses 
of receptive fields in the two eyes need to be 
considered. Binocularly driven simple cells 
exhibit distinctive disparity tuning curves 
[5, 6, 71 and Nomura et al. [12] provided evi- 
dence that those can be obtained by sum- 
ming the responses of two corresponding 
monocular simple cells from both eyes for 
which DeAngelis et al. found experimental 
support [13]. In order to explain deviations 
from a linear behavior furthermore Heeger 
suggested that simple cells exhibit a squared 
response characteristic [14]. Accordingly, we 
define for binocular disparity tuned simple 
cells (Fig. 1): 

S:(z) = [ Im(Ml )  + R~(M,)]’ 
S:(z) = [ I m ( ~ l )  - R ~ ( M , ) ] ~  

where Re is the real and I m  the imaginary 
part of a complex number. 

The responses of these binocular simple 
cell receptive fields are contrast dependent 
because they are not normalized. A sensible 
normalization must take the energy of the 
stimuli into account [15] that can be com- 
puted with the well consolidated, so called 
“quadrature pair cell model” [16, 17, 18, 191. 
For binocular input this model combines the 
cell responses in the following way arriving 
at a binocular complex cell Ce: 

4Ce(X) = s; - s; + s; - s,e (4) 

= 4[Re (Mi)Re( M,) + I m (  Mt ) lm(  M,)] 
The terms show that two times two binoc- 

ular simple cells are combined in a push-pull 
arrangement ([20], see [21] for a review on 
push-pull models). The constant factor 4 
can be disregarded in the following. This 
model is strongly supported by the findings 
of Ohzawa et al. [8] who provided evidence 
that a class of complex cells exists which 
seems to compute the positive parts (i.e., 

C O  is created in the same way as outline 
in Eq. 4 from the simple cells So. It should 
be noted that the complicated structure of 
Eq. 4 can be reduced in complex notation 
using Eq. 2 to: 

Sl+Ss) of Eq. 4. 

C(z) = MlM,* = Ce(z) + iCO(z) (5) 

where the asterisk denotes the complex 
conjugate. The energy of a signal 2 is given 
by 11 2 II= m. Thus, the last equa- 
tion immediately shows that C ( X )  repre- 
sents something like the “cross-energy” of 
the responses from the two eyes. It im- 
plicitly encodes the disparity of the stimu- 
lus but it is still dependent on the location 
z, which means that different read-outs will 
be obtained from different locations in the 
receptive field. This unwanted dependency 
can be eliminated by normalizing the “cross- 
energy” signal with the left- and right-eye 
energy signals CL =I1 Ml 11, C, =I1 M, 11, 
which can be obtained from the responses 
of other complex cells Ci, C, which get only 
monocular inputs [MI. We define: 
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Left Eye Binocular Right Eye 

Figure 1: Schematic wiring diagram for disparity estimation with cortical cells. In order to get 
C" interchange the two cells along the arrow and change the summation at C from + + -- to 
+ - +-. 

For monocular responses a related nor- 
malization process has been theoretically 
proposed by Heeger [22] for which experi- 
mental support became available later [23]. 

We will consider two simple stimulus sit- 
uations: Small spot stimuli and, alterna- 
tively, sine-wave stimuli. We assume that 
a disparity of d exists between the left and 
the right input. Spot stimuli are commonly 
described by delta-functions. Thus, in the 
first case we have: fi(z) = 6(z) and fr (z)  = 

The result is obtained from the convolu- 
tion of the &function stimuli with the recep- 
tive field archetypes (Eq. 2) as s_'," G(z - 
z')b(ul, ,)dz' ,  where 211 = z' and U ,  = z' - d,  
respectively. This yields: 

S(X - d ) .  

=A(x) 

- 
=A(z-d) 

where A is the Gaussian attenuation fac- 
tor. Accordingly we get: 

M ~ M ;  = A ( ~ ) A ( Z  - d)eikze--ik(z-d) (8) 
= A(z)A(z - d)eikd 

Furthermore we find that 

JMlM; MrM,* = A(z )A(z  - d )  (9) 

and obtain the result of Eq. 10 after nor- 
malization as: 

D = eikd = cos[kd] + isin[kd] (10) 

The disparity d can now be computed by 
inverting the trigonometric function of ei- 
ther the real or the imaginary part of the 
last equation. Neurons can achieve this by 
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applying an appropriate (sigmoidal-like) ac- 
tivation function. Finally the result must be 
divided through the constant k, which is the 
resonance frequency of the initial simple cell 
Gabor-type receptive fields. 

(11) 
1 
k 
1 
k 

d = - arccos[Re(D)] 

or d = - arcsin[lm(D)] 

Since k is known, d can be exactly com- 
puted when two spot stimuli are presented. 
The intuitive reason for this result is that 
the power spectrum of a dot-stimulus (a- 
function) contains all frequencies. Thus, the 
cortical band pass filters (Gabor type simple 
cells) can resonate at their own reference fre- 
quency k and use it for all subsequent com- 
putations. 

The situation changes when we use two 
sine-wave grating stimuli with stimulus fre- 
quency w and disparity d between them. 
Thus, f i ( ~ )  = S~TZ[UZ] and fP(z) = 
sin[w(z - d)] .  In this case the calculation 
of the result is very tedious and shall not be 
presented here. As final result we get: 

output phase-components [9]. Derivatives 
are very sensitive to noise and it is rather 
complicated to compute a derivative with a 
neuronal network. Therefore, it seems un- 
likely that the cortical network implements 
this particular a correction mechanism. 

Without any correction, however, the 
theory prefiicts that for a high spatial 
frequency d is much larger than d, thus a 
narrow grating should appear more in front 
than a wide grating presented at the same 
true disparity d. 

The theory suggests that neuronal op- 
erations in simple and complex cells - 
many of which have already been observed 
experimentally - can in a very direct way 
lead to disparity estimates of the objects 
in a visual scene. Thus, it seems that the 
computation of visual disparities, which is 
a central component for the perception of 
depth, is already to a large degree solved 
by the cells in the primary visual cortex. 
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