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Abstract— In this paper, we investigated the dynamics of
a hexapod robot model whose legs are driven by nonlinear
oscillators with a phase modulation mechanism including phase
resetting and inhibition. This mechanism changes the oscillation
period of the oscillator depending solely on the timing of the
foot’s contact. This strategy is based on observation of animals.
The performance of the controller is evaluated using a physical
simulation environment. Our simulation results show that the
robot produces some stable gaits depending on the locomotion
speed due to the phase modulation mechanism, which are
simillar to the gaits of insects.

I. INTRODUCTION

Humans and legged animals show an outstanding locomo-

tive ability by using their legs. They can traverse on almost

every terrain in the world even where machines using wheels

or tracks cannot go. They change their gaits depending

on the speed and environments, for example, four legged

animals, such as horses, change their gait depending on the

speed (e.g., walk, trot and gallop gaits). Insects also change

their gaits (e.g., tripod and metachronal gaits). So far, many

researchers investigate their gait transition to understand the

machanism of the gaits from various viewpoints.

In the field of insects, Wilson [1] pointed out from the

observation that the gaits of insects seem to fulfill the

following rules;

1) A wave of protractions (swing movements of the legs)

runs from posterior to anterior (and no leg protracts

until the one behind is placed in a supporting position).

2) Contralateral legs of the same segment alternate in

phase.

and he classified the gaits in five patterns. The tripod and

metachronal gaits also fulfill these rules. There are other

observation results about insects. Hughes [2] showed that

the gaits transit continuously in insects.
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TABLE I

THE LEG i’S ”DENAVIT-HARTENBERG” LINK PARAMETERS

Joint θ α l d

1 θi1 π/2 l1 0
2 θi2 0 l2 0
3 θi3 0 l3 0

Nowadays, many researchers try showing that this move-

ment can be achieved by using Central Pattern Generator

(CPG) [3]-[5] and neural models [6]-[8]. Previously, we also

designed neural controllers using a single CPG to control

hexapod robots and showed their adaptability [7][8]. Other

researchers also investigated the gait transition from the

points of energy consumption by making simple hexapod

model. Nishii [9] showed that the gait transition in insects

could be explained in the point of minimizing energy con-

sumption under some assumptions. However, the reason why

insects choose the gait which fulfills the Wilson’s rules is still

not clear. This reason could be explained from the relation

between neural oscillators and the robot’s dynamics.

In this paper, we design a control system by using a

concept of simple phase resetting mechanism derived from

observation of animals and shows that this system produces

an insect-like gaits, which fulfill the Willson’s rules. The

phase resetting mechanism resets the phase of the oscillation

when the foot touches the ground. Aoi et al. [10] showed

that the gait of a quadruped model changes depending on

the locomotion speed (duty rate) and this transition shows

hysteresis similar to animals by using this simple mechanism.

Fujiki et al. [11] showed that the gait of a hexapod model

changes depending on the locomotion speed (duty rate)

and this transition also shows hysteresis. Based on this

conscept, we discuss what gaits are determined by numerical

simulations.

The contributions of our study are as follows. We intro-

duce a simple phase modulation mechanism which is an im-

provement of the phase resetting mechanism to simplify the

mechanism and get a new result. Although in our previous

study [11] we focused on the hysteresis property in the gait

transition by assuming the symmetry between anterior and

posterior part of the body, the main purpose of this paper is

to investigate what gaits are produced depending on physical

parameters without the assumption and to investigate their

stability.

II. HEXAPOD ROBOT

Figure 1 shows a hexapod robot model which is composed

of three homogeneous modules. Each module has a regular
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Fig. 1. Hexapod robot model

Fig. 2. Configuration of the leg

hexagonal prism body. This module is based on our previ-

ously developed robot [12]. The modules are connected to

each other by stiff joints. This robot has six legs (L1,L2...L6)

which have three joints as shown in Fig. 2. Each joint has

a servomotor and the joint angle (θi1,θi2,θi3 for each Li) is

controlled by a PD controller. A touch sensor is installed on

the tip of each leg. Table I shows the “Denavit-Hartenberg”

link parameters [13] of each leg. Physical parameters of the

robot are given in Table II.

III. CONTROL SYSTEM

To generate robot locomotion, we construct a locomotion

control system (Fig. 3). We use six CPG units and each

CPG unit is used for one leg to produce phase information.

We denote the phase of the CPG unit i (i = 1, ...,6) as φi

(0≤ φi ≤ 2π). Each CPG unit interacts with other CPG units

and is also affected by the foot contact (Fig. 4). ∆i j = φi−φ j

represents the phase difference between CPG units i and j.

The leg movement is designed based on the phase of the

CPG unit (Fig. 6). This leg movement is achieved by the PD-

Controller of the joint angle (“Motor Controller” in Fig.3).

Figure 5 shows the details of the phase φi of CPG unit i.

Here, we set the duration of a stance phase as (0 ≤ φi(t)<

TABLE II

PHYSICAL PARAMETERS OF THE ROBOT

Link Parameter Value

Body Mass [kg] 0.32
Side[mm] 74

Leg link 1 Mass [kg] 0.05
l1 [mm] 68

Leg link 2 Mass [kg] 0.05
l2 [mm] 68

Leg link 3 Mass [kg] 0.007
l3 [mm] 114.5

Fig. 3. Control system of the hexapod robot

Fig. 4. CPG control network

Fig. 5. Phase of CPG unit

2β π) while the rest indicates a swing phase, where β is the

duty rate (the ratio between the stance phase and gait cycle

durations). The stance phase starts from the anterior extreme

position (AEP) (φi = 0), and the swing phase starts from

the posterior extream position (PEP) (φi = 2β π). Although

we designed the leg movement composed of the stance and

swing phases, the leg does not necessarily contact the ground

at the AEP or leave the ground at the PEP.

In the following, we show the details of our control

system.

A. Gait generator

In this system, the phase difference ∆i j determines the

gait of our robot. In general, it is sufficient to represent a

gait by determining the values of [∆12,∆34,∆56,∆13,∆35]. For

example, [π ,π ,π ,π ,π ] represents a tripod gait. In this paper,

we set desired phase differences ∆̂12 = π , ∆̂34 = π and ∆̂56 =
π as constraints (we explain ∆̂ later) because we concentrate

on the phase differences between posterior and anterior

(Wilson’s rule 1). Two variables [∆13,∆35] determines the

gait. From now, we denote the phase differences ψ1 and ψ2

as ψ1 =−∆13 = φ3 −φ1 and ψ2 =−∆35 = φ5 −φ3. Note that

the control system of each robot module is isolated.

B. Phase modulation of the CPG unit

The phase dynamics of the CPG unit is described as

follows:

φ̇i(t) =ω−
6

∑
j=1

ki j
c sin(φi(t)−φ j(t)− ∆̂i j)−ki

f (t)+ki
r(t), (1)
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Fig. 6. Designed leg movement

ki
f (t) =







k f oφi(t
i
o) (t i

o ≤ t < t i
o + tduration,

0 ≤ φi(t
i
o)< 2β π)

0 otherwise,
(2)

ki
r(t) =

{

−φi(t
i
o)δ (t − t i

o) (2β π ≤ φi(t
i
o)< 2π)

0 otherwise,
(3)

where ω is a constant angular velocity, t i
o is the time when

the leg Li touches the ground. tduration is a duration of

inhibition (see below) and is set to Tperiod/4, where Tperiod

is a period of CPG oscillation. k f o is a constant positive

value. k
i j
c is a constant and k

i j
c = kc > 0 only when (i, j) ∈

{(1,2),(2,1),(3,4),(4,3),(4,5),(5,4)}; otherwise, k
i j
c is 0.

∆̂i j is the desired phase difference (see below).

In (1), the second term in the right-hand side represents

the interaction among the CPG units. When we ignore the

third and fourth terms, the phase difference ∆i j remains at

∆̂i j. If k
i j
c is large enough, ∆i j = ∆̂i j is fulfilled. The third term

represents the inhibition of the oscillation of the CPG unit.

When the leg i touches the ground during the stance phase

(0 ≤ φi(t
i
o)< 2β π), the speed of the oscillation decreases by

this inhibition and the oscillation period increases as shown

by the point B in Fig. 5. We call this mechanism “Phase

Inhibition”. The magnitude of inhibition changes depending

on φi(t
i
o). This means that the inhibition increases when the

foot contact is delayed. The fourth term is based on the phase

resetting mechanism. When the leg i touches the ground

during swing phase (2β π ≤ φi(t
i
o) < 2π ), the phase jumps

to φi = 0. This means that the oscillation period decreases

as shown by the point A in Fig. 5. We call this mechanism

“Phase Reset”.

The combination of the phase inhibition and the phase

reset is called “phase modulation mechanism”.

C. Leg-orbit generator

By using the coordinate and parameters in Fig. 6, the orbit

of the leg tip is given by

xor(t) =
L

2
cos(Aφ(t)) (4)

yor(t) =

{

0 (0 ≤ Aφ(t)< π)
−H sin(Aφ(t)) (π ≤ Aφ(t)< 2π)

(5)

Aφi(t) =

{

1
2β φi(t) (0 ≤ φi(t)< 2β π)
φi(t)−2β π

2(1−β )
+π (2β π ≤ φi(t)< 2π).

(6)

We note that direction of the leg-orbit is parallel to the

moving direction of the robot.

In our previous studies using the phase resetting mecha-

nism [10][11], we changed the orbit of the leg depending

on the timing of the foot contact. In contrast, our method,

employing the inhibition term introduced for the first time

here, does not require to redesign the orbit, thereby leading

to more simplicity.

IV. SIMULATION

A. Periodic gaits and their properties

Using a physical simulation environment, we aim to find

periodic gaits and investigate their properties. To describe

the state of our dynamic system, there are three variables

(ψ1,ψ2,φ1), where (ψ1,ψ2) determines the gait of our robot

and φ1 determines the oscillation phase.

1) Periodic gaits: To find periodic gaits, we used the

Poincaré section. We define the Poincaré section Sφ1
when

the phase φ1 is π as follows:

Sφ1
= {zzz ∈ R2 |φ1 = π}. (7)

We can find a periodic gait from the fixed point on the

Poincaré section. zzz = [ψ1 ψ2]
T is the variable on Sφ1

. We

can denote the Poincré map PPP as mapping zzzn to zzzn+1, which

is given by

zzzn+1 = PPP(zzzn), (8)

where n corresponds to the nth Poincré section. Fixed point

zzz∗ fulfills zzz∗ = PPP(zzz∗).
2) Stability properties: To analyze the stability of the

periodic gait, we investigate the maximum eigenvalue of

Jacobian matrix of Poincaré map [14]. For the perturbation

∆zzzn from fixed point zzz∗, we can write

zzz∗+∆zzzn+1 = PPP(zzz∗+∆zzzn) (9)

= PPP(zzz∗)+ [∇PPP(zzz∗)]∆zzzn +O(∆zzz2
n), (10)

where ∇PPP(zzz∗) ∈ RRR2×2. From (10), we obtain

∆zzzn+1 = [∇PPP(zzz∗)]∆zzzn, (11)

where we ignore higher terms. From the absolute values of

eigenvalues λi of ∇PPP(zzz∗), we can find whether the fixed point

is stable or not. The periodic gait is stable when

max
i=1,2

|λi|< 1. (12)

We approximate ∇PPP(zzz∗) as follows:

∇PPP(zzz∗) =

[

∂PPP

∂ψ1

∂PPP

∂ψ2

]

, (13)

∂PPP(zzz∗)

∂ψi

=
PPP(ψ1..,ψi +∆ψ , ..)−PPP(ψ1..,ψi −∆ψ , ..)

2∆ψ
. (14)

Here, we used ∆ψ = 0.05.
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Fig. 7. Hexapod robot model in the simulation

TABLE III

SIMULATION PARAMETERS

Parameter Value Parameter Value

kc 0.05 Height of leg-orbit H [mm] 6
k f o 0.1 Length of leg-orbit L [mm] 10

Control frequency [Hz] 3200 Simulation frequency [Hz] 3200

B. Simulation of a robot gait

We conducted the computer simulation by using a software

LPZROBOTS 1(see Fig. 7). Table III shows the parameters

for the simulation. We used large values for the gain pa-

rameters of the PD-Controller to produce the designed leg

movements.

V. RESULT

A. Periodic gaits and their properties

We investigated the dependence of the gait of our robot

on the duty rate β (it corresponds to the locomotion speed

of the robot), using ω = 0.3π rad/s. For each duty rate, we

performed the simulation for 30 periods and got the fixed

phase differences zzzcnv = [ψcnv
1 ,ψcnv

2 ] on the Sφ1
.

Figure 8 shows the results of [ψcnv
1 ,ψcnv

2 ] for the duty rate.

There are two sets of [ψcnv
1 ,ψcnv

2 ] for each duty rate and they

are distinguished by colors and shapes of the points. Figure

9 shows the maximum absolute eigenvalue of fixed points.

The maximum eigenvalues are less than 1, which means that

the periodic gaits are stable. Figures 10 and 11 show the

foot print diagrams of these two gaits for β = 0.5 and 0.7,

respectively.

From Figs. 8 and 9, we found that this system mainly

has two periodic stable gaits (which are represented in

upper fixed points (“red cross-mark”) and lower fixed points

(“green x-mark”) ) at each duty rate. The lower fixed points

are stable at each duty rate from Fig. 9. The fixed point

changes almost linearly depending on the duty rate β while

the values ψcnv
1 and ψcnv

2 are almost same as shown in Fig. 8.

In detail, the phase differences between hindleg and middle

leg ψcnv
1 and between middle leg and foreleg ψcnv

2 are same

and almost equal to the duration of swing phase 2(1−β )π)
(Note that the duty rate in converged gait is a little bit

different from the nominal duty rate β because we use the

1It is based on the Open Dynamics Engine (ODE). For more details of the
LPZROBOTS simulator, see http://robot.informatik.uni-leipzig.de/software/.

Fig. 8. A and B show the phase differences ψcnv
1 and ψcnv

2 , respectively. We
found two fixed points for each duty rate. The red cross mark represents the
upper fixed points, and the green x mark represents the lower fixed points.
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Fig. 9. Maximum absolute eigenvalue of two fixed points for the duty rate.
The color and shape of the points correspond to those of Fig. 8.

phase modulation mechanism). Because of these features, the

resultant gaits seems to fulfill the following rule.

• The middle leg (foreleg) leaves ground just after the

hindleg (middle leg) touches ground

We can find from this rule that the gait fulfills the Wilson’s

rule 1 at each duty rate and the gaits change continuously as

observed in Hughes [2]. For β = 0.5, the result of (ψcnv
1 = 3.0

rad and ψcnv
2 = 3.0 rad) looks like ”tripod gait” of insects as

shown in Fig. 10A. As the duty rate increases (this means that

the locomotion speed decreases), the gait changes gradually

and finally to “metachronal gait” of insect as shown in Fig.

11A. The upper fixed points are also stable at each duty

rate from Fig. 9. However, these absolute eigenvalues are

larger than those of the lower fixed points. The fixed point
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Leg 1

Leg 3

Leg 5

Leg 2

Leg 4

Leg 6

0 2 4 6 8 10

time[s]

A fixed point [3.0,3.0]

Leg 1

Leg 3

Leg 5

Leg 2

Leg 4

Leg 6

0 2 4 6 8 10

time[s]

B fixed point [3.2,3.2]

Fig. 10. Foot print diagram for β = 0.5. The line means that the leg is on
the ground. A represents the lower fixed point and B represents the upper
fixed point. The gait patterns look like “tripod gait”. In “tripod gait”, three
legs are in the stance phase and the other three legs are in the swing phase
at almost any timing.

Leg 1

Leg 3

Leg 5

Leg 2

Leg 4

Leg 6

0 2 4 6 8 10

time[s]

A fixed point [2.0,2.0]

Leg 1

Leg 3

Leg 5

Leg 2

Leg 4

Leg 6

0 2 4 6 8 10

time[s]

B fixed point [4.1,4.2]

Fig. 11. Foot print diagram for β = 0.7. The line means that the leg is on
the ground. A represents the lower fixed point and B represents the upper
fixed point. The gait pattern of A looks like “metachronal gait” and fullfils
the Willson’s rules. In “metachronal gait”, four legs are in the stance phase
and the other two legs are in the swing phase at almost any timing while
fulfilling the Wilson’s rules.

changes almost linearly depending on the duty rate β and the

values ψcnv
1 and ψcnv

2 are almost same as Fig. 8. In detail, the

phase differences between hindleg and middle leg ψcnv
1 and

between middle leg and foreleg ψcnv
2 are same and almost

equal to the duration of stance phase (2β π). Because of these

features, the resultant gaits seems to fulfill the following rule

in contrast to that of lower fixed points.

• The hindleg (middle leg) leaves ground just after the

middle leg (foreleg) touches ground

This means that a wave of swing movement runs from

anterior to posterior. For β = 0.5, the result of (ψcnv
1 = 3.2

rad and ψcnv
2 = 3.2 rad) looks like ”tripod gait” of insects as

shown in Fig. 10B. However, as the duty rate increases, the

gait changes gradually and finally to something like inverse

“metachronal gait” of insect as shown in Fig. 11B. These

gaits do not fulfill the Wilson’s rule.

These two different gaits (lower and upper fixed points)

are almost axially symmetric to the line ψi = π in Fig. 8.

An interesting thing is that we could get the stable gaits only

from the interaction between CPG and robot’s dynamics, and

the gait which fulfills the Wilson’s rules (lower fixed point)

is more stable than the gaits which do not fulfill the Wilson’s

rule.

B. Discussion of stability mechanism

1) Overview: In this subsection, we discuss how this

system establishes stable insect-like gaits. Note that this

Fig. 13. The conditions of the robot when L5 touches the ground in event
B on sagittal plane. In condition I, L5 just touches down the ground and L3

will lift off at once. In condition II, because of the perturbation, L5 touches
the ground when the L3 starts swing movement and the body tilts as shown
in the figure. In condition III, L5 touches the ground when the L3 does not
lift off yet and the body tilts to other direction.

TABLE IV

DATA OF THE SIMULATION

∆ φi(t
i
o) [rad] θ (t i

o) [10−3rad]

0 0.255 −1.99
A +0.2 0.261 −1.81

−0.2 0.261 −1.66

0 0.255 −0.354
B +0.2 0.253 −0.470

−0.2 0.256 −0.299

0 0.255 1.63
C +0.2 0.316 −0.340

−0.2 0.154 6.96

discussion is not enough for explaining the reason why the

phase differences converge to some fixed points, we just

point out the possibilities of the reason. In future, we will

give a good explanation about it.

We use the parameters; β = 0.65 and the others are same

as in section V-A and focus on the gait of the lower fixed

point. In the following, we explain the mechanism of stability

by disturbing only ψcnv
2 on the Poincré section. We also

only think the movement of the legs (L1, L3 and L5) on

the sagittal plane because we assumed that the contralateral

legs of the same segment alternate in phase. According to

the results of simulation (V-A), we can devide the periodic

gait to seven phases on sagittal plane depending on stance

conditions as Fig. 12.To discuss the stability, we focus on

only three marked events (A, B and C on Fig. 12) because

the phase modulation mechanism infuluences the locomotion

dynamics only when the legs touch ground.

The simulation results are shown in Table IV, where we

disturbed ψcnv
2 on the Poincré section (perturbation ∆ =

0, ±0.2), and we show the result for each event during one

periodic walking. In Table IV, φi(t
i
o) is the oscillator phase

of leg i when leg i touches ground and θ is the pitch angle

of the robot as shown in Fig. 13.

2) Event A: In this case, the L3 touches down and L1

lifts off. The phase φ3(t
3
o ) was disturbed from 0.255 rad to

0.261 rad, which was small. Because the pitch angle was not

so disturbed, the timing of the foot contact of L3 was not

also disturbed. This means that the magnitude of inhibition

which is applied to φ3 was not disturbed. Therefore, ∆ did

not induce changes in the gait through this event.

3) Event B: In this case, the L1 touches down. The phase

φ1(t
1
o ) was not so disturbed and the same discussion as the

event A can apply to this event.
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Fig. 12. Stance configurations of the periodic gait on the sagittal plane.

4) Event C: In this case, the L5 touches down and L3

lifts off. For ∆ = −0.2, the phase φ5(t
5
o) is less than that

for ∆ = 0. In detail, the L5 touches the ground earlier than

without disturbance and φ5(t
5
o ) became smaller, because the

pitch angle θ (t5
o) became larger than without disturbance

as Table IV and Fig. 13-II. This means that the inhibition

makes the oscillation of φ5 faster than those of φ3 and φ1,

and ψ2 = φ5 − φ3 becomes larger, and finally, the absolute

value of ∆ became smaller as time goes by.

On the other hand, in the case ∆ =+0.2, the phase φ5(t
5
o )

is larger than that without disturbance. In detail, the L5

touches the ground later than without disturbance and φ5(t
5
o )

is larger than that without disturbance, because the pitch

angle θ (t5
o) became smaller than that without disturbance

as Table IV and Fig. 13-III. This means that the inhibition

makes the oscillation of φ5 slower than those of φ3 and φ1,

and ψ2 becomes smaller, and finally, the absolute value of

∆ became smaller as time goes by.

5) Summarize: As we discussed above , we showed how

perturbations evolve by focusing on leg’s touching down. We

expect that the phase converges to the fixed point mainly

because of the Event A. Although this did not fully prove

the stability, our results show that the relation between the

body tilt and phase modulation and the rules mentioned in

section V-A are important for gait stability. This would be

a good clue to clarify this phase modulation mechanism in

future.

VI. CONCLUSION

In this paper, we investigated the locomotion of a hexapod

robot driven by nonlinear oscillators with a phase modulation

mechanism. The simulation results revealed that the robot

produces stable gaits despite this simple mechanism. In

addition, the one of the two set of gaits looks like that of

insects, and fullfils the Wilson’s rules.

Our results seem interesting because the relation between

CPG and robot’s dynamics plays an important role for gait

generation and stability. This would be a key for understand-

ing the movements of insects. In future, we will make a

sophisticated model to explain this phenomena and we will

also verify this movement in the real environment.
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