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Abstract

Motor primitives provide a modular organization to

complex behaviours in both vertebrates and invertebrates.

Inspired by this, here we generate motor primitives for a

complex snake-like robot with screw-drive units, and

thence chain and combine them, in order to provide a

versatile, goal-directed locomotion for the robot. The

behavioural primitives of the robot are generated using a

reinforcement learning approach called "Policy Improve‐

ment with Path Integrals" (PI2). PI2 is numerically simple

and has the ability to deal with high-dimensional systems.

Here, PI2 is used to learn the robot’s motor controls by

finding proper locomotion control parameters, like joint

angles and screw-drive unit velocities, in a coordinated

manner for different goals. Thus, it is able to generate a

large repertoire of motor primitives, which are selectively

stored to form a primitive library. The learning process was

performed using a simulated robot and the learned

parameters were successfully transferred to the real robot.

By selecting different primitives and properly chaining or

combining them, along with parameter interpolation and

sensory feedback techniques, the robot can handle tasks

like achieving a single goal or multiple goals while avoid‐

ing obstacles, and compensating for a change to its body

shape.

Keywords Snake-like Robot Using Screw-drive Mecha‐

nism, Goal-directed Locomotion, Motor Primitives,

Reinforcement Learning, Policy Improvement With Path

Integrals

1. Introduction

Snake-like robots have been an active research topic for

several decades [1, 2, 3]. These robots generally have a high

flexibility, with several segments connected in a serial

manner, giving them a slender shape. This provides them

with multifunctionality on the one hand, while making

them difficult to control on the other hand, due to the high

number of degrees of freedom [2, 7]. They are often used as

an experimental platform to study locomotion or motor

coordination problems [4]. Due to their structure, their

applications include search and rescue operations [5] or
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deployment for locomotion in narrow spaces, like pipes [6].

Undulatory movements are the conventional way to

generate their locomotion [2], but this form of movement

generally requires a greater width than the width of the

robot. This can become a problem in narrow spaces. From

this perspective, we have developed a new type of snake-

like robot using a screw-drive mechanism [8]; this robot

does not require undulation for its movement as propul‐

sion is generated by the rotation of the screws. It has four

screw-drive units, which are connected serially by three

active joints. Furthermore, through the proper combination

of these screw angular velocities, omni-directional move‐

ment is possible, unlike in most existing snake-like robots.

Continuing this development, we have created a frame‐

work for generating motor primitives for the robot.

Figure 1. A goal-directed locomotion control framework

We would like to emphasize that the main contribution of

this paper is a model-free, goal-directed locomotion control

framework of a nonstandard snake-like robot. The frame‐

work, as shown in Figure 1, consists of three main mecha‐

nisms:

1. A learning mechanism which can learn individual

motor controllers (i.e., each controller for each degree

of freedom) in parallel, for periodic and nonperiodic

motor primitives.

2. A chaining mechanism combining different primitives

for a more complex goal-directed locomotion. This can

be achieved by manual selection, sensory feedback,

and/or a searching process. Here, a symbolic planning

approach (acting as a searching process) for automatic

action chaining is employed.

3. A bilinear interpolation mechanism for generating

new locomotion behaviours based on a library of

(learned) motor primitives.

Although a part of the framework for learning nonperiodic

motor primitives has already been published in [10], this

article presents the new features of the framework (includ‐

ing the mechanism for learning periodic motor primitives,

as well as the chaining and interpolation mechanisms and

sensing techniques), thereby leading to versatile goal-

directed locomotion control for the robot. Furthermore,

experimental results are presented, including the results

related to goal-directed locomotion with periodic body

movements and complex locomotion tasks, which demon‐

strate the performance of the framework. The framework

uses a reinforcement learning approach called "Policy

Improvement with Path Integrals" (PI2) [9]. PI2 is used to

generate different motor primitives, and is here applied to

a nonstandard snake-like robot for the first time.

Motor primitives are the "building blocks" [21] of move‐

ment generation. They remain operative throughout life in

both vertebrates and invertebrates. The biological study in

[22] demonstrated the additive properties of primitives, by

stimulating two spinal sites in frogs. At a neural level, they

are seen as force fields generated by a combination of

activations from different muscles at the same time. At the

behavioural level, it has been shown how adaptation of

sub-movements can generate rapid hand movements [21].

Furthermore, human reaching movements were shown to

be formed through a combination of different primitives

with hand velocities in [23]. From a robotics point of view,

a reasonable repository of motor primitives can provide a

robot with self-improvement and evolutionary capabilities.

The usage of a basis set of behaviours for the future

adaptability of the system thus reduces complex problem

of robot control, as it helps with dimensionality reduction

[21, 24] and gives the robot the ability to handle new tasks

in the future. Traditional principal component analysis

(PCA) method have been shown to be used to generate

primitives from motion capture data for human arm

movements [25]. Movement primitives represented by

dynamical systems can be found in [12, 13, 26], and have

been shown to handle many complex tasks. The work in

[26] shows how primitives are obtained by imitation

learning and can be self-improved through reinforcement

learning, in order to complete a complex task like the ball-

in-a-cup task. The work in [27] shows how motor primitives

were learned using different policy gradient-based meth‐

ods for a baseball hitting task, as well as presenting a study

on primitive learning by such various methods. Thus,

different approaches exist regarding the ways in which

movement primitives can be defined and used in robotic

systems.

The motor primitive approach in this work reduces the

complexity of the robot control problem for a challenging

task like goal-directed locomotion generation of the

complex snake-like robot, while also giving the robot the

ability to handle unknown situations. Here, the robot learns

to locomote toward a goal using PI2, and thus a proper

combination of locomotion control parameters are ob‐

tained for different goals and robot shapes (i.e., straight-

line, zigzag, arc, etc.). From this, we take certain sets of

learned control parameters as motor primitives and then

combine them properly using chaining and parameter

interpolation to produce new behaviours in an online

manner. The approach we present here also overcomes the

problems of the classical control mechanisms used for

generating locomotion in this snake robot. These classical

mechanisms include trajectory tracking based on feedback,
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and front-unit control [8]. Both of these are model-based

mechanisms which require a kinematic model of the robot

and can only deal with simple robot shapes. They fail to

provide any closed-form kinematic solutions both for

screw velocity and joint periodic movement control, and

for the joint-by-joint control of complex body shapes (for

instance, zigzag and semi-zigzag shapes). Furthermore,

they sometimes have difficulty in finding proper control

parameters for goal-directed locomotion, due to the

switching of the passive wheels of the robot in contact with

the ground. Using sensors to achieve adaptive control

typically also requires a kinematic model [8], and it is

difficult to find proper sensorimotor connections that can

generate effective locomotion for complex robot shapes.

Our approach, on the other hand, is able to find proper

parameters for controlling both screw velocities and joint

periodic movements, and can also generate locomotion

with body deformation. It is also robust, meaning that

learned motor primitives from a simulation can be directly

applied to the real robot without adjusting or tuning the

control parameters. Thus, a library of motor primitives can

be generated without trouble.

The rest of the paper is organized as follows: in Section 2,

we briefly describe the snake-like robot with screw-drive

units; Sections 3 and 4 present the learning formulation and

experiments using PI2 to generate motor primitives for both

periodic and nonperiodic motions; and Sections 5 and 6

describe how the generated motor primitives are used in

real robot experiments to obtain new robot behaviours, and

thus to address locomotion in unknown situations using

primitive chaining and parameter interpolation.

2. The Snake-Like Robot with Screw-Drive Units

The basic structure of the 10-DOF snake-like robot with

screw-drive units is shown in Figure 2. The robot has three

active joints and four screw-drive units. Each screw-drive

unit has one A-max22 Maxon DC motor, one screw part,

and an encoder. The rotation of the screw unit around its

rotation axis is driven by the motor. Each screw-drive unit

has eight blades attached to it, with each blade having four

alternately passive wheels with rubber rings. The rubber

rings provide a better grip. Propulsion is generated by the

rotation of the screw-units, which facilitates the movement

of the robot in any direction. Each screw unit is said to be

a "left" or a "right" screw unit, depending on the inclination

(α) of its blade. The first screw unit connected to the head

is a right screw unit and the other units are alternatively

left (if, α > 0) or right (if, α < 0). Two servo motors (Dyna‐

mixel DX-117, Robotis) drive each joint, with each having

two degrees of freedom (pitch and yaw angles). Since all

the screw units remain in contact with the ground via at

least one wheel, and flat ground is here presumed in our

present study, the pitch angle of the robot is always zero

for all our experiments. The joint angles have a range of ±
π
2

rad.

Figure 2. The snake-like robot with screw-drive units: robot structure

showing four screw-drive units and three active joints. There are eight

blades with passive wheels attached to each screw unit. The head of the robot

is provided with a ball bearing, ground contact, and a bumper for stability.

3. Learning Motor Control with PI2 to Generate Motor

Primitives

PI2 is a probability-based reinforcement learning (RL)

approach which follows direct policy search in order to

improve the policy. In this study, we focus on providing

the framework, rather than comparing different optimiza‐

tion approaches (or learning mechanisms) to the task; we

therefore employ the state-of-the-art learning mechanism

PI2. It was selected because it has been successfully used for

learning in continuous, high-dimensional action spaces [9,

13, 28], thereby confirming that it is an appropriate choice

for the task at hand. It is a robust mechanism, as well as

being easy and efficient to implement for the purposes of

trajectory rollouts and direct policy searches in parameter

space. It is numerically simple without any matrix inver‐

sion and can be used as model-free in nature, with easy-to-

construct cost function requirements. It has no open

parameters to be tuned other than exploration noise [11, 12,

13] and is faster than gradient-based RL approaches by one

order of magnitude [9]. Some interesting applications of

PI2 have been seen; for example, in [9], a 12-DOF simulated

robotic dog learned to jump a gap. In [13], an 11-DOF arm

hand learns both the goal and the shape of the motion

required to complete a pick-and-place task. In [28], a robot

arm learns to pour water using PI2 and dynamic movement

primitives. In contrast to these previous studies, here we

apply PI2 to the task of learning the locomotion control

parameters of the snake robot, in order to generate motor

primitives and locomotion.

Typically, RL has been shown to be one of the most suitable

learning methodologies to deal with robot control prob‐

lems [14]. Since the frame is flexible, one can also replace

the RL-based PI2 learning mechanism with other learning

mechanisms (e.g., genetic algorithm (GA), particle swarm

optimization (PSO) [18, 19], or a combination of RL and

PSO [20]), if required. However, GA and PSO, which fall

into the category of evolutionary optimization techniques

[18, 19], may require searching through a large number of

candidate control policies. Thus, they might take more time

to learn the best policy [15]. They may also require the

complex tuning of their open parameters, like crossover/
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mutation rates and population size for GA [16], and inertia

factor, self-confidence and swarm confidence for PSO [17,

19]. In GA, certain further components – like chromosome

encoding, and selection and replacement strategies – also

need to be designed.

In this study, using RL-based PI2, we generate motor

primitives for the robot (i.e., motions with and without

periodic body movements). Prior to the start of the learning

process, a policy, cost function and exploration noise is

defined. After this the learning starts, and the parameter

vector to be learned, U (containing locomotion control

parameters), is updated using PI2 at the end of every update

t. Each update consists of K noisy trajectories or roll-outs.

n updates are performed in order to obtain the final

parameter vector, which will make the robot locomote

toward a given goal. Table 1 gives the notations used here.

Notation Description

w Robot’s state vector

u Robot’s control input vector

ϕi Joint angle

ϕ̇ i Joint angular velocity

θ̇ i Screw angular velocity

(x,y) Position of robot head

ψ Orientation of first screw unit with robot head

U1 Parameter set learned for a prefixed robot shape

U2 Parameter set with all seven control parameters

U3 Parameter set learned for periodic movements

φi Joint angle phase

r Cost function

(xG,yG) Goal position

n Total number of updates

t Update index

τ(a) Trajectory with control parameter set (a)

K Number of noisy trajectories or roll-outs

k Roll-out index

єt ,k Noise in kth trajectory of tth update

єθ̇ i(t ,k ) Noise applied to screw velocity

єϕi(t ,k ) Noise applied to joint angle

єφi(t ,k ) Noise applied to joint angle phase

It ,k Final cost at the end of noisy roll-out

Pt ,k Probability weighting

Table 1. Notations

3.1 Policy Formation

The snake-like robot with screw-drive units follows the

feature described in Equations (1-3) [8]:

= ,Aw Bu& (1)

1 2 3
= , , , , , ,w x y y f f fé ùë û (2)

1 2 3 4 1 2 3
= , , , , , , .u q q q q f f fé ùë û
& & & & & & & (3)

Here, w is the state vector and u is its control input vector.

(x,y) gives the head position of the robot. ψ is the absolute

orientation of the first screw-drive unit with the robot head.

The three yaw joint angles are given by ϕ1,ϕ2,ϕ3 in radian

(rad), while θ̇1,θ̇2,θ̇3,θ̇4 are the respective angular velocities

of the first, second, third and fourth screw-drive units from

the head, in radians/sec (rad/s). ϕ̇1,ϕ̇2,ϕ̇3 are the angular

velocities of the three joints in rad/s. A and B are the system

matrices [8] and depend on system configurations. The

learning is executed such that, if the initial head position is

at (x0,y0) and the goal to be reached is G (xG,yG), the final

state vector wgoal  on reaching the goal should have the head

position as (xG,yG). Two parameter vectors representing the

control policy are described by Equations (4) and (5):

1 1 2 3 4
= , , , ,U q q q qé ùë û
& & & & (4)

2 1 2 3 4 1 2 3
= , , , , , , .U q q q q f f fé ùë û
& & & & (5)

The parameter vector to be learned is selected according to

the learning problem. U1 is used for experiments when joint

angles are fixed, and U2 is used when all seven control

parameters, four screw-drive velocities θ̇ i and three joint

angles ϕi are to be learned. Thus the control policy follow‐

ing Equations (1–3) is represented by U1 and U2 of Equa‐

tions (4 – 5).

3.2 Defining Cost Function and Exploration Noise

Here, Euclidean distance is used as cost function r:

2 2( , ) = ( ) ( ) .
G G

r x y x x y y- + - (6)

It provides the distance in metres (m) between a reached

robot head position (x,y) and a given goal position (xG,yG).

The final parameter vector is obtained after learning

converges and the cost is almost zero (i.e., the goal is

reached and the task is completed).

Noise is the only open parameter in PI2 and is designed as

per need. Random values ζ from a normal distribution

N(0,1), which has zero mean and a standard deviation of 1,

are selected here. Following this, ζ are then dynamically

adjusted according to the noise-free cost rt−1 obtained at the
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end of the previous update. When rt−1 >3 m, then the noise

is drawn as follows: єt ,k =(exp
−1
rt−1

) / L ⋅ζ, ζ∈N (0,1). Here,

L=10 metres, and єt ,k  is the noise during the k th  noisy

trajectory or the roll-out of the t th  update. When 0.5< rt−1≤3

m, then the noise is adjusted as follows:

єt ,k =0.05ζ,ζ∈N (0,1). When it is very low – ≤0.5m – then the

noise is adjusted as follows: єt ,k =0.025ζ,ζ∈N (0,1).єθ̇ i(t ,k ) (i=1,

2, 3, 4) and єϕi(t ,k ) (i=1, 2, 3) represent the noise applied to

the screw velocities and joint angles, respectively. All seven

of these noise distributions follow the above description of

єt ,k .

3.3 Implementation of PI2 for Nonperiodic Motor Primitives

To start with, parameter vector U1 or U2 is selected accord‐

ing to the learning task. We then fix the number of roll-outs

K per update to 40. In every roll-out k, the robot is simulated

to move with noisy parameters for a given time (10s),

starting from robot start position (x0,y0). The robot is driven

by the locomotion control parameters (screw velocities and

joint angles). In this way, the corresponding noisy trajecto‐

ry is obtained as follows:

τt ,k (θ̇1 + �θ̇1(t ,k ),θ̇2 + �θ̇2(t ,k ),θ̇3 +

+�θ̇3(t ,k ),θ̇4 + �θ̇4(t ,k ),ϕ1,ϕ2,ϕ3)
(7)

or

τt ,k (θ̇1 + єθ̇1(t ,k ),θ̇2 + єθ̇2(t ,k ),θ̇3 + єθ̇3(t ,k ),θ̇4 +

+єθ̇4(t ,k ),ϕ1 + єθ̇4(t ,k ),ϕ2 + єθ̇4(t ,k ),ϕ3 + єθ̇4(t ,k ))
(8)

In the above, θ̇ i + єθ̇ i(t ,k ) (i=1,2,3,4) give the noisy screw

velocity parameters and ϕi + єϕi(t ,k ) (i=1,2,3) the noisy joint

angles. Having obtained the reached position (xt ,k ,yt ,k ) of

the robot head at the end of this roll-out, the final cost for

the roll-out is calculated by evaluating the cost function as

follows: It ,k = r(xt ,k ,yt ,k ). In this way, all K noisy roll-outs

from the robot start position within one update process t

are completed, and a corresponding It ,k  is stored for each

roll-out. From here, the PI2 update process starts and an

exponential value is calculated on It ,k  for each roll-out, as

follows:

( )min, ,

( ) ( )max min, ,,
( ) = .exp

I I
t k t k

k
I I
t k t kt k kk

S
lt

-

-
- (9)

The constant factor λ =30. The probability weighting Pt ,k  for

each roll-out is calculated as follows:

,

,

,
=1

( )
= ,

( )

t k

t k K

t l
l

S
P

S

t

tå (10)

and the parameter updates are

Δθ̇ i =∑
k=1

K

Pt ,k ⋅єθ̇ i(t ,k ), Δϕi =∑
k=1

K

Pt ,kєϕi(t ,k ). (11)

From the above equations, the update vector is constructed

as ΔU1 = Δθ̇1,Δθ̇2,Δθ̇3,Δθ̇4 , or ΔU2

= Δθ̇1,Δθ̇2,Δθ̇3,Δθ̇4,Δϕ1,Δϕ2,Δϕ3 . The locomotion control

parameter vector at the end of an update t is thus given by

U1
(t ) =U1 + ΔU1 or U2

(t ) =U2 + ΔU2. While updating, the joint

angles are limited within ±1 rad and the screw-drive

velocities within ±1 rad/s to avoid conditions whereby, for

example, the robot is made to go into a shape in which, at

any instant, ϕ1 =ϕ2 =ϕ3 =90 (1.57rad ). At the end of each

update process t, one noise-free trajectory with updated

parameters U1
(t ) or U2

(t ) is simulated, in order to obtain the

noise-free cost rt = r(xt ,yt) for the reached robot head

position (xt ,yt). If the cost is smaller than a set threshold, no

further updates are required; if not, the process is repeated

for the next update t+1. This iterative process continues

until the robot has learned the required parameters to reach

the goal.

3.4 Implementation of PI2 for Periodic Motor Primitives

With this mechanism in place, despite having an artificial

robot locomotion behaviour involving rotating screw units,

the robot can make periodic snake-like movements. In this

learning mechanism, to locomote toward a goal while

making periodic body movements, the following control

parameter vector is learned:

3 1 2 3 4 1 2 3
= , , , , , , .U q q q q j j jé ùë û
& & & & (12)

The control policy for the periodic generation task follows

Equations (1-3) and is represented by U3, being a combina‐

tion of the screw-drive velocities (θ̇ i) and joint angle phases

(φi) parameters. At the same time, each joint angle ϕi

follows a sinusoidal motion shifted in phase as follows:

( )= sin .
i i

A Tf w j+ (13)

So, the joint angles with amplitude A and frequency ω are

represented as above. A=0.2 and ω is taken as 0.6 for the

presented data. A restricts the joint angle within ±0.2 rad.

The noise values used for the screw-units, єθ̇ i(t ,k ) (i=1,2,3,4),

are drawn as described above. The noise values applied to

the phase of each joint angle are єφi
(t ,k ) (i=1,2,3) are, and

follows the Gaussian distribution N (0,0.02). The learning

process is analogous to the one described in Section 3.3. In

every roll-out k, the robot moves with the noisy parameters,

giving the following trajectory:

τt ,k (θ̇1 + єθ̇1(t ,k ),θ̇2 + єθ̇2(t ,k ),θ̇3 + єθ̇3(t ,k ),θ̇4 +

+ єθ̇4(t ,k ), Asin(ωT + (φ1 + єφ1(t ,k ))),

Asin(ωT + (φ2 + єφ2(t ,k ))),

Asin(ωT + (φ3 + єφ3(t ,k ))))

(14)
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Once the final cost for this trajectory It ,k  is obtained,

followed by S (τt ,k ) and P(τt ,k ) using the equations in (9-10),

the updates on the parameters are: Δθ̇ i =∑k =1
K Pt ,k ⋅єθ̇ i(t ,k ) and

Δφi =∑k =1
K Pt ,k ⋅єφi(t ,k ). At the end of this update, the new

parameters are U3
(t ) =U3 + ΔU3, where, ΔU3

= Δθ̇1,Δθ̇2,Δθ̇3,Δθ̇4,Δφ1,Δφ2,Δφ3 . The update process

iteratively continues until the final parameters are ob‐

tained. In this way, periodic robot behaviours are generated

for different goals, and some are taken as periodic motor

primitives. In future, we plan to investigate how these

periodic motor primitives can be used to handle locomo‐

tion on complex ground conditions, e.g., on a slope.

4. Experiments in Generation of Motor Primitives

These experiments demonstrate the generation of motor

primitives using PI2. For all the following experiments, we

select one of three parameter vectors – U1, U2 or U3, from

Equations (4), (5) and (12) – depending on our learning task,

and initialize it to zero. First, we learn the control parame‐

ters with a simulated robot and then we successfully

transfer them to the real one. The robot length is around 0.9

m. All goal positions are in metres (m) and the robot starts

at (0m, 0m). We encourage readers also to view the

supplementary video documenting all the real robot

experiments (1-4), available online at http://manoon‐

pong.com/IJARS2015/svideo.mpeg.

4.1 Learning Robot Control for a Straight-Line Shape

In Experiment 1, we restrict the robot shape to a straight

line, with ϕi (i=1,2,3) = 0rad. Four screw velocities θ̇ i (i.e.,

parameter vector U1) are learned for this body shape and a

given goal. Figure 3(a) shows the experiment for goal (-3m,

-3m), the learning curves, and the changes in screw

velocities during the learning.

4.2 Learning Robot Control for Any Fixed Shape

The experiment in this section demonstrates the learning of

θ̇ i (i=1,2,3,4) when the robot has a different body shape. In

Experiment 2, we fix the robot shape into a zigzag – with

ϕ1 =0.5rad, ϕ2 = −0.5rad, and ϕ3 =0.5rad – prior to learning.

θ̇ i (i.e., parameter vector U1) are then learned for this body

shape and a given goal. Figure 3(b) shows the experiment

for goal (2m, -2m), along with the learning curves.

4.3 Learning All Seven Robot Control Parameters

This experiment demonstrates that the robot learns all of

its seven control parameters using U2, θ̇ i (i=1,2,3,4) and ϕi

(i=1,2,3) for locomoting toward a given goal. Figure 4 shows

the learning curves for the goal (-1m, -3m).

4.4 Learning Robot Control for Periodic Body Movements

This experiment demonstrates how the robot locomotes

toward a given goal with learned screw velocities and joint

angle phases, so as to have periodic body movements. The

parameter vector learned is U3. Figure 5 presents the

experiment and shows the goal position (-2m, -2m), the

learning curves, and the changes to the screw velocities,

joint angles phases and joint angles during the learning.

(a)

(b)

Figure 3. (a) Experiment 1 with a straight-line body shape: (i) Shows the robot reaching the goal position (-3 m, -3 m) (shown by the small blue circle) in a

straight-line body shape. The final followed trajectory is indicated by the blue dashed line. (ii) The learning converges to the lowest cost for all 10 runs, taking

around 20 updates for the average run (in bold). (iii) Shows that the learning of screw velocities stabilizes after the goal is reached at around 20 updates. The

final values are θ̇1 = -0.35rad/s, θ̇2 = 0.77rad/s, θ̇3 = -0.3rad/s, and θ̇4 = 0.65rad/s. (b) Experiment 2 with a zigzag body shape: (i) Robot reaches the goal position

(2m, -2m; the small blue circle). (ii) Learning converges to the lowest cost at around 16 updates for the average run (in bold red). (iii) The final learned screw

velocities in the third picture are θ̇1 = 0.16rad/s, θ̇2 = 0.61rad/s, θ̇3 = 0.14rad/s, and θ̇4 = 0.30rad/s.
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From the results of these experiments, we can see how PI2

learns control parameters (joint angles and screw veloci‐

ties) for different goals and body shapes, and thus gener‐

ates periodic and nonperiodic motor primitives. We can

also see that, in most of these cases, convergence in learning

was reached and the motor primitives were achieved

within 12-20 updates.

5. Generating Complex Behaviour with Motor Primitives

The above demonstrates how motor primitives can be

generated. Some of them are shown in Figures 3(a), 3(b),

4(a) and 5(a). A reasonable number of motor primitives are

stored to form a library, which can be used to handle a

variety of situations. The primitives are described as:

"moving straight in a straight configuration", "moving

straight in an arc robot shape", "moving diagonally in a

zigzag robot shape", etc. Figure 6, taken as an example,

shows the main motor primitives. A part of the formed

primitive library is given in Table 2. The robot chains some

of these primitives, in order to produce a sequence of

behaviours in the real environment. Parameter interpola‐

tion and sensory feedback are employed to generate new

locomotion behaviour.

Figure 6. Generated Primitives: P1 to P8 give the generated robot behaviours

with different body configurations. P1 gives the robot behaviour to move at

135°; for a similar description of other primitives, refer to Table 2. G1 to G8

give the existing goals, and the red arrowhead indicates the robot’s head.

Figure 4. Experiment 3: Learning all seven locomotion control parameters. (a) Learned goal position (-1m, -3m) shown in the inset. Learning converges to

lowest cost for all 10 runs, taking around 20 updates for the average run (in red). (b) The learned screw velocities are θ̇1 = -0.39rad/s, θ̇2 = -0.02rad/s, θ̇3 =

-0.32rad/s, and θ̇4 = -0.08rad/s. (c) The learned joint angles are ϕ1 = −0.05rad, ϕ2 =0.11rad, and ϕ3 =0.02rad.

Figure 5. Experiment 4: Learning all seven locomotion control parameters with periodic body movements. (a) The robot reaches the learned goal position (-2

m, -2 m), shown in the inset. The final followed trajectory is indicated by the red dashed line. Learning converges to lowest cost for all 10 runs, taking around

15 updates for the average run (in bold). (b) Learning of the screw velocities (θ̇ i) and joint angle phases (φi) converges around 15 updates. The final learned

values are θ̇1 = -0.10, θ̇2 = 0.53, θ̇3 = -0.12, and θ̇4 = 0.50; φi are φ1 = 0.6, φ2 = -0.5, and φ3 = -0.3. (d) The three learned joint angles ϕi following sinusoidal

motion shifted in phase. It shows that ϕ2 and ϕ3 are almost in phase, while ϕ1 leads them.
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Primitive Real robot behaviour

P1s
move at 135° with a straight shape

P1a
move at 135° with an arc shape

P2s
move at 90° with a straight shape

P2a
move at 90° with an arc shape

P2z
move at 90° with a zigzag shape

P3s
move 45° diagonally with a straight shape

P4s
move straight forwards with a straight shape

P4z
move straight forwards with a zigzag shape

P4 pe
move at -90° with periodic body movements

P5s
move -45° diagonally with a straight shape

P5 pe
move at -30° with periodic body movements

P6s
move at -90° with a straight shape

P7z
move at -135° with a zigzag shape

P8s
move straight backwards with a straight shape

P8a
move straight backwards with an arc shape

P9 move at 90° with a semi-arc shape

P10 move straight forwards with a semi-zigzag shape

P11 move at 45° with a semi-zigzag shape

P12 move at 90° with a semi-zigzag shape

P13 move straight backwards with a semi-zigzag shape

Table 2. The Motor Primitive Library

5.1 Chaining of Primitives

Figure 7 shows a graphical representation of how primi‐

tives have been chained in this work. The primitives can

belong to any robot shape or configuration, whether

straight-line, zigzag, arc, etc. As an example, Figure 7

shows that the first primitive to move at 20° (m1) forward

is chained with the second primitive to move at 70° (m2)

forward, in order to reach position C. These primitives are

followed by the third primitive, which moves at -70° (m3)

downward, thus finally reaching the goal. Primitives are

also chained and driven by sensory feedback as a reactive

control mechanism. For example, in an environment with

obstacles, multiple primitives are chained by sensory

feedback to allow the robot to avoid the obstacles and reach

a goal. Similar sensory feedback techniques, such as

sensing joint angles, etc., can also be employed. In this way,

chaining can be effectively used to obtain new robot

behaviours for unknown situations.

5.1.1 Symbolic planning for automatic action chaining

Here, we present a symbolic planning approach (i.e., a

STRIPS-like planner [32]) for generating a plan based on

learned primitives. This is executed at the highest level of

abstraction, as in a multilayer cognitive architecture [29,

30]. The planner searches for plans using a declarative

knowledge representation and generates actions to instruct

the robot to achieve desired tasks, like moving to a goal or

avoiding an obstacle, etc. The list of primitives in the

library, shown in Table 2, is used for the action definition.

The planning domain definition consists of a list of predi‐

cates, actions and planning operators. Predicates are logical

formulas which take true or false values. In our example,

the predicates are defined as

1. ( ) 2. ( )ongoal robot obstacle angle

The predicate ongoal(robot) describes the situation in which

the robot is on the goal, whereas obstacle(angle) refers to a

situation in which an obstacle is detected in the direction

specified by the angle. In our case, angle∈  {angletoGoal ,

angletoGoal + 90° , angletoGoal −90° }. An action is defined as

move(angle,shape) to instruct the robot to move in the

direction specified by the angle, with a given robot body

shape. Planning operators (POs) consist of three parts: PO

= {a,p,e}, with a = actions, p = preconditions, and e = effect.

If p (a set of predicates) are true, then the corresponding PO

can be applied using a, so as to act in order to produce the

effect e. The change after execution is also coded as a set of

predicates.

For the execution of a specific task, we need to define the

planning problem, consisting of an initial state Sini and the

goal specification g. In our example, Sini is defined as

{ongoal(robot), obstacle(angletoGoal), obstacle(angletoGoal +

90°), obstacle(angletoGoal - 90°)}, i.e., a set of initial predicates

at the start, with each taking true/false values. In turn, g is

defined as the specification that ongoal(robot)=True, i.e., the

final grounded predicate at the end of the task. In our case,

we adopt a replanning  strategy. The high-level planning

module makes an evaluation at every action interval. If

there is a violation of the preconditions (p) of the POs, while

the effects (e) have not been yet obtained, then the system

generates a new plan, with a replanning approach. Thus,

the planner uses all the above elements to generate a

sequence of actions, which produces the sequence of

changes necessary to obtain g from Sini. In Section 6, an

example is presented of a plan to avoid obstacles.

Figure 7. Graphical representation of the chaining of primitives to produce

complex robot behaviours, to achieve multiple goals. The red arrowhead

indicates the robot’s head. m1, m2 and m3 are the three angles relative to

instantaneous robot body orientation. Three required primitives are selected

to take the robot from start position A to the goal, via B and C points. The

red dashed line gives the trajectory.
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5.2 Parameter Interpolation

Once this basic primitive set of P1 to P8 was selected, as

depicted in Figure 6, this work made use of parameter

interpolation of nonperiodic primitives, in an attempt to

further generalize locomotion generation. The goal was to

make the robot generate new motor controls, and actions

necessary to reach new goals, from existing primitives.

Here, bilinear interpolation – a basic interpolation method

for non-linear systems – is used for interpolating parame‐

ters, considering that the snake-like robot follows non-

linear kinematics and uses all seven control parameters for

interpolation. For interpolation, new goals are present in

one of the quadrants marked as A, B, C and D, as shown in

Figure 6. For example, by interpolating the learned control

parameters for primitives P1, P2 and P8 in the quadrant

marked A, the motor control for the robot to move 120°, i.e.,

diagonally backwards to its start position, is generated.

Similarly, to obtain new robot behaviours for new goals in

the quadrant marked B, P2,P3 and P4 are used for the

interpolation; in the quadrant marked C, P4,P5 and P6 are

used; and in quadrant D, P6,P7 and P8 are used for interpo‐

lation. Once the new goal has been mapped to see in which

quadrant of the coordinate plane it belongs, and the

necessary primitives have been selected, the corresponding

learned parameters for the primitives are selected to give

U Pi
 for each one, with i being the primitive index:

1 2 3 4 1 2 3
= , , , , , , .

P
i

U q q q q f f fé ùë û
& & & & (15)

In this work, for convenience, we take each quadrant to be

a 2m × 2m area, to help generate motor primitives. Thus,

the interpolation is considered within this range. So, the

total area covered by all quadrants of the coordinate plane

comprises a 4m × 4m grid. For example, let the parameter

interpolation set up take place in the quadrant marked as

A in Figure 6. The goals G1,...,G7,G8 correspond to positions

(2, 2), (0, 2), (-2, 2), (-2, 0), (-2, -2), (0, -2), (2, -2) and (2, 0),

respectively. All goal positions are in metres (m). So, P1, P2

and P8 are to be interpolated in A, thus giving i=(1, 2, 8) for

Equation (15). As a result, the interpolation takes place with

f (G2)=U P2
, f (G1)=U P1

, f (G8)=U P8
, f (O)= 0,0,0,0,0,0,0 ,

with f giving the mapping between the learned goals and

the required primitives. Positions

G2=(x1,y2)= (0,2),G1=(x2,y2)= (2,2),G8=(x2,y1)= (2,0),O =(0,0).

Thus, the interpolated parameters for a new goal G(x,y) are

obtained as follows:

2 1
1 8 1 1

2 1 2 1

( ) = ( ) ( ), where = ( , ),
x x x x

f S f O f G S x y
x x x x

- -
+

- -
(16)

2 1
2 2 1 2 2

2 1 2 1

( ) = ( ) ( ), where = ( , ),
x x x x

f S f G f G S x y
x x x x

- -
+

- -
(17)

2 1
1 2

2 1 2 1

( ) = ( ) ( ).
y y y y

f G f S f S
y y y y

- -
+

- -
(18)

In this way, new robot behaviours are obtained through

interpolation from the elementary primitive set. An

experiment is shown in Figure 8 to demonstrate this. Three

primitives from Table 2 (P1s
, P12, P13) are interpolated in

order to obtain a new robot behaviour (new control

parameters), using Equations (16–18) for the new goal (2m,

1m), as shown in Figure 8(d).

6. Experiments for Complex Tasks

This section presents Experiments (6–10), demonstrating

how the robot handles complex tasks – like goal-directed

obstacle avoidance, goal-directed locomotion with body

deformation, and tasks with multiple goals – using the

developed framework. We encourage readers also to view

the supplementary video of these experiments, available at

http://manoonpong.com/IJARS2015/svideo.mpeg.

6.1 Goal-Directed Locomotion with Obstacle Avoidance

The experiments in Figure 9 show goal-directed locomo‐

tion with and without obstacles. Figure 9(a) shows the

experiment without any obstacles; here, the robot uses only

one motor primitive (taken as Set 1) to reach the goal (-3m,

-1 m). Set 1 consists of θ̇1 = -0.26rad/s, θ̇2 = 0.42rad/s, θ̇3 =

-0.29rad/s, and θ̇4 = 0.34rad/s; and ϕ1 =0.05rad, ϕ2 =0.16rad,

and ϕ3 = −0.02rad. Figure 9 (b) shows the experiment with

obstacles. The obstacles are avoided here by sensing

through an IR sensor attached to the robot’s head. To

achieve this, three robot behaviours are sequentially

chained for avoiding obstacles and moving to the goal.

From the primitive library in Table 2, two motor primitives

– P2s
 (which makes the robot move left, i.e., to 90°) and P6s

(which makes it move right, i.e., to -90°) – are selected and

used. The robot starts with a learned parameter set (i.e., Set

1) for reaching the original goal (-3m, -1m). The IR sensor

provides feedback on the distance between the obstacle and

the robot. Once the robot has detected the obstacle (i.e., the

IR signal is higher than the threshold), it automatically

selects a predefined motor primitive (i.e., P2s
 for moving to

the left), so as to avoid the obstacle. Once the obstacle has

been avoided (i.e., the IR signal is smaller than a threshold),

the robot then returns to its previous motor primitive (i.e.,

moving straight towards the goal with Set 1). Following a

predefined time-out period after moving straight, it then

selects another motor primitive (i.e., P6s
 moving to the right)

and finally reaches the goal. In this way, the primitives are

chained and activated using the sensor and a time-out

period mechanism.

Another experiment in obstacle avoidance is also shown in

Figure 10. Two primitives – P4s
 (to move straight) and P2z

(to move left) – are selected from Table 2 and chained, again
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using the IR sensor attached to the robot’s head. The P4s

primitive is used by the robot when there is no obstacle

detected (i.e., the IR signal is lower than a threshold) and

P2z
 as soon as an obstacle is sensed.

However, further sensors can be added to render the

locomotion fully sensor-driven. Additionally, a planner

that analyses the scene (as far as is visible) and then

automatically selects motor primitives to approach the goal

and/or avoid obstacles can be implemented (as an addi‐

tional module in the framework), using any planning

method or reactive/proactive control method [31]. An

example planner is presented below.

6.1.1 A symbolic planning example using primitives

Here, we briefly show an example of how a STRIPS-like

planner [32] could be used to generate a plan (see Section

5.1.1). The task at hand is obstacle avoidance. The POs for

this task (in terms of (a,p,e)) are defined in Table 3. Here, T

shows that the predicate takes a "True" value, and F, "False".

With the move(), the corresponding primitive (e.g., P2s
 and

Figure 8. Experiment 5: Generating new behaviours with parameter interpolation. Start position is (0m, 0m). (a) Primitive P1s
 from the library. It is generated

using the goal (2m, 2m) for a straight-line shape. (b) Primitive P12 from the library, which is generated using the goal (0m, 2m) for a semi-zigzag shape, having

ϕ1 = 0.5rad, ϕ2 = -0.5rad, and ϕ3 = -0.1rad. (c) Primitive P13 from the library, which is generated using the goal (2m, 0m) for a semi-zigzag shape. (d) The

robot reaches the goal (2m, 1m) using parameters obtained by interpolating the above primitives belonging to different robot shapes.

Figure 9. Experiment 6: Goal-directed locomotion of the real robot without and with obstacles in a complex environment. (a) Real robot experiment without

obstacles, showing the robot reaching the goal (-3m, -1m) using the learned control parameters. Start position is (0m, 0m). (b) Goal-directed obstacle avoidance

behaviour in a real robot experiment. The robot reaches the goal (shown in red) while avoiding obstacles on its path. The robot behaviour is driven by chaining

three motor primitives, obtained through PI2.
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P5s
, in the case of the example shown in Figure 9(b)) is

selected from Table 2 for action grounding: PO1 takes the

robot straight, PO2 takes it left, and PO3 takes it right.

To show how these operators can be searched and se‐

quenced, the initial scenario shown in Figure 9(b) is taken.

For this scenario, the starting state Sini is {F ,F ,F ,F }, and

accordingly, a plan is generated consisting of a single PO:

PO1. At the point where an obstacle is detected, a replanning

operation is performed with the new initial state Sininew
 =

{F ,T ,F ,F }. The new plan to reach the goal is then PO2,PO1.

Alternatively, at the point of the obstacle, PO3,PO1 would

also be a possible new plan, as can be ascertained from the

p in Table 3 and from Sininew
. Similarly, for the initial setup

in Figure 10, a plan PO1 is generated at the start. When

Obstacle 1 is detected, replanning occurs with Sininew
 =

{F ,T ,F ,T }, and the new plan is PO2,PO1. As, Sininew
 is again

{F ,T ,F ,T } when Obstacle 2 is detected, the new plan is again

PO2,PO1, which thus allows the robot to reach the goal

while avoiding the obstacles. In this way, a planner that

uses the learned primitives obtained by PI2 can be integrat‐

ed into the framework for goal-directed locomotion.

Figure 10. Experiment 7: Real robot experiment demonstrating obstacle avoidance. All primitives are sequenced using IR sensory feedback. The numbers of

the obstacles are marked; two obstacles can be seen being avoided at the shown timestamps.

Figure 11. Experiment 8: Real robot movement through multiple goals. The followed trajectory is indicated by the dotted lines and the goals are marked in

red. The robot reaches the final goal via G1, G2 and G3. The three motor primitives giving the three control parameter sets are sequentially activated.

Figure 12. Experiment 9: The robot reaches multiple goals (G1, G2, G3), which are marked. The chaining of the robot behaviours is

I M1→ I M2→ I M3→P5 pe
→P4 pe

. I M1 (obtained from interpolating P8s
, P1s

 and P2s
), which gives the robot behaviour for moving to 120°  diagonally in a straight

shape, is chained with I M2 (obtained from interpolating P1a
, P2a

 and P8a
). This is followed by I M3 (obtained from interpolating P4a

, P5a
 and P6a

), for moving

the robot to −30°  with a bent arc-like configuration, with all its joint angles negative. I M3 is used to change the robot’s direction. In this way, G1 is reached.

To reach G2, the motor primitive P5 pe
 for moving to −30°  diagonally with periodic body movements is used. In order to reach the final goal (G3), P4 pe

, for

moving the robot to −90°  vertically downward with periodic body movements, is used.
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Definition

PO 1 a: move(angletoGoal, shape)

p: obstacle(angletoGoal) = F, ongoal(robot) = F

e: ongoal(robot)= T

PO 2 a: move(angletoGoal+90°, shape)

p: obstacle(angletoGoal+90°) = F,

obstacle(angletoGoal)= T

e: obstacle(angletoGoal)= F

PO 3 a: move(angletoGoal-90°, shape)

p: obstacle(angletoGoal-90°)= F,

obstacle(angletoGoal)= T

e: obstacle(angletoGoal)= F

Table 3. Planning Operators for Obstacle Avoidance

6.2 Goal-Directed Behaviour with Multiple Goals

Here, the goal-directed behaviour of the robot is demon‐

strated as it is made to move through multiple goals. Figure

11 shows an experiment in which the robot moves through

multiple sub-goals (G1 and G2) in order to reach the final

goal (G3). Three primitives (P1s
,P4z

,P9) are manually

selected from Table 2 for this task, and their final chaining

sequence is P1s
→P4z

→P9. The chaining can be described as

follows: the robot uses P1s
, the motor primitive for moving

to 135  with a straight-line shape, to reach the first goal (G1)

from the start; this is followed by P4z
, for moving straight

with a zigzag shape, to reach the second goal (G2); finally,

the robot uses P9, for moving to 90°  upward with a semi-

arc shape, to reach the final goal (G3). Another multiple

goal experiment is shown in Figure 12. Primitives of

different shapes, and both nonperiodic and periodic, are

selected in these experiments to demonstrate the possibility

of chaining between different robot configurations.

6.3 Goal-Directed Locomotion with Body Deformation

In these experiments, the robot successfully moves toward

a goal even when it has suffered body deformation, i.e.;

changes to its body shape, on its way. A single deformation

is shown in Figure 13(b), whereas Figure 13(c) shows

multiple deformations in body shape.

Figure 13(a–b) uses three motor primitives – P10, P11, P12 –

which are manually selected from Table 2 for the task.

Figure 13(a) shows the robot behaviour when there is no

deformation on its way to the goal (-1m, 2m). The learned

parameters for this situation, taken as Set 1, are θ̇1 =

-0.38rad/s, θ̇2 = -0.05rad/s, θ̇3 = -0.42rad/s and θ̇4 = 0.06rad/

s, with ϕ1 =ϕ2 =ϕ3 =0. Figure 13(b) shows the robot behav‐

iour when its body shape changes on the way toward the

goal (-1m, 2m), while it is using the above Set 1 parameters.

When it detects a change in its body shape, using its joint

Figure 13. Experiment 10: Goal-directed locomotion while handling changes in body shape. (a) Robot reaches the goal without deformation, maintaining ϕi

=0rad throughout its locomotion. The goal is (-1m, 2m) and the start position (0m, 0m).(b) Even when its body shape changes on its path at 0.25min, it continues

with the new shape to reach the same goal (-1m, 2m). It uses the corresponding motor primitives/robot control for the new body shape to handle this change.

(c) Simulation showing that the robot can successfully handle multiple body shape changes on its route, and still reach the goal. The first snapshot shows the

robot reaching the goal (-2m, 3m) by moving at 60°, without any deformation and maintaining ϕi =0rad throughout. Two deformations – the first from a

straight to an arc shape, followed by a change to a semi-zigzag (at both instants, the robot going to 20°) – are handled using two derived motor primitives, as

shown in the second snapshot onwards. The pictures also show how the trajectory (the white line) is maintained even when there is deformation. This points

to a systematic primitive library formation, which can be used as required.
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angle sensors, it uses another robot behaviour, I M4, to

enable it to handle this morphological change. I M4

(belonging to the semi-zigzag robot shape of ϕ1 = 0.5rad, ϕ2

= -0.5rad, and ϕ3 = -0.1rad) is generated using parameter

interpolation of the primitives P10, P11 and P12, in order to

move to 30°. The interpolation is performed following

Equations (16–18). The primitives to be interpolated are

selected based on the new deformed robot shape and the

angle to the goal at the instant that deformation takes place.

Interpolation is used to generate new behaviours, as no

suitable primitive previously existed. Using the derived

behaviour I M4, the robot moves with this new semi-zigzag

shape and is able to finally reach the goal.

7. Conclusion

We have successfully developed a framework that pro‐

vides a model-free goal-directed locomotion controller for

a snake-like robot with screw-drive units. The framework

handles a large number of behavioural cases (within a

defined scope). With the complete framework for generat‐

ing motor primitives using PI2, along with parameter

interpolation and the chaining of primitives and/or

interpolated parameters, the robot can successfully per‐

form goal-directed locomotion in different situations. The

framework thus generalizes the locomotion generation for

the complex nonstandard snake-like robot.

Real robot experiments show that using the complete

framework enables the robot to successfully handle

challenging tasks like reaching a single/multiple goal(s)

while avoiding obstacles or compensating for a morpho‐

logical change (such as body damage) during locomotion.

Furthermore, it has also been shown that, by learning a

proper combination of locomotion control parameters (i.e.,

screw velocities and joint angles using PI2), motor primi‐

tives can be generated in a numerically simple manner.

Proper control parameters were also found for when the

robot was configured with different shapes (i.e., straight-

line, zigzag, arc, etc.) or with periodic body movements,

thereby establishing a rich primitive library which could

then be used. Thus, this framework and approach solves

the coordination problems relating to such a high degree-

of-freedom system as this nonstandard snake-like robot. As

a result, the robot is able to reach a given goal in different

situations. In addition, this study also shows how PI2 can

be used to learn motor control for this type of nonstandard

snake-like robot.

In some of the real robot experiments, a small deviation

(i.e., approximately 25cm) from the goal was observed. This

deviation was due to real conditions, such as friction,

cabling, etc. Major changes, like the variation of the friction

coefficient, can be handled by relearning the existing motor

primitives. However, sensory signals (e.g., joint angles,

goal detection, slip detection, etc.) are required in order to

enable the robot to perform online learning autonomously,

which can then adjust or optimize the parameters of our

motor primitives to deal significantly with body and

environmental changes. Implementing such sensors with

online learning is one of our future plans.
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