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Abstract. We characterize the performances of phase-
based disparity estimators, giving quantitative measures
of their precision and their limits, and how changes in
contrast, imbalance, and noise modify the attainable ac-
curacy. A �rst result is that the theoretical range of mea-
surable disparities (one period of the modulation of the
�lter) is not attainable: the actual range is circa 2=3 of a
period of the modulation of the �lter. The phase-based
disparity estimators have shown to be robust to changes
in contrast of 100% and more and to well tolerate imbal-
ances of luminosity between the images composing the
stereo pair up to 400%. Our tests show that the biggest
cause of error is noise: the error increases linearly with
the increase of the noise level. We conclude studying the
inuence of the spectra and the luminosity of the input
images on the error surface, both for arti�cial and natu-
ral images.

1 Introduction

Stereoscopy is a technique to extract depth information
from two images of a scene taken from di�erent view
points. This information is derived from the relative po-
sitions of the projections of an object in the two images
that compose the stereo pair. The di�cult part of the
technique is to �nd the pixels that are images of the
same physical object.

In a �rst approximation the positions of correspond-
ing pixels on the two images are related by a one-
dimensional shift, the disparity, along the direction of
the epipolar lines. For parallel optical axes, the epipolar
lines are parallel to the line joining the optical centers of
the cameras. In the following we consider the most sim-
ple case, where epipolar lines coincide with the x-axis
of the images. In this con�guration the two-dimensional
search problem is reduced to a one-dimensional problem,
that we can solve considering each pair of scan-lines in-
dependently.
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We denote the one-dimensional signal of each cor-
responding pair of scan-lines as fR(x) and fL(x), where
the subscript indicates that the scan-line comes from the
right or the from left image of the stereo pair.

In the phase-di�erence method [2], [1], disparity is
computed from the phase di�erence between the con-
volutions of the two stereo images with local bandpass
�lters. Since the two signals, fR(x) and fL(x), are locally
related by a shift �(x0), i.e. in the vicinity of each point
x0
fL(x+ �(x0)=2) � fR(x � �(x0)=2) (1)
the local k0 Fourier components of fL(x) and fR(x)bfL=R(k0) = Z e�ik0 x fL=R(x) dx = �(x)L=R e�i�(x)L=R

are related by a phase di�erence equal to ��(x) =
�2(x)� �1(x) = k0 �.

We can extract the local Fourier components by con-
volving the images with the Gabor �lters

FL=R(x; k) =

Z
G(x� y) exp(i k (x� y))fL=R(y) dy

= �L=R(x) exp(i L=R(x)) (2)
where G(x � y) is the Gaussian function,

G(x) =
1p
2� �

exp(� x2

2�2
)

As a function of the spatial position, the phase of the
�lter response,  (x), has a quasi linear behavior dictated
by the center k0,

 (x) �  
0

(x0) (x� x0) � k0 (x� x0): (3)
The local frequency, i.e. the derivative of the phase

 (x), is generally close to the value of the center fre-
quency k0. In fact, the Gabor �lter is a bandpass �lter
around k0.

In the Fleet, Jepson and Jenkin algorithm [1], the
disparity is extracted from the phase di�erence,� (x) =
 L(x)� R(x), by expanding � (x) to the second order
in �,

�(x) � 2
[� (x)]2�

 
0

L
(x) +  

0

R
(x)

: (4)

The phase is not de�ned when the amplitude van-
ishes, i.e. when �(x) = 0 (singularity). Around these
singular points the phase is very sensitive to spatial or
scale variations. As a consequence, approximation (4)
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fails and the calculation of disparity in the neighbor-
hood of a singularity is unreliable. The neighborhoods
of singular points can be detected [1] by means of

S(x) = �

s
( 0 � k0)

2 +

�
�0

�

�2

� T1 (5)

�(x)=�� > T2 (6)
where T1 and T2 are opportunely chosen constants, and
�� denotes the maximum value of the amplitude. The
�rst term of (5) measures the di�erence between the peak

frequency, k0, and the local frequency,  
0

(x), in relation
to the width of the �lter 1=�. The second term of (5)
measures local amplitude variations with respect to the
spatial width �. The relation (6) measures the \energy"
of the response. The calculation at point x is accepted
only if the above relations are satis�ed. Usually, T2 is set
to � 5%, and T1 � 1:25.

The algorithm of Sanger [2] can be considered as
a simpli�ed version of the above calculation in which
the derivatives of phase and amplitude are not used: 1)
the disparity is estimated by phase di�erence divided by
the �lter's tuning frequency k0, and 2) points where the
stereo information is unreliable are detected using only
the threshold, T2, on the amplitude of the �lter's output.

2 Sources of error

The performance of the phase-based algorithm is a�ected
by di�erent sources of error. We distinguish between 1)
error sources that are intrinsic to the signals or are due
to the basic assumptions on which the computational
procedure of stereopsis is founded, and 2) sources that
are due to the approximations introduced in the mathe-
matical procedure.

Regarding the �rst issue, note that stereopsis is based
on the assumption that a pair of stereo images are locally
related by a one-dimensional shift. However, since the
stereo images are 2D projections of the same 3D scene,
taken from slightly di�erent perspectives, we can expect

{ presence of occlusions, i.e. visual features that are
visible in one of the images but are not in the other,

{ di�erence in the scale and form of corresponding vi-
sual features.

Furthermore, errors sources are introduced by calibra-
tion errors or di�erence in the optical parameters (illu-
mination, contrast, etc.) of the cameras.

This work is focussed on the evaluation of the per-
formance of the phase-di�erence-based algorithm. There-
fore, we will concentrate on error sources of type 2.

For a proper evaluation of the algorithm perfor-
mance, the di�erent sources of error have to be isolated
and independently analyzed. In order to separate error
sources of type 1 from type 2, we test the algorithm on
synthetic (random dots) images that are obtained by a
constant 1D shift of the same image, therefore avoiding
occlusions and changes in perspective and scale.

3 Experimental results

We tested experimentally both versions of the phase-
based disparity estimators described in [2] and [1].

A further improvement possibility concerns the Ga-
bor �lter: the Gabor �lter has a little residual sensitivity
to the DC component of the input, but it is possible to
modify the shape of the �lter in order to eliminate this
sensitivity. The kernel of the modi�ed Gabor �lter is

Z(x) =
1p
2� �

exp

�
� x2

2�2
+ i k0 x

�
� exp

�
�(�k0)2

2

�
In summary, we studied four distinct combinations:

1. Sanger with a regular Gabor �lter.
2. Sanger with a DC-clean Gabor �lter.
3. Fleet, Jepson & Jenkin with a regular Gabor �lter.
4. Fleet, Jepson & Jenkin with a DC-clean Gabor �lter.

3.1 Error measures

Three kind of error measures were used:

The absolute disparity error, de�ned as

E = jg � dj (7)

where g is the estimation and d is the actual disparity
value.

The mean relative error, de�ned as

� =
jg � dj
jdj (8)

The percentage relative error, de�ned as

e = 100� (9)

In the following sections we will always refer to the
mean value of these errors on a set of samples: the aver-
age error is de�ned as the normalized sum of the absolute
value of the di�erence between true (TD) and computed
(D) disparity map at non-singular points,

� =
1

N

X
i;j

jDi;j � TDi;j j (10)

where i and j run over the nonsingular points and N
is the total number of the nonsingular points. Similarly,
the mean percentage relative error is de�ned as:

M = 100
1

N

X
i;j

jDi;j � TDi;j j
jTDi;j j

(11)

� is the deviation of the average error:

� =
1

N

X
i;j

j�� jDi;j � TDi;j jj: (12)

We did not perform any kind of interpolation on the
estimated disparity map obtained from the disparity de-
tectors: the points marked as unreliable are simply dis-
carded and not taken in account in the computation of
the error. Nevertheless we also measured the density of
the estimate (i.e. the number of points marked as reliable
divided by the size of the test image).

The tests have been performed using a large data set
for each experimental condition: 64 scan-lines 256 pixels
long. The pixels a�ected by the borders were cut away,
and not considered in the error computation.
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3.2 Range test

The working range of a disparity detector is the range
of disparities that it can reliability measure. To measure
the disparity range a sequence of test images of increas-
ing disparity is presented to the disparity detector, until
the detector is not able to detect it reliably anymore.
Our test images were composed of a rectangular patch
covered with a random dots texture with values in the
range [0; 1]. The patch moved backwards, with negative
disparities, starting from a disparity of zero pixels to
��

2
� 1.
The theoretical working range of a phase-based dis-

parity detector is [��

2
;+�

2
] pixels, where � is the period

of the tuning frequency of the Gabor �lter (� = 2�
k0
).

Our tests have evidenced that all the four consid-
ered cases have a plateau where the relative error is ap-
proximatively constant, for the disparities in the range
[��

3
;+�

3
] pixels (Fig.1 and Fig.2).

The Fleet algorithm has always an evident advantage
over the Sanger algorithm as seen by the mean percent-
age error, due to the better approximation of the local
frequency used and due to the detection of phase insta-
bilities (see Sec. 4).

To show the deviations, we draw the error with the
error bars in the case of the Fleet and of the Sanger
algorithm in Fig. 3.

3.3 Contrast test

This test probes the e�ects of the image contrast on the
relative error: we want to see if the measurement of more
luminous object \smears" on neighboring darker objects.
The test image is divided vertically into two patches cov-
ered with a random dot texture, initially with the same
mean value. The left patch has a disparity of -2 pixels,
the right one of 2 pixels. The contrast between the two
parts is progressively increased adding a factor variable
from 0 (contrast 0%) to 1 (contrast 100%) to the pixel
values in the left patch.

This test shows that all four techniques are not very
sensitive to di�erences in contrast. For �lters of narrow
bandwidth (� < 1 octave), there was no di�erence be-
tween the techniques that use a DC-cleaned Gabor �lter
and techniques that use a normal Gabor �lter (Fig. 4).
For �lters of bigger bandwidth, the error was not a�ected
at all in the case of the techniques that use a DC-cleaned
Gabor �lter. There was a degradation of about 50% over
a change in contrast of 100% for the algorithms using
the non DC cleaned Gabor �lters (Fig.5).

3.4 Camera sensitivity imbalance test

A grave source of problem for most of stereo algorithms
is an imbalance of luminosity between the left and right
image: in real conditions often one of the two images
of the stereo pair is brighter or darker that the other,
leading the same object to have di�ering intensity values
in the two images.
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Fig. 1. Sanger algorithm, range test. Each line is the response of

the phase detector for a di�erent value of �, starting form 8 (left)

to 32 (right). For each line a plateau results, where the relative

error remains constant.

We tested the sensitivity of the algorithms to this
kind of problem by adding a constant factor to the inten-
sity values contained in the left image of the test stereo
pair. The test image was a random-dots textured image
with a disparity value of 2 pixels. The texture values var-
ied from 0 to 1. The imbalance factor varied from 0 (0%)
to 4 (400%).

The algorithms showed to be rather robust in this
respect: imbalances of up to 200% did not a�ect the
performances too much, and the versions using the DC-
cleaned �lters or with � less than one octave were nearly
insensitive to this e�ect (Fig. 6).

3.5 Noise test

The noise sensitivity of the algorithm was measured us-
ing a stereo pair corrupted by Gaussian random noise
of progressively increasing variance. The test image is a
random-dot textured plane with a disparity of 2 pixels,
the texture on the plane assumes real values in the inter-
val [0; 1]. The noise was of the additive Gaussian kind,
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Fig. 2. Fleet algorithm, range test. Each line is the response of

the phase detector for a di�erent value of �, starting form 8 (left)

to 32 (right)

with a standard deviation varying from 0 (no noise) to
1 (100% noise).

All the algorithms are quite sensitive to noise: there
is a linear relation between the noise percentage and the
error (Fig.7). The sensitivity to noise is similar for both
the Sanger and the Fleet algorithms. The �lter's parame-
ters have no signi�cant inuence on the noise sensitivity.

4 Choice of the thresholds T1 and T2

As explained in Section 2, around singular points the
algorithm is not reliable and disparity computation is
discarded. The extension of the neighborhoods of sin-
gular points is determined by constants T1 and T2 de-
�ned by (5) and (6). Therefore, the error and the den-
sity (number of non-singular points divided by the total
number of points) are greatly a�ected by the choice of
these two parameters.

Fig. 8 and Fig. 9 illustrate the behavior of error
and density as a function of the two thresholds T1 and
T2. The error points are obtained by plotting the error,
e(x; y;�), for each point of the image and for di�erent
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Fig. 3. Error and deviation for the Sanger and for the Fleet DC-

cleaned algorithm. Parameters: � = 32; � = 1

values of the wavelength, � = 2�=k0 2 [8; 64], against
S = SL + SR in Fig. 8 and against �=�� in Fig. 9. The
density is obtained by integrating the number of points
with values satisfying condition (5) or (6). The results
show that the error sharply increases in the neighbor-
hood of singular points; this behavior, obtained using a
natural image, has a general validity. Using the results
the values of T1 and T2 can be chosen according to the
required accuracy. For example, choosing T1 = 2, the
error is almost always lower than 5% and the density is
approximatively 60%. Furthermore, we notice that the
constraint (5) is more e�ective than constraint (6).

5 Spectral Content

Since the Gabor �lter is a band-pass �lter, only frequen-
cies contained in a neighborhood of the tuning frequency
contribute to the disparity calculation. Image of di�er-
ent type have a di�erent frequency spectrum: for exam-
ple, random dots images have a at spectrum (up to the
Nyquist frequency) whereas the spectrum of natural im-
ages is characterized by a typical 1=f decay. Gabor �lters
are especially suited for 1=f spectra because the width
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Fig. 4. Error at di�erent level of contrast in the image. Filter with

parameters � = 32, � = 0:5.
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Fig. 5. Error at di�erent level of contrast in the image. Filter with

parameters � = 32, � = 1

of the �lter increases linearly with the tuning frequency,
f0 = k0=2�, thus ensuring a constant \energy" of the
�ltered signal.

In the previous section random-dots images were
used to measure the algorithm's performances. The re-
sults obtained have a general validity because di�erent
types of spectra do not modify strongly the general be-
havior of the algorithm. Fig. 10 shows the results of run-
ning the range test on random-dots images with di�erent
spectral distributions (flat, 1=f , 1=f2) and natural im-
ages. The result show that natural images have a behav-
ior comprised between the 1=f2 spectrum and the at
spectrum.

6 Discussion and Conclusion

The main objective of this work was to analyze the in-
trinsic accuracy of the phase-based disparity detectors,
unrespectively from general problems of stereopsis, such
as occlusion and deformation due to perspective. At this
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Fig. 6. Error and deviation for imbalanced intensity in the stereo

pair. Filter with parameters � = 32, � = 1

end we made use of computer-generated images of known
disparity and spectrum.

Our tests show that the phase-based disparity esti-
mators can measure with constant relative error dispar-
ities in the range [��=3; �=3] and that these techniques
are robust to contrast changes and to imbalance between
the images composing the stereo pair, in particular when
making use of the modi�ed Gabor �lter without DC-
sensitivity. Our tests have revealed that these algorithms
are quite sensitive to noise, making them unsuitable for
applications where the noise-to-signal ratio is bigger than
0.05{0.1.

On our arti�cial images, where every point has the
same disparity, the error decreases with the �lter width.
In real stereo images disparity is not constant but varies
in a way that can not be foreseen. Whereas the use of
large �lters reduces the error in region of constant dis-
parity, it increases the error when it interpolates between
di�erent disparity values [3].

The results presented allow to estimate the perfor-
mances that can be expected in applying the algorithms
on real images, at least as a best-case situation. Another
way to use the results is to design stereo system with
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parity. Filter with parameters � = 32, � = 1
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Fig. 8. Error and density vs S for T2 = 0

known performances: given an estimate of the necessary
accuracy, it is possible to choose the algorithm's parame-
ters such that the requested precision will be attainable.
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