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Abstract

Visually extracted 2D and 3D information have their
own advantages and disadvantages that complement each
other. Therefore, it is important to be able to switch between
the different dimensions according to the requirements of
the problem and use them together to combine the reliabil-
ity of 2D information with the richness of 3D information.
In this article, we use 2D and 3D information in a feature-
based vision system and demonstrate their complementary
properties on different applications (namely: depth predic-
tion, scene interpretation, grasping from vision and object
learning)1.

1. Introduction
There exist acknowledged differences between visually

extracted 2D and 3D information (see, e.g., [2, 4]). In ad-
dition to the difference in dimension, two aspects of 2D in-
formation can be distinguished [12]: appearance based in-
formation (such as pixel color values or contrast transition)
and geometric information (such as the position and orien-
tation of a local edge). An overview of such differences is
given in Table 1.

Two dimensional geometric information varies signif-
icantly with viewpoint changes. Actually, it is only the
change of 2D orientation that allows for the reconstruction
of a 3D orientation. For many tasks such as object recogni-
tion, this imposes the problem to compensate for this vari-
ance which can be done for example by invariant descriptors
(see, e.g., [10, 11]). However, an invariance to such trans-
formations leads necessarily to a weakening of the struc-
tural richness of the representations since properties that the

1This work has been supported by EU-Project Drivsco

system becomes invariant to can not be represented any-
more.

For both types of 2D information, geometric or appear-
ance based, the transformation under viewpoint changes can
be computed explicitly or at least approximated once the un-
derlying 3D model is known. Hence, using 3D information
reduces the problem of variance under view-point transfor-
mation (with the exception of occlusions) and also allows
to compute rich geometric information in terms of 3D po-
sition and 3D orientation. It also allows for the definition
of semantic relations such as the Euclidian distance of vi-
sual entities or their co-planarity (see below). Moreover, in
the context of robotic systems, the 3D space is closer to the
space the action takes place in comparison to the 2D image
space. For example in grasping, the transformation between
joint co-ordinates and 3D pose is usually trivial [13]; and
in navigation, planning is often done in maps representing
depth information in an Euclidian way.

However, there are also problems connected to the use of
3D information. First, significantly more complex process-
ing is required: Besides the fact that multiple cameras are
required that usually need to be carefully calibrated, corre-
spondences need to be found. For feature based matching,
this imposes a number of possible error sources. For ex-
ample, besides the possibility of a wrong match, it might
even be that a feature is extracted in only one of the images.
Moreover, when 3D information is extracted by stereo, the
quality of information highly varies with space since the un-
certainties that are associated to reconstructions at different
positions in Euclidian space are highly non–isotropic and
hence any depth information carries an uncertainty that de-
pends strongly on the viewpoints [15].

We suggest that efficient visual systems should make use
of the complementary properties of 2D and 3D information
according to the actual context and task. This seems to hold
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for human vision as well. For example, although 2D in-
formation is sufficient for a large number of vision tasks,
Edelman and Bülthoff [4] have shown that the existence of
3D information reduces the mean error rate for tasks like
recognition. Since 2D information is more reliable but 3D
information is richer, one can for example use the comple-
mentary aspects of both kinds of information by doing se-
mantic reasoning and hypotheses generation in the 3D space
and feed these hypotheses back to lower levels of process-
ing.

In [9], a visual representation, which is based on local
symbolic features called multi-modal primitives, has been
introduced. These primitives (see Figure 1(a)) represent a
local part of the scene in terms of condensed 2D and 3D
information covering appearance based aspects of visual
information (color and local phase) as well as geometric
information in terms of 2D and 3D position and orienta-
tion. These primitives allow for switching between 2D and
3D as well as geometric and appearance based information
and hence their complementary properties can be used effi-
ciently. Moreover, in [15], a model for the uncertainties of
the 3D properties covered by the primitives is derived and
is used to facilitate the reasoning processes in 3D space.

Originally, the multi–modal primitives have been de-
signed to formulate predictions in an early cognitive vision
system to disambiguate visual information (see [19]). In
this work, we make use of this representation to character-
ize scenes and objects by 2D and 3D properties of the prim-
itives as well as by a number of relations defined upon the
primitives such as parallelism, co-planarity etc. We show
that the structural richness of the representations allows for
semantic reasoning about object properties and object rela-
tions in scenes. The representations are rather generic since
they basically cover known attributes of visual information
such as orientation, color, local motion as also computed in
the first stages of human visual processing [7].2 Hence, the
primitives can be made use of for a variety of tasks.

In this paper, the strength of the approach is demon-
strated on a variety of applications such as depth prediction,
road interpretation, grasping, and object learning. Here, we
focus less on the detailed description of the algorithms but
on how the introduced representation facilitates the compu-
tation for the different tasks. In that sense, this article has a
review character of previous works as well.

The paper is structured as follows: In section 2, the vi-
sual representation in [9] is summarized. In section 3, we
then briefly describe 4 applications and in section 4, we re-
flect upon the properties of the representation.

2A more detailed discussion of the biological motivation can be found
in [9].

2. Primitives and Relations
In [9], a visual representation has been introduced in

terms of local condensed symbolic features called multi-
modal primitives. We give a brief description of these fea-
tures in section 2.1. In section 2.2, we introduce perceptual
relations on these symbolic features that are applied in the
applications described in section 3.

2.1. Multi-modal primitives

In its current state, the primitives discussed can be edge-
like or homogeneous and carry 2D or 3D information. For
edge-like primitives, the corresponding 3D primitive is ex-
tracted using feature based stereo. Since correspondences
can not be found for homogeneous image structures, 3D
primitives for these image structures can be estimated from
the surrounding 3D edge-like primitives (see also section
3.1).

An edge-like 2D primitive (Figure 1(a)) is defined as:

π = (m, θ, ω, (cl, cm, cr), f), (1)

where m is the image position of the primitive; θ is the 2D
orientation; ω represents the contrast transition coded in the
local phase; (cl, cm, cr) is the representation of the color,
corresponding to the left (cl), the middle (cm) and the right
side (cr) of the primitive; and, f is the optical flow.

(a) (b)

Figure 1. (a) Two types of edge-like 2D primitives [9] 1) represents
the orientation of the primitive, 2) the phase, 3) the color and 4)
the optic flow. (b) Reconstruction of a 3D primitive from two 2D
primitives.

As the underlying structure of an homogeneous image
patch is different from that of an edge-like patch, a differ-
ent representation is needed for homogeneous 2D primitives
(called monos):

πm = (m, c), (2)

where m is the position in the image, and c is the color of
the mono. Note that these different image structures can be
distinguished by the intrinsic dimension of the image patch



3D 2D

pr
os

Distances and angles are invariant under camera Distances and angles are variant under camera

co
ns

transformations transformations
Units have physical meaning (distance in millimeters) Pixel coordinates are not directly usable for physical

measurements
Relations are richer (coplanarity,proximity) Restricted to 2D relations
Possible to obtain a complete model of an object To cover all perspectives of an object a high number of

images are required
Directly relatable to actions Requires additional computation to become related to

actions

co
ns High computational complexity Low computational complexity

pr
os

High likelihood of errors and uncertainty Higher reliability

Table 1. Different properties of 2D and 3D information. While 3D information has geometric properties (position and orientation), 2D
information covers also appearance based properties (color,contrast transition etc.).
.

[5]. See [9] for more information about these modalities and
their extraction. Figure 2 shows the extracted primitives for
an example scene.

(a) (b)

(c) (d)

Figure 2. Extracted primitives (b) for the example image in
(a). Magnified edge primitives and edge primitives together with
monos are shown in (c) and (d) respectively.

A primitive π is a 2D feature which can be used to find
correspondences in a stereo framework to create 3D primi-
tives (as introduced in [16]) which have the following for-
mulation:

Π = (M ,Θ,Ω, (cl, cm, cr)), (3)

where M is the 3D position; Θ is the 3D orientation. Ap-
pearance based information is coded in the phase Ω (i.e.,
contrast transition) and (cl, cm, cr) is the representation of

the color, corresponding to the left (cl), the middle (cm)
and the right side (cr) of the 3D primitive. Both, phase and
color, are extracted as a combination of the associated val-
ues in the corresponding 2D primitives in the left and right
image. The reconstruction of a 3D primitive from two cor-
responding 2D primitives is examplified in Figure 2(b).

In section 3.1, we estimate the 3D representation Πm of
monos which stereo fails to compute:

Πm = (M ,n, c), (4)

where M and c are as in equation 2, and n is the orientation
(i.e., normal) of the plane that locally represents the mono.

2.2. Perceptual relations between primitives

The sparse and symbolic nature of the discussed prim-
itives allows for perceptual relations defined on them that
express relevant spatial relations in 2D and 3D space. These
relations can be applied in rather different contexts such as
depth prediction, object learning and grasping (see section
3).

Collinearity: Two spatial primitives Πi and Πj are
collinear (i.e., part of the same group) if they are part of the
same contour. Due to uncertainty in the 3D reconstruction
process, in this work, the collinearity of two spatial primi-
tives Πi and Πj is computed using their 2D projections πi

and πj . We define the collinearity of two 2D primitives πi

and πj as:

col(πi, πj) = 1−
∣∣∣∣sin (

|αi|+ |αj |
2

)∣∣∣∣ , (5)

where αi and αj are as shown in Figure 3(a).
Co–planarity: Two 3D edge primitives Πi and Πj are

defined to be co–planar if their orientation vectors lie on the
same plane, i.e.:

cop(Πi,Πj) = 1− |projtj×vij
(ti × vij)|, (6)
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Figure 3. Illustration of the perceptual relations between primi-
tives. (a) Collinearity of two 2D primitives. (b) Co–colority of
three 2D primitives πi, πj and πk. In this example, πi and πj are
cocolor, so are πi and πk; however, πj and πk are not cocolor. (c)
Co–planarity of two 3D primitives Πi and Πj .

where vij is the vector (M i −M j); ti and tj denote the
vectors defined by the 3D orientations Θi and Θj , respec-
tively; and, proju(a) is the projection of vector a over vec-
tor u. The co–planarity relation is illustrated in Figure 3(b).

Co–colority: Two 3D primitives Πi and Πj are defined
to be co–color if their parts that face each other have the
same color. In the same way as collinearity, co–colority of
two spatial primitives Πi and Πj is computed using their
2D projections πi and πj . We define the co–colority of two
2D primitives πi and πj as:

coc(πi, πj) = 1− dc(ci, cj), (7)

where ci and cj are the RGB representation of the colors
of the parts of the primitives πi and πj that face each other;
and, dc(ci, cj) is Euclidean distance between RGB values
of the colors ci and cj . Co-colority between an edge prim-
itive π and a mono primitive πm, and between two monos
can be defined similarly (not provided here). In Figure 3(c),
a pair of co–color and not co–color primitives are shown.

Rigid-body motion: The rigid body motion Mt→t+∆t

associating any entity in space in the coordinate system of
the stereo set–up at time t to the same entity in the new coor-
dinate at time t+∆t is explicitly defined for 3D–primitives
(see Figure 4):

Π̂
t+∆t

i = Mt→t+∆t(Πt
i). (8)

3. Applications
In this section, the framework introduced in section 2 is

applied to a variety of tasks such as depth prediction at ho-
mogeneous image structures (section 3.1), scene interpreta-
tion (section 3.2), grasping (section 3.3) and object learning
(section 3.4).

3.1. Depth prediction

Edge primitives represent edge–like structures. It is
known that it becomes increasingly difficult to find corre-

t t+ td
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predicted
motion

predicted
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pi

t

pi
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p’
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Pi j®

p’’
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Figure 4. Example of the rigid-body motion of a primitive (see
text).

(a) (b)

Figure 5. Depth prediction at homogeneous image areas using per-
ceptual relations between primitives. (a) The results, shown as a
disparity map only at the predictions, are from the scene in Figure
2. (b) A global dense stereo method (taken from [18]) that uses
dynamic programming to optimize matching costs.

spondences between local patches the more they lack struc-
ture. On the other hand, it is known that lack of structure
also indicates lack of a depth discontinuity [6, 8]. Moreover,
we have shown that based on the co-planarity relation, depth
at homogeneous image areas can be predicted (see Figures
5 and 6). Such a scheme can be used to ‘fill in’ the rep-
resentation at homogeneous areas using co–planar relation-
ships between edge–like primitives. In Figure 5, the homo-
geneous primitives inferred using such a scheme are shown
as a disparity map. Results on the same scene are shown for
a global dense stereo method (taken from [18]) that uses dy-
namic programming to optimize matching costs. Figure 5
shows that such depth prediction can be used as a depth cue
providing additional information in particular when image
structures are too weak to find correspondences. When con-
fronted with an image as in Figure 6, many dense depth esti-
mation algorithms either basically fail or assume implicitly
some linearity assumption that leads to rather bad recon-
struction. However, our method can ’interpret’ the curved
edges of the cylinder in order to reconstruct the round sur-
face.



(a) (b)

Figure 7. Interpretation of a road and a circular traffic sign. (a) Input image from a stereo pair and the corresponding 2D primitives (b)
Interpretation of the scene.

(a) (b)

(c) (d)

Figure 6. Depth prediction for a round object. (a) Left stereo im-
age. (b) The top view of the results of 3D reconstruction from a
dense method (taken from [17]). The dense method estimates a
planar surface. The dynamic programming method from [18] pro-
duces similar results. (c)-(d) Two views of the results of our depth
prediction method. Note that (b)-(d) are snapshots from our 3D
visualization software.

3.2. Scene interpretation

Based on the co-linearity relation defined in section 2.2
we can define higher level entities, in the following called
groups, as sets of co–linear primitives (for details see [16]).
Although the groups of multi-modal primitives have higher

semantic meaning than individual primitives, they are not
enough to define an object or give an idea about the struc-
ture of a scene. Therefore, combinations of groups are more
suitable for interpreting a scene. As an example (see Figure
7), one lane of a road can be defined by a group of primi-
tives but this group is not qualified as a road, unless it is not
combined with the group that represents the opposite lane.
In that sense, the opposite lane is the one that lies on the
same plane with a certain distance and similar color. With a
similar reasoning, a circular traffic sign is interpreted by the
combination of circular pieces that shares the same center
and the plane with a similar enough color.

In this way we can make use of the appearance based
as well as geometric information in the primitives. Inter-
estingly, this allows for a close to textural description of
objects and scenes, e.g., the particular traffic sign in Fig-
ure 7 can be described by its geometric properties (curved
and co-planar groups with a certain proximity) as well as its
appearance based aspects (being blue). In this way, the in-
troduced representations can be seen as as an intermediate
step towards high level representations in which by express-
ing the semantic relations introduced in section 2.2, abstract
statements about the scene structure can be made.

3.3. Grasping

In [1], it has been shown how geometry, appearance and
spatial relations between multi-modal features can guide
early reactive grasping which is an initial ”reflex-like”
grasping strategy. A simple parallel jaw gripper was used
and five elementary grasping actions, called EGAs, were
associated to co-planar primitives. Two samples are shown
in Figure 8(a). The EGAs were tested in a simulation en-



vironment [1] as well as in a real environment. It has been
shown that with a rather weak assumption of co-planarity
and hence without any a-priori object knowledge, success-
ful grasps could be generated which can then be haptically
verified and used further in a cognitive system (see section
3.4). Basically, plane hypotheses based on co-planar fea-
tures (as discussed in section 2) become associated to grasp
hypothesis (see Figure 8(b)). By making use of the addi-
tional relations co-colority and co-linearity, the number of
potential grasp hypotheses could be further reduced.

(a) (b)

Figure 8. Sample elementary grasping actions and grasping hy-
pothesis from [1] (a) Two sample EGAs (b) Two sample grasp
hypotheses.

Even more reliable grasping hypothesises can be asso-
ciated to object parts (see, e.g., [2]). To grasp cylindric or
conic objects, grasping options can be associated to a cir-
cle (see Figure 10). Here, instead of using second-order
relations between multi-modal primitives, 3D locations of
circles have been used to generate grasping hypothesises.

To extract a 3D circle, it is important to switch between
the 2D and the 3D aspects. The first step is locating the
3D circle by using the fact that a circle in 3D can be ap-
proximated by an ellipse in 2D. Although fitting an ellipse
to 2D data is easier than fitting a circle in 3D, an ellipse
does not give sufficient information about the center, radius
and the plane normal of the 3D circle. At that point, it is
possible to switch the dimension and obtain the missing in-
formation by processing the 3D features that correspond to
the 2D features which form the ellipse. Fitting a plane to the
3D features determines the normal of the circle. Finally, the
intersection of this plane and the line that passes from the
camera center and the multiplication of the pseudo-inverse
of the projection matrix and 2D ellipse center gives the cen-
ter of the circle. An example of the procedure is given in
Figure 9 (a-c).

Once a circle is found in 3D, four different grasp hypoth-
esis can be generated (see Figure 10). The first one uses the
center and the normal of the circle to place the gripper in-
side the circle and uses the radius to grasp the object from
inside. For the second hypothesis, a point on the circle is
calculated and this point is used to grasp the object from its
brim. For the third hypothesis, the center and the normal
of the circle is used for placing the gripper orthogonal to

(a) (b)

(c) (d) (e) (f)

Figure 9. Grasping of a cylindrical cup (a) Input left image (b)
Corresponding 2D primitives (c) Detected circle (d) Model of the
robot (e-f) The cup is grasped by the robot with respect to the
extracted information.

the circle normal, the radius is used to open the gripper and
the object is grabbed from the side. The last hypothesis is
similar to the first one but instead of inner side, the circle is
grasped from outer side. A sample grasp of the second type
is presented in Figure 9 (e-f).

Figure 10. Four different grasp hypothesises for circles

3.4. Learning objectness and object shape

The detection of features belonging to one individual ob-
ject is not a trivial task when a stereo system only observes
a scene since there is no decision criterion that a set of fea-
tures actually can be separated from the rest of the scene.
However, having achieved a successful grasps (as explained
in section 3.3), the robot has physical control over a poten-
tial object, and it can try to move it (see Figure 11). Since
the change of primitives under a rigid–body motion can be
described analytically (see section 2.2), predictions about
the change of primitives can be derived. Only primitives
that change according to these predictions are supposed to
be part of the object.3 In Figure 12, a number of represen-
tations are shown that have been extracted by this method
(for details, see [14]). First steps in using these object rep-
resentations for pose estimation and grasping are made in
[3].

3Note that the primitives belonging to the grasper change according to
the robot motion but they can be eliminated using the model of the grasper.



Figure 11. The robot is doing a rotation to extract the 3D model of
a basket.

Figure 12. Sample objects and their related accumulated represen-
tation [14].

4. Discussion
The advantages of using a 2D or a 3D scene representa-

tion is highly dependent on the application and the context.
Both have their own advantages and disadvantages as pre-
sented in Table 1. By keeping these properties in mind, we
described a representation that preserves relevant aspects of
2D and 3D information to allow for switching between the
dimensions according to the actual requirements. We ex-
emplified the potential of this approach in four applications
of rather different nature, covering depth estimation at ho-
mogeneous areas, semantic scene description, grasping and
extraction of object representations.
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