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Abstract

We propose a recursive post-processing algorithm to improve feature-maps,
like disparity- or motion-maps, computed by early vision modules. The statis-
tical distribution of the features is computed from the original feature-map and
from this the most likely candidate for a correct feature is determined for every
pixel. This process is performed automatically by a clustering algorithm which
determines the feature candidates as the cluster centers in the distribution. After
determining the feature candidates a cost function is computed for every pixel
and a candidate will only replace the original feature if the cost is reduced. In
this way a new feature-map is generated which, in the next iteration, serves as
the basis for the computation of the updated feature distribution. Iterations are
stopped if the total cost reduction is less than a pre-defined threshold. In gen-
eral, our technique is able to reduce two of the most common problems that affect
feature-maps, the sparseness, i.e., the presence of areas where the algorithm is
not able to give meaningful measurements, and the blur. In order to show the
efficacy of our approach, we apply the reclustering algorithm to simple versions
of stereo- and optical flow algorithms, which initially produce a lot of errors,
showing results for synthetic and natural images. An advanced example of its

application to more complex feature maps is also presented.
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1 Introduction

A fundamental problem in early vision is that of reconstructing the three-dimensional
structure of a scene from the luminance information available in one or more im-
ages.

Commonly this is achieved by computer vision systems in several stages. The
first stage transforms the luminance representations into specific features—edges,
estimates of disparity, motion, etc. . The output of this stage is called a feature
map and it is roughly equivalent to Marr’s “primal sketch” [17]. In the next
stage(s) the feature maps—which are still incomplete and erroneous—are cor-
rected by various means in order to arrive at a dense improved feature map.
Mostly this is done by regularization techniques (see below). Marr’s stages of
inferring shape from the primal sketch to arrive at his “full 23-D sketch” [17] go
beyond the improved feature map by finally recovering the 3D-structure of the
visual scene as good as possible.

Stereo vision [2, 6, 9] and optical flow analysis [11, 15, 19, 1, 3] are instances
of modules that have undergone considerable investigation by the vision research
community.

A stereo module extracts depth information from a stereo pair, i.e., two images
of a scene taken from different view points. The image cues used to derive such
information are disparities, differences in the relative positions of the images of the
same object in the stereo pair. In the ideal case, when the characteristics of the
imaging system are known and a complete map of disparities can be constructed,
it is possible to recover the three-dimensional structure of the parts of the scene
visible in both images. In a similar way, it is possible to recover shape information
analyzing the motion patterns in a sequence of images of a static scene taken from

a moving camera. Still all these feature maps produced by visual modules are



affected by errors, noise and areas where no information could be obtained by
the images.

A general method to overcome the sparseness and the imprecision of feature
maps computed by stereo and motion algorithms and to build an improved fea-
ture map is regularization [21]. Regularization can effectively eliminate noisy
measurements, reduce the overall imprecision of the disparity map and generate
a dense description of the scene by fitting several neighboring measurements with
a smooth function. On the other hand, if the scene contained true discontinuities
they will be also smoothed. The tradeoff between smoothing across false discon-
tinuities while preserving real ones is controlled by the value of the regularization
constant. Finding the best value of the regularization constant is critical to ob-
tain good results with regularization techniques but is a difficult problem on its
own. Recent work concentrates on devising explicit discontinuity-preserving reg-
ularization schemes [8, 23] or expressing the regularization problem in terms of
the Markov random fields framework [14].

We propose an alternative general post-processing stage, that can improve
many different kinds of feature maps. Our approach essentially consist of a re-
cursive feature segmentation algorithm based on the assumption that the distri-
bution of the features in the feature maps have some inner structure that can be
identified by an appropriately chosen function. Under this assumptions we find
that many feature maps can be significantly improved. We start with a simple
example to explain the basic technique, then we show how to apply our so called
reclustering algorithm to two common problems in early vision: disparity esti-
mation and motion analysis. We discuss the problems involved in the processing
of real images and how to deal with them. We present an example of a more
complex reclustering scheme and we end with a discussion of the advantages and

disadvantages of the new algorithm.



2 The Reclustering Algorithm

The structure of the reclustering algorithm is related to approaches which ap-
proximate erroneous features of the feature map by estimates taken from the
statistical distribution of all features (see Sec. 4).

In the process of vision sets of objects in the three-dimensional space—objects,
surfaces, illuminants, etc. —project into one or more images in the form of lu-
minance values. This process can be formally described as function from the

three-dimensional space W to the two-dimensional image space Z:
wh1 (1)

where the projection function p is the perspective transform. A visual module is

another function v from the image space Z to the feature map space F
wWart4H F (2)

Now, regularities and smoothness in the space W lead to structured patterns
in the structure of F, since what the visual module function v tries to do is to
recover information about W from the image space Z. This structure in F can be
evidenced by an appropriately designed function r that project “related” points

of F on the same point of a new space C, the clustering space:
whrtbtrLec (3)

Related areas of F can then be identified as the inverse images of the points of
C with respect to r.

The effect of noise and errors is that related points in F do not project
anymore into a single point of C. Still, if r is accurately chosen, the noisy points
of C spreads around the original noise-free point. From the cluster it is then

possible to estimate the position of the ideal, noise-free point. The idea of the



reclustering algorithm is to use the estimated positions of the noise-free points to
to improve the feature maps in the space F.

The improvement stage of the reclustering algorithm uses the inverse images
of the estimated noise-free points of C as possible replacement candidates for the
points of F. A point in F is replaced if one of the candidates minimizes a cost
function defined on the space F.

The details of the technique are explained most easily with the help of a simple
example based on a stereo module. Thus, the features that compose the feature
map F represent disparity values that encode corresponding points between the
images of a stereo pair. For the sake of simplicity, we assume that the epipolar
lines coincide with the horizontal lines of the image pair. In this simple case
corresponding points have the same horizontal coordinate in the two images and
the problem of finding corresponding points is reduced to a 1-dimensional search.

The structure of F is that of a two dimensional, NV x M lattice of disparity values:
F=A{(f,1,7) e Rx{0,...,N} x{0,...,M}} (4)

We choose as projection function r a function that simply removes the position
information from the space F, i.e., 7(f,4,j) = f. This means that elements of F

with the same disparity value project onto the same point of C, defined as:

C={feR} ()

In Fig. 1 ¢ we depict two scan-lines of a stereo pair, denoted as “left” and
“right”. When the intensities values are matched, we identify three disparity
regions in the left image: the first three pixels with a disparity of zero, the last
two pixels with a disparity of two, and the central three pixels with a disparity
of one. The central line in this picture shows the correct disparity map for the

left scan-line, which should be the result of the algorithm if it works correctly.



As cost functional in this example we use the absolute difference between the
luminance value of corresponding pixels (Eq. 6). In order to deal with fractional
disparities we need to compute the luminance of the right scan-line with sub-
pixel accuracy, to this end we introduce in the cost function a simple linear
interpolation scheme (Eq. 7). The L, Ligny are the luminosity functions of the

the two scan-lines respectively, and d, is the estimated disparity at position .

Cost(z,d;) = |Tets(x) — L(z + d,)| (6)

L(z) = (1 = [2))Trigne (12]) + ([2])Trigne (T21) (7)

In Fig. 1 the first two steps of the reclustering algorithm are outlined and the
final state is shown. In the beginning an external stereo algorithm [7] computes
the disparities, depicted in the top panel (“computed disparity”). In the com-
puted disparity map the sharp changes between different disparities values could
not be recovered because of the windowing effects leading to smooth variations
across disparity boundaries. The last line represent the costs for each one of the
pixels of the disparity map: the absolute difference between the left scan-line
values and the interpolated right scan-line values (Egs. 6-7).

The first step of the reclustering algorithm is to project the features of the
feature map into the space C, the space of the distribution of the disparity values
(Fig. 1, a, right) and to extract the peaks of the disparity distribution by a
clustering algorithm. In the example we apply the K-means algorithm initialized
with three centers uniformly distributed between the minimum disparity value
(zero) and the maximum disparity value (two). The choice of the clustering
algorithm should be dictated by the complexity of the problem and by efficiency

considerations. For our experiments even the simple K-means algorithm give
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Figure 1: Reclustering example. In (a) is the initial state. After one iteration
(b) of the K-means algorithm the centers reach the positions (0.25,1.3,2). Then
the disparity map is improved usign the centers as possible alternative disparity
values, with the results that four disparity values have been modified and their

cost reduced. In (c is shown the final state where the algorithm converges.



satisfactory results.

The reclustering algorithm uses the position of the centers extracted by the
K-means clustering as possible alternative disparity values to be substituted into
the disparity map if in this way the cost is reduced.

It can be useful to apply the reclustering algorithm iteratively to the new dis-
parity map, at each iteration reducing the cost associated with the disparity map
and thus converging towards the optimum (Fig. 1, ¢). There are different ways
to decide how many iterations are necessary. One possible stopping criterium is
to iterate a fixed number of times, a second one is to iterate until the total cost
is less than a fixed threshold, or until an iteration step decreases the sum of the

costs by less than a fixed threshold.

3 Application to early vision

With an appropriate choice of the projection function, of the cost function and
of the clustering algorithm the reclustering algorithm can be used to improve
the feature maps generated by many early-vision algorithms. We presented a
simple example of how to apply the reclustering algorithm to the problem of
stereo vision. Using a two dimensional clustering space C and generalizing the
cost function to deal with two dimensional shifts the algorithm can equally well
be applied to the improvement of motion maps. In the following sections we
describe two examples of the application of the reclustering algorithm to early-
vision problems in artificial scenes before we turn to real images. In some of
the following examples we use very simple early vision algorithms, which by
themselves produce plenty of errors. The reason for this is that we do not intend
to demonstrate any optimal early vision algorithm. Instead our goal is to show

the quality of the improvement achieved by reclustering which can be judged



much better when starting with poor initial results.

3.1 Disparity estimation

Fig. 3 shows an example of applying the reclustering algorithm to a stereo algo-
rithm [7]. The input of the system is a noise-free computer-generated stereo pair
(Fig. 2) The squares are covered by random-dot patterns in order to get output
from the stereo algorithm. The images on the top of Fig. 3 show the original
output of the phase-based stereo algorithm of Fleet et al. [7]. On the left side of
the figure we plot the disparity distribution, on the right side the disparity map,
rendered as a gray-scale image. Part b shows the result after the first iteration
of the reclustering algorithm. The sharpening of the disparity distribution is no-
ticeable in the plot on the left. The bottom row (c) shows the result after ten
iterations of the reclustering algorithm: the error has been further reduced and

the reclustering algorithm has succeeded in eliminating almost all the outliers.

Figure 2: A computer-generated stereo pair

3.2 Optical flow computation

A second example is the application of reclustering to the recovering of the optical

flow. Optical flow algorithms take as input a sequence of images and for each
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Figure 3: The reclustering technique applied to a stereo algorithm



pixel position produce an estimate of its motion, in the form of two-dimensional
flow vectors [11, 15, 19, 1, 3].

As before, a suitable cost function can be defined by the absolute difference in
the luminance values of two corresponding pixels. The correspondence is deter-
mined by the motion vector: a pixel in the frame at time ¢ in position (z,y) with
associated motion vector (v, v,) corresponds to the pixel in the frame at time
t+ 1 in position (z + v,y + v,). Two-dimensional linear interpolation similar to
Eq. 7 is used to compute the luminance at sub-pixel positions.

Fig. 4 shows the reclustering technique applied to the problem of motion
estimation. The computer-generated test sequence contains three objects: two
moving squares and a static background. In the top row the real flow-field used
to generate the image sequence and its corresponding density plot is shown.
The second row shows the optical flow computed by the algorithm of Lucas and
Kanade [16] as implemented in [3], and the plot of the distribution of the flow
vectors.

The errors are visible in the flow map and in the distribution of the flow
vectors, where the centers of the peaks are surrounded by a platform of outliers.
In addition the algorithm was unable to detect the static background, leading to
empty regions in the motion map.

The third row contains the results of the application of the reclustering tech-
nique to the motion map: the reclustering algorithm was able to fill the holes
and to eliminate most of the outliers. The residual outliers are generated in the
regions where occlusions or dis-occlusions are taking place and the reclustering

algorithm could not find any corresponding pixel.
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a) is the real optical flow, used to generate the sequence, in b) the optical flow
11

Figure 4: The reclustering technique applied to an optical flow algorithm. In
computed by the Lucas and Kanade algorithm, in ¢) the optical flow after reclus-

tering.



3.3 Noise sensitivity

The cost function we used in the previous examples is very sensitive to noise,
being based on the value of single pixels. It is clear that even a small amount of
noise will disturb the minimizing procedure, leading the reclustering algorithm
to destroy the structure of the feature map instead of improving it. The noise
sensitivity of the cost function is a major problem in the treatment of real images
since they always contain some amount of noise.

It is possible to overcome the problem by defining a new cost function (Eq. 8)
as the sum of the cost defined in Eq. 6 summing over the whole neighborhood, us-
ing the same disparity value for every pixel in the neighborhood, that is, assuming
that the whole neighborhood share the same disparity.

W W
Cost(z,y,d) = Z Z cost(z + i,y + 7,d) (8)
i=—W j=—W

In a simple experiment, we corrupted the original compute-generated stereo
pair of Fig. 2 with additive Gaussian noise. With the original version of the
reclustering algorithm even a noise level of 5% is enough to introduce gross errors
in the improved disparity map. With a cost function defined on a window of
3 x 3 pixels size, the algorithm can tolerate this noise level quite well and with a

window size of 5 x 5 pixels the tolerable noise level increases to 15% (Fig. 5).

3.4 Synthetic and natural scenes

Using a square window of 3 x 3 pixels led to satisfactory results for a wide range
of natural stereo images. In Fig. 6 we show the results on the well know image
of the trees from SRI.

In most of the cases the reclustering algorithm was able to sharpen the con-

tours of the disparity image and improve its overall quality. When the scenes

12
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Figure 5: The effect of the window size on the noise sensitivity of the reclustering

algorithm

contained tilted surfaces the reclustering approximated them with many fronto-

parallel planes (but see below).

3.5 Limitations

If the raw feature map is not composed by a majority of areas with nearly-constant
feature values, like flat surfaces in the stereo case, or rigid objects translating with
constant velocity in the motion case, the simple-minded projection function used
in the previous examples is not adequate and a more sophisticate approach is
necessary. For example, the algorithm can be extended to deal with tilted or
curved surfaces by a projection function from the disparity feature map to the
space of the disparity gradients. Assuming the scene to be composed by nearly
planar surfaces leads to the required distribution of disparity gradients with peaks

surrounded by noise.

13
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Figure 6: The reclustering applied to a natural scene. In a) is the left image of
the stereo pair, b) is the depth map computed by the Fleet et al. algorithm. The
Gabor filter had a modulation of 10 pixels and a bandwidth of 0.8 octaves. c) is
the result after ten iterations of the reclustering algorithm, window 3 x 3 pixels,

10 clusters.
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3.6 More advanced reclustering schemes

We implemented a more sophisticated version of the reclustering algorithm usign
the disparity gradients as clustering space. In this case we use two clustering
spaces, C, is the set of the possible disparity gradients along the X —axis and C,
is the set of the possible disparity gradients along the Y —axis.

The cost function is defined by fitting a planar surface with the estimated
gradient on the square neighborhood of each point in the disparity map and
using the fitted disparities to compute the usual matching cost (Eq. 6).

The improvement step is implemented by searching independently for the best
value of the X and Y gradient. If the cost of the disparities derived by the fitting
planar patches lead to a cost reduction the map is changed accordingly.

Three examples of the application of the reclustering algorithm on the gradient
are shown in Fig. 6, Fig. 7 and Fig. 8. For the tilted surface in Fig. 7 an excellent
result is obtained and the stepwise approximation from the regular reclustering
is massively improved. The same is true for the artificial museum scene (Fig. 8).
Gradient reclustering works particularly well in these cases because the original
images are noise-free.

A fairly advanced application of the reclustering algorithm is presented in
Fig. 9. In this experiment a differential stereo algorithm [9, Chapter 16] recovers
for each 9 x 9 pixel neighborhood the parameters of the 3D-plane that best
approximates the local structure of the scene. The feature map in this case is the
set, of the extracted planar patches—a 3D-plane equation and its corresponding
covariance matrix. The reclustering algorithm is used to join similar planes and
assigning every pixel to the plane that best approximates it. A K-means clustering
algorithm with 60 centers was used for the clustering stage in the example shown.

As distance function the Mahalanobis distance was used and the center of each

15
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Figure 7: A computer-generated, noise-free stereo pair of a tilted plane covered by
random-dot pattern is used to show the improvement of the reclustering algorithm
applied to the gradient over the normal reclustering applied to the disparity. In
a) and b) is the stereo pair, c) is the real depth map used to generate the scene,
d) the depth map computed by the Fleet et al. algorithm. e) is the result after
ten iterations of the reclustering algorithm applied on disparity values and in f)
the result after ten iteration of the reclustering algorithm applied to the gradient
values. The graph (below) shows the disparity values for the central line of
the image for the different cases indicated (see labels). The reclustering on the

gradient used a window of 5 x 5 pixels with five centers.
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Figure 8: The reclustering on the gradient applied to a computer-generated scene.
In a) is the left image of the stereo pair, b) is the depth map computed by the
Fleet et el. algorithm. In c) is the result after ten iteration of the reclustering
algorithm on the disparity and in d) the result of the reclustering algorithm on
the gradient. For both ¢) and d) the window was 5 x 5 pixels and ten clusters

were used.

17



cluster was computed by the Kalman batch update equation [18]. In the shown
example only 7 out of the 60 centers used got assigned any point. Finally, a
post-processing stage merges the centers whose Mahalanobis distance is less than
7.81 (the 95% quantile of the chi-square distribution with 3 degrees of freedom)
leading to the shown three clusters. Similar results were obtained using 10, 20
and 40 centers. The error function is the one defined in Eq. 8 with a window size

of 9 x 9 pixels.

Figure 9: The reclustering algorithm used to segment a natural scene in planar
patches. In a) is the left image of the stereo pair, b) is the right image of the

stereo pair, in c) is the segmented image, that shows the three resulting clusters.
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4 Discussion

A major advantage of the reclustering algorithm is its generality and wide appli-
cability: we presented two examples of its application involving stereoscopy and
motion analysis using straight forward reclustering, but it is possible to adapt it
to a wide range of techniques of early vision with minor adaptations.

Another favorable characteristic is its efficiency. The computational cost of
the algorithm is small and proportional to the number of clusters produced by
the first step plus that of the second step which is proportional to the number of
the clusters multiplied by the number of the points in the feature map. On the
other hand, the generality of our approach limits its performance as compared to
other more specialized techniques.

The strategy of the reclustering algorithm can be interpreted in another per-
spective. Consider for example the stereo case. The problem is to find the
mapping from the pixels in the left image to the pixels in the right image. Since
an exhaustive search across all possible mappings is infeasible we take the ap-
proach to compute an approximation (with the stereo algorithm) and then use
the original input data (the luminance image) to check the approximation and to
perform a limited search over the “interesting” points (the centers of the clusters)
of the problem space. The algorithm is able to improve the feature map indepen-
dently from the stereo algorithm for the very reason that it uses additional and
independent information obtained from the original stereo pair.

The optimal case for the reclustering algorithm is that of minimizing a multi-
dimensional cost function with multiple minima. In this case the dimension of
the search space increases rapidly making any systematic minimization strategy
infeasible, and the existence of multiple minima renders gradient-descent tech-

niques ineffective. The reclustering approach is applicable if we are able to com-
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pute a first-order solution with a distribution that is close to that of the optimal
solution—in the sense that their peaks coincide. In this situation the reclustering
algorithm can use the distribution of the points in the C space to explore the
feature space F for more advantageous solutions. In our examples this condition
holds: the disparity maps are affected by the windowing effects, leading to blurred
borders between regions with different disparities, but the global distribution of
the disparity values and the positions of its peaks are basically unaffected.

The algorithm converges rapidly to a stable state. In Fig. 10 we show the
graph of the mean cost decrease, i.e., the difference in the cost function before
and after a reclustering step divided by the number of pixels that have been
reclustered. The test image used is the tree in Fig. 6a. As can be seen the
convergence is very fast, and after 4 to 5 iterations there are very few changes in

the feature map.

Mean cost decrease
16 T T
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Figure 10: The total cost decrease divided by the number of pixel reclustered.
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4.1 Similar approaches

The reclustering algorithm is equivalent to performing segmentation on the fea-
ture map and then applying an updating procedure to each pixel in a segment.
There exists a vast amount of literature on segmentation techniques in computer
vision (see for example [22, 10]), also the application of clustering algorithms to
segmentation has been often used and reported in literature [5, 13]. The first step
of our reclustering algorithm is actually an implementation of the measurement
space clustering segmentation technique (see [10]).

Wang et al. [24] apply a segmentation technique to decompose a video se-
quence in different, independently moving layers. To this end, they first compute
the optical flow for the whole image, and then use the K-means clustering algo-
rithm to subdivide the optical flow map into those layers. Afterwards the optical
flow field is computed again separately on each layer and recomposed leading to
an improved quality of the total optical flow map. A similar but more sophisti-
cated approach is used by Black and Jepson [4] to fit a parametric model of the
optical flow on segmented images.

The updating procedure of our reclustering is based on the statistical proper-
ties of the feature map and as such it is also related to the large field of stochastic
minimization techniques. The main difference is that the update procedure used
by the reclustering algorithm is deterministic and uses only the peaks of the
distribution.

An interesting connection can also be drawn with the robust statistics [12] and
the outliers rejection techniques. In each cluster the value of the center depends
only on the values of the features in the cluster. From the point of view of the
computation of the center position the features belonging to the other clusters

are treated as outliers and rejected, making the center position a simple kind of
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robust statistic.
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