
International Journal of Robotics Research

Paper number: 410459

Please ensure that you have obtained and enclosed all necessary permissions for the reproduction of artistic works,
e.g. illustrations, photographs, charts, maps, other visual material, etc.) not owned by yourself, and ensure that the
Contribution contains no unlawful statements and does not infringe any rights of others, and agree to indemnify
the Publisher, SAGE Publications Ltd, against any claims in respect of the above warranties and that you agree that
the Conditions of Publication form part of the Publishing Agreement.

Author queries

Query Author reply

Please supply further details for
Gibson (1977), McCarthy and Hayes
(1969)

Please supply volume and page
numbers for Gilbert et al. (2009)

Learning the semantics of object–action
relations by observation

The International Journal of
Robotics Research
00(000) 1–21
© The Author(s) 2011
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0278364911410459
ijr.sagepub.com

Eren Erdal Aksoy1, Alexey Abramov1, Johannes Dörr1, Kejun Ning1, Babette Dellen1,2

and Florentin Wörgötter1

Abstract
Recognizing manipulations performed by a human and the transfer and execution of this by a robot is a difficult problem.
We address this in the current study by introducing a novel representation of the relations between objects at decisive
time points during a manipulation. Thereby, we encode the essential changes in a visual scenery in a condensed way such
that a robot can recognize and learn a manipulation without prior object knowledge. To achieve this we continuously
track image segments in the video and construct a dynamic graph sequence. Topological transitions of those graphs occur
whenever a spatial relation between some segments has changed in a discontinuous way and these moments are stored in
a transition matrix called the semantic event chain (SEC). We demonstrate that these time points are highly descriptive for
distinguishing between different manipulations. Employing simple sub-string search algorithms, SECs can be compared
and type-similar manipulations can be recognized with high confidence. As the approach is generic, statistical learning
can be used to find the archetypal SEC of a given manipulation class. The performance of the algorithm is demonstrated
on a set of real videos showing hands manipulating various objects and performing different actions. In experiments with
a robotic arm, we show that the SEC can be learned by observing human manipulations, transferred to a new scenario,
and then reproduced by the machine.

Keywords
action recognition, affordances, object–action complexes (OACs), object categorization, semantic scene graphs, unsuper-
vised learning

1. Introduction

It has long been known that raw observation and naive copy-
ing are insufficient to execute an action by a robot. Execu-
tion requires capturing the action’s essence and often this
problem is discussed in conjunction with imitation learning
(Breazeal and Scassellati 2002).

Humans are easily able to capture ‘the essence’ and rec-
ognize the consequences of their own actions as well as
those performed by others. While, the mirror-neuron sys-
tem is suspected to be involved in this feat (Rizzolatti
and Craighero 2004), it is currently completely unknown
how newborns gradually learn to recognize and imitate
and thereby develop advanced motor skills aiding their
cognitive development.

Part of the problem lies in the fact that usually there are
many ways to perform a certain manipulation. Movement
trajectories may be different and even the order of how to
perform it may change to some degree. On the other hand,
certain moments during a manipulation will be similar or
even identical. For example, during a manual assembly

process certain object combinations must occur without
which mounting would render nonsense.

This points to the fact that at certain pivotal time points,
one needs to comprehend specifically the momentarily
existing relation between manipulator (hand) and manip-
ulated object as well as the resulting relations (and their
changes) between objects and object parts.

This defines the requirements for a potentially useful
manipulation representation for artificial agents: it needs
to be (1) based on sensory signals and (2) learnable by
observation. At the same time it should encode (3) the

1Bernstein Center for Computational Neuroscience, University of Göttin-
gen, III. Physikalisches Institut, Göttingen, Germany
2Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona,
Spain

Corresponding author:
Eren Erdal Aksoy, Bernstein Center for Computational Neuroscience, Uni-
versity of Göttingen, III. Physikalisches Institut, Friedrich-Hund Platz 1,
37077 Göttingen, Germany
Email: eaksoye@physik3.gwdg.de

2 The International Journal of Robotics Research 00(000)

relations between objects in an invariant way, which it
should do only on certain (4) decisive moments during
the manipulation. Furthermore, preferably it should also be
(5) human-comprehensible and (6) compatible with model-
based knowledge. Aspects (1) and (2) will assure grounding
as the process is bootstrapped in a generic way. Aspect (3)
would lead to the required categorization property (invari-
ance against irrelevant object specifics) and aspect (4) to
a dramatic data compression as only a few moments need
to be stored. The last two aspects (5) and (6) would allow
human access, very practically, for debugging and improv-
ing the algorithm(s), but also for being able to better under-
stand and possibly interact with the artificial system and for
entering model-based knowledge.

To arrive at such a representation is a very difficult
problem and commonly one uses models of objects (and
hands) and trajectories to encode a manipulation (see the
next section for a discussion of the relevant literature).
These approaches, however, can easily lack grounding
because models are almost always given by the designer
and not learned by the agent itself. Furthermore, it is so far
unknown how to solve the variability problem of manipula-
tions in a model-based way. Put more plainly: What is the
correct model (model class) for bringing objects and actions
together in all of those vastly differing manipulations?

In this study it is our goal to introduce the so-called
‘semantic event chain’ (SEC) as a novel, generic encod-
ing scheme for manipulations, which, to a large degree,
fulfills the above introduced requirements (grounded, learn-
able, invariant, compressed, and human-comprehensible).
We show that these SECs can be used to allow an agent
to learn by observation to distinguish between different
manipulations and to classify parts of the observed scene.
Furthermore, we demonstrate that an agent can decide by
self-observation whether or not a manipulation sequence
was correct. Thus, our algorithms give the machine a basic
tool by which it can assess the consequence of a manipu-
lation step directly linking the symbolic planning domain
to the signal domain (image) addressing the difficult cause–
effect problem of how to observe and verify self-induced
changes.

To show this, we use computer vision methods for image
segmentation and tracking at the sensor front-end. On the
motor side we employ methods for dynamic trajectory gen-
eration and control. Both aspects are not in the core of this
paper, which focuses, as discussed above, on the semantics
of manipulations, their representation, and learning.

Parts of this study have been published at a conference
(Aksoy et al. 2010).

2. Related work

To date, there exists no common framework for manipula-
tion recognition. Different approaches have been presented
for vision-based recognition of manipulations (which is
the focus of the work presented in this paper), vision-based

recognition of human-motion patterns, and non-visual
recognition of other types of activities (Hongeng 2004;
Liao et al. 2005; Modayil et al. 2008). The latter are not
discussed any further, because our work focuses on vision.
In the following we give short summaries of previous
achievements obtained in these areas. We also review
previous work on vision-based object recognition, as this is
related to our work.

2.1. Recognition of manipulations

The visual analysis of manipulations, e.g. a hand manipulat-
ing an object, represents an important subproblem in vision-
based manipulation recognition and is relevant for many
vision-based applications such as learning from demonstra-
tion, work-flow optimization, and automatic surveillance.
However, manipulations are far less understood than, for
example, human motion patterns and only a few solutions
have been proposed so far (Vicente et al. 2007; Kjellstrom
et al. 2008; Sridhar et al. 2008).

Sridhar et al. (2008) analyzed manipulations in the con-
text of a breakfast scenario, where a hand is manipulat-
ing several objects (cups, knifes, bread) in a certain order.
The whole image sequence is represented by an activity
graph which holds spatiotemporal object interactions. By
using statistical generalization, event classes are extracted
from the activity graphs. Here, each event class encodes
a similar pattern of spatiotemporal relations between cor-
responding objects, and object categories can be learned
by calculating the similarity between object roles at each
event class. They demonstrated that objects can be catego-
rized by considering their common roles in manipulations.
However, large activity graphs and the difficulty of finding
exact graph isomorphisms make this framework expensive
and sensitive to noise. Furthermore, object knowledge was
provided beforehand. In this way the vision problem was
(artificially) separated from the manipulation-recognition
problem.

Kjellstrom et al. (2008) segmented hand and objects
from the video and then defined hand/object features (shape
based) and manipulation features, providing a sequence
of interrelated manipulations and object features. Seman-
tic manipulation–object dependencies, e.g. drink/glass, are
then extracted using conditional random fields (CRFs)
and connected hierarchical CRFs. Hand/manipulator and
the manipulated object together define the manipulation,
and for this reason the recognition process simultaneously
involves both hand/manipulator and objects (Vicente et al.
2007; Kjellstrom et al. 2008). In Vicente et al. (2007),
manipulations are represented as sequences of motion
primitives. Here, five different manipulations of different
levels of complexity were investigated. The process is mod-
eled using a combination of discriminative support vector
machines and generative hidden Markov models (HMMs).
HMMs have also been used by Ogawara et al. (2002)
to extract primitive of manipulations by learning several

Aksoy et al. 3

HMMs and then to cluster these HMMs such that each
cluster represents one primitive. Raamana et al. (2007)
recognized simple object manipulations such as pointing,
rotating, and grasping in a table-top scenario using HMMs
and selected the best features for recognition automati-
cally. These works demonstrate that HMMs are a useful
tool if the manipulation primitives are hidden in the sen-
sory feature set provided to solve the recognition tasks.
Usually this the case if low-level features are used instead
of higher-level ‘object’-like entities. However, in our case,
manipulations are represented by chained relations between
image segments (see Section 3), which directly represent
manipulation primitives, and as such they can be compared,
grouped, and superimposed without having to assume a
hidden model. This holds at least for the manipulation
examples considered in this paper.

2.2. Recognition of human motion patterns

Recognition of human motion has received much atten-
tion in recent years and many contributions exist, but are
often unrelated to manipulation recognition (Calinon and
Billard 2004, 2005; Hakeem and Shah 2005; Maurer et al.
2005; Calinon and Billard 2007; Laptev and Perez 2007;
Niebles et al. 2008; Dee et al. 2009; Gilbert et al. 2009).
Much work has been done by the group of Aude Bil-
lard (Calinon and Billard 2004, 2005; Maurer et al. 2005);
(Calinon and Billard 2007) addressing the aspect of ges-
ture recognition. Naturally a strong focus lies here on find-
ing a way to describe complete trajectories and different
methods (including PCA, ICA, HMM and Hopfield nets)
have been used in different combinations to address this
problem and also to deal with the question of sequence
learning (Maurer et al. 2005). In Laptev and Perez (2007)
spatiotemporal volumes of optical flow are used to clas-
sify human motion patterns. In Niebles et al. (2008) human
actions are learned in an unsupervised way by using spa-
tiotemporal words that represent space–time interest points.
Dee et al. (2009) segment images into regions of simi-
lar motion structure and learn pair-wise spatial relations
between motion regions, roughly corresponding to seman-
tic relations such as ‘above’, ‘below’, and ‘overlapping’.
By combining these learned spatial relations with the seg-
mentations learned from data, a compact representation can
be provided for each video, representing a motion-based
model of the scene, which allows classifying videos con-
taining different kinds of motion patterns, e.g. indoor sce-
narios with moving people, roads, squares or plazas. In
Hakeem and Shah (2005) events involving multiple agents
are detected and learned considering temporally correlated
sub-events. In Gilbert et al. (2009) simple 2D corners are
grouped in both spatial and temporal domains using a hier-
archical process at each stage and the most descriptive fea-
tures are then learned by using data mining. In this way,
fast and accurate action recognition in video sequences is
achieved in real time.

2.3. Object recognition and the role of context

Despite progress that has been made in the few past
decades, the recognition of objects using visual cues
remains a highly challenging task and still there exists
no vision system reaching human object-recognition capa-
bilities. This is mainly due to the fact that objects take
vastly different appearances in images because of the
following factors: (i) relative pose of an object to a cam-
era, (ii) lighting variations, and (iii) variance in appear-
ance of objects (size, color, shape) belonging to the same
class. Object recognition systems extract certain object-
relevant characteristics in images and match them against
stored object representation or models, which can be either
2D or 3D. We roughly distinguish between geometry-
based, appearance-based, and feature-based approaches.
Geometry-based approaches use a geometric description
of a 3D object and match its projected shape against the
image of the object (Mundy and Zisserman 1992; Mundy
2006). This approach however requires that the object
can be initially segmented from the image. Appearance-
based algorithms use global image patterns to perform
recognition (Turk and Pentland 1991; Murase and Nayar
1995; Belhumeur and Kriegmant 1996). For example, Turk
and Pentland (1991) projected face images onto a face-
specific feature space and used the distance of a pro-
jected image to the eigenvectors of the face space for
classification.

These methods show invariance to changes in viewpoint
and lighting conditions, but are sensitive to occlusions.
Feature-based algorithms find local interest points in the
image, e.g. scale invariant feature transform (SIFT) (Lowe
2004), that have invariant properties with respect to pose,
lighting, and affine transformations (Fergus et al. 2003;
Sivic and Zisserman 2003; Nister and Stewenius 2006).
Local feature histograms are then matched against model
representations for object recognition. Feature-based meth-
ods depend on the quality and number of features that can
be extracted from the image, and thus perform best for
images containing rich texture.

In the above-described ‘classical’ approaches to object
recognition, the context in which the object is embedded
is usually considered to be of minor importance or even
harmful to the recognition procedure, and the problem is
sometimes eased by segmenting the object from the back-
ground prior to recognition. On the other hand, evidence
from visual cognition as well as computer vision suggests
that objects appearing in a consistent or familiar back-
ground can be more accurately detected and recognized
than objects appearing in an inconsistent scenario (Torralba
2003; Hoiem et al. 2008; Oliva and Torralba 2009; Helbig
et al. 2010). Recently it has been shown in psychophysical
experiments that also action context can facilitate human
object recognition (Helbig et al. 2010).

This observation is to some extent in agreement with
our study, where objects, which can be associated with cer-
tain manipulations, are obtained indirectly by classifying

4 The International Journal of Robotics Research 00(000)

and recognizing actions and without using prior object
knowledge.

3. Methods

3.1. Overview of the algorithm

Before discussing details we provide an overview of the
different algorithmic steps (see Figures 1 and 2).

Figure 1 shows a processing example of a manipula-
tion resulting in its SEC representation. We first extract all
frames from the manipulation video (Figure 1(a)). Frames
(Figure 1(b)) are then segmented (Figure 1(c)) by super-
paramagnetic clustering in a spin-lattice model (Dellen
et al. 2009; Abramov et al. 2010), which allows for con-
sistent marker-less tracking (Figure 1(e)) of the individual
segments due to spin-linking across images using optic-
flow information. The scene is then represented by undi-
rected and un-weighted graphs (Figure 1(d)), the nodes and
edges of which represent segments and their neighborhood
relations, respectively. Graphs can change by continuous
distortions (lengthening or shortening of edges) or, more
importantly, through discontinuous changes (nodes or edges
can appear or disappear). Such a discontinuous change rep-
resents a natural breaking point: all graphs before are topo-
logically identical and so are those after the breaking point.
Hence, we can apply an exact graph-matching method at
each breaking point and extract the corresponding topo-
logical main graph. The sequence of these main graphs
(Figure 1(f)) thus represents all structural changes in the
scene. This type of representation is then encoded by the
SEC (Figure 1(g)), which is a sequence table, where 0
means that there is no edge between two segments, cor-
responding to two spatially separated segments, 1 means
that one segment overlaps with the other completely, and
2 represents segments that touch each other. A special
case exists when segment has disappeared, which will be
denoted by 9. Note that the complete image sequence,
which has here roughly 100 frames, is represented by
an event chain with a size of only 7 × 8. The above
described steps (1–4) are also presented in Figure 2,
showing the block diagram of the complete algorithm.
The following steps (5–7) utilize the SEC to compute
similarity values between videos showing manipulations
(step 5), to perform action classification (step 6A) and
conjointly performed segment categorization (step 6B),
and, finally, the learning of archetypal SECs (step 7).
In the following, we describe the different algorithmic steps
in detail.

3.2. Recording, preprocessing, segmentation and
tracking (step 1)

Manipulation videos are recorded in indoor environments
with limited context. All videos used in this study can
be found at http://www.nld.ds.mpg.de/∼eren/Movies.html
(see Extensions 1 and 2). Typical examples are shown in

Figure 4. We use a stereoscopic camera setup using AVT
Marlin F080C CCD firewire cameras and lenses with vari-
able focal length of 2.7–13.5 mm (see Figure 3(a)). Distance
to the manipulation scene is about 1.0–1.5 m. Images are
rectified (see Figure 3(b)–(c)), stereo and optic-flow infor-
mation is extracted by different standard algorithms (Saba-
tini et al. 2007; Pauwels and Van Hulle 2008). An example
of a resulting sparse phase-based disparity map is shown
in Figure 3(d). For step 1 (Figure 2), we use an image-
segmentation method, developed by us earlier, in which
segments are obtained and tracked by a 3D linking pro-
cess (see Figure 3(e) and (f)). The method has been been
described in detail elsewhere (Dellen et al. 2009; Dellen and
Wörgötter 2009; Shylo et al. 2009; Abramov et al. 2010).
It is mainly implemented on GPUs and operates close to
real-time at about 23 fps at a resolution of 256 × 320 pix-
els. For reasons of brevity, details are omitted here. The
main result from these steps is that we receive consistently
tracked image segments, the fate of which can be used to
encode a manipulation as described next.

3.3. Relational scene graphs (step 2)

Following the extraction of segments (step 1), we ana-
lyze the spatial relations between each segment pair. We
denote spatial relations by ρi,j in which i and j are the seg-
ment numbers. Note that spatial relations are symmetric, i.e.
ρi,j = ρj,i.

As mentioned in the algorithmic overview above, we
define four relations between segments: Touching=2, Over-
lapping=1, Non-touching=0, and Absent=9, which refers
to an image segment that is not observed in the scene. We
redefined standard concepts used in the field of topology
(e.g. hole, neighbor, etc.) on purpose to make the termi-
nology more appropriate in the context of manipulation
recognition. Terms such as ‘overlapping’ and ‘touching’
are directly referring to primitive manipulations. Whenever
necessary, we use 3D information from our stereo setup
to disambiguate perspective effects, which would lead to
false relations when using only two dimensions. Note 3D
information could also be used to define additional relations
(such as ‘inside’, ‘above’, etc.). This is currently not done
as classification results are already highly satisfactory even
without.

Furthermore, we note that ultimately additional informa-
tion must be stored if one wants to use such graphs (or event
chains) also for execution of a manipulation. At least one
needs to additionally define the required movement trajec-
tories as well as the desired poses of the objects which are
brought into contact with each other as the relation of just
‘touching’ will not be sufficient for, for example, a mount-
ing procedure. The current paper does not address these
issues, though, as we are focusing here on manipulation
recognition but not on execution.

Given that image segments often have strangely shaped
as well as noisy borders, the correct assignment of these

Aksoy et al. 5

Fig. 1. Processing example and semantic event chain representation. (a) Frames from a video recorded during a manipulation. All
frames (b) are segmented (c) by superparamagnetic clustering in a spin-lattice model (Dellen et al. 2009), which also allows for con-
sistent marker-less tracking (e) of the individual segments. From the image segments, graphs are constructed (d) where graph nodes
represent the segments’ centers and graph edges encode whether or not two segments touch each other. Then we encode a manipulation
by storing only main graphs between which a topological change has taken place (f). Such a change happens whenever an edge or a
node has been newly formed or has been deleted. This type of representation is then given by the semantic event chain (g), which is
a sequence table, where each entry encodes the spatial relations between each segment pair ρi,j counting graph edges (2 means that
segments touch (denoted by red edges), 1 means that they overlap (denoted by blue edges), 0 means that there is no edge between two
segments, and absence of a previously existing segment yields 9).

Segmentation
and

Tracking

Relational
Scene Graphs

Main Graphs
Similarity
Measure

Semantic
Event Chain

Segment
Categorization

Image
Sequence

Learning
Action

Classification

Step 1

Step 2 Step 3 Step 4 Step 5

Step 6A
Step 7

Step 6B

}

Fig. 2. Block diagram of the algorithm.

relations is non-trivial and we had to design a fast and effi-
cient special algorithm for this. As this is not in the core

of this study, we leave the details to Appendix A. This
algorithm gives us the required relations.

6 The International Journal of Robotics Research 00(000)

Fig. 3. Schematic of recording and visual preprocessing. (a)
Stereo camera setup. (b), (c) Original example frames from the
left and right image sequences. (d) Sparse phase-based disparity
map. (e), (f) Extracted segments for the left and right image.

Once the image sequence has been segmented and spa-
tial relations have been extracted, we represent the scene by
undirected and unweighted labeled graphs. The graph nodes
are the segment labels and plotted at the center of each
segment. Nodes are then connected by an edge if segment
relations are either Touching or Overlapping.

Figure 4 shows original frames and corresponding seg-
ments and their scene graphs from four different real action
types: Moving Object, Making Sandwich, Filling Liquid,
and Opening Book. In the Moving Object action a hand is
putting an orange on a plate while moving the plate together
with the orange (Figure 4(a)–(c)). The Making Sandwich
action represents a scenario in which two hands are putting
pieces of bread, salami, and cheese on top of each other
(Figure 4(d)–(f)). In the Filling Liquid action a cup is being
filled with liquid from another cup (Figure 4(g)–(i)). The
Opening Book action describes a scenario in which a hand
is opening a book (Figure 4(j)–(l)).

3.4. Main graphs (step 3)

To understand the remainder of the algorithm better, we
now use simple, artificial scenes to describe steps 3 to 6 of
Figure 2. Figure 5(a) and (b) depict original frames and
their corresponding segments of an artificial Moving Object
action (sample action 1) in which a black round object is

moving from a yellow vessel into a red vessel. We come
back to real scenes later.

Scene graphs, such as those depicted in Figure 4, rep-
resent spatial relations between nodes. Unless spatial rela-
tions change, the scene graphs remain topologically the
same. The only changes in the graph structures are the
node positions or the edge lengths depending on the object
trajectory and speed. Consequently, any change in the spa-
tial relation between nodes corresponds to a change in
the main structure of the scene graphs. Therefore, those
changes in the graphs can be employed to define manipu-
lation primitives. Considering this fact, we apply an exact
graph-matching method in order to extract the main graphs
by computing the eigenvalues and eigenvectors of the adja-
cency matrices of the graphs (Sumsi 2008). A change in
the eigenvalues or eigenvectors then corresponds to a struc-
tural change of the graph. The whole image sequence of
the artificial Moving Object action has 92 frames, how-
ever, after extracting the main graphs, only 5 frames
are left, each defining a single manipulation primitive
(Figure 5(c)).

3.5. Event chains (step 4)

All existing spatial relations in the main graphs are saved in
the form of a table where the rows represent spatial relations
between each pair of nodes. The maximum total number of
spatial relations, hence the maximum total number of rows,
is defined as

ρtotal = n(n − 1)/2, (1)

where n is the total number of segments. For the sample
Moving Object action we have n = 4 (yellow and red ves-
sels, a black moving object, and a green background) and
therefore ρtotal = 6. Those relations are ρ2,1, ρ3,1, ρ4,1, ρ3,2,
ρ4,2, and ρ4,3.

Since any change in the spatial relations represents an
event that defines an action, we refer to this table as the orig-
inal SEC (ξo). Figure 5(d) shows it for the artificial action
explained above.

It is now important to understand that these tables con-
tain spatial–relational information (rows) as well as tempo-
ral information in the form of a sequence of time points
(sequence of columns) when a certain change has hap-
pened. To compare two manipulations with each other, spa-
tial and temporal aspects are being analyzed in two steps by
different sub-string search algorithms.

To achieve this, we first perform two data-compression
steps. In general, it suffices to only encode the transi-
tions from one state (one column) in the original chain
(ξo) to another (next column). Therefore, we can perform
a derivative-like operation on ξo and represent the result by
ξd to simplify the chains.

For this we scan each row of ξo from left to right and sub-
stitute ‘changes’ by combining their numerical values into a
two-digit number. For example a change from Overlapping

Aksoy et al. 7

Fig. 4. Four different real action types. (a),(d),(g),(j) Original images; (b),(e),(h),(k) corresponding image segments; and (c),(f),(i),(l)
scene graphs from the following manipulations: Moving Object, Making Sandwich, Filling Liquid, and Opening Book. In blue and red
are indicated Overlapping and Touching relations.

to Touching, hence from 1 to 2, will be now encoded by
12. When nothing has changed a double digit, such as 11,
occurs. Rows where nothing ever happens (e.g. row ρ3,2 in
Figure 5(d)) are immediately removed. The resulting rep-
resentation (ξd) is, thus, a mild, loss-less compression of
the original. It is required for temporal analysis. Figure 5(e)
shows ξ 1

d for the sample Moving Object action.
Then, in a second compression step all double-digits (00,

11, 22, and 99) are removed leading to ξc. This representa-
tion has lost all temporal information and will be used for
the spatial–relational analysis. ξ 1

c of the artificial action is
given in Figure 5(f).

3.6. Similarity measure (step 5)

Next we discuss how to calculate the similarity of two
actions. Essential this comes down to sub-string search
algorithms in the spatial as well as the temporal domain.
In the spatial domain we are searching for the correspon-
dences between rows of two compressed event chains to
reduce the combinatorics (see Section 3.6.1). Then in the
temporal domain the order of columns is examined to obtain
the final recognition result (see Section 3.6.2).

To explain this we created one more sample for the
artificial Moving Object action. Figure 6 depicts the main
graphs with respective image segments of sample action

8 The International Journal of Robotics Research 00(000)

Fig. 5. Simple example of the Moving Object action (sample
action 1). (a) Original images. (b) Corresponding image seg-
ments. (c) Semantic scene graphs. In blue and red are indicated
Overlapping and Touching relations. (d) Original semantic event
chain (ξ1

o). (e) Derivative of the semantic event chain (ξ1
d). (f)

Compressed semantic event chain (ξ1
c).

2 in which a red rectangular object is moving from a
blue vessel into a yellow vessel following a different tra-
jectory with different speed as compared with the first
sample. Moreover, the scene contains two more objects
which are either stationary (red round object) or moving
randomly (black round object). Following the same pro-
cedure, the event chain ξ 2

o and their compressed versions
(ξ 2

d and ξ 2
c) for the second sample are calculated and given

in Figure 6(d)–(f). Note that even though the second sam-
ple contains more objects, the dimensions of the different
chains are accidentally the same. This is of no importance
as the sub-string search described next does not rely on
dimensions, allowing us to compare arbitrarily long action
sequences.

3.6.1. Spatial similarity analysis The goal of this section
is to provide the first of two subsequent analysis steps,
required to obtain a final measure of similarity between
two event chains. The first step is based on a spatial
analysis comparing the rows of compressed event chains
(ξ 1

c and ξ 2
c) accounting for a possibly shuffling of rows

in different versions of the same manipulations. In this
way the number of possible relations is reduced before
we can finally, in the second step, find the true similarity
measures.

Fig. 6. Different version of the simple Moving Object action
(sample action 2). (a) Original images. (b) Respective image seg-
ments. (c) Semantic scene graphs. In blue and red are indicated
Overlapping and Touching relations. (d) Original semantic event
chain (ξ2

o). (e) Derivative of the semantic event chain (ξ2
d). (f)

Compressed semantic event chain (ξ2
c).

Let ξ 1
c and ξ 2

c be the sets of rows for the two manipula-
tions, written as a matrix (e.g. Figures 5(f) and 6(f)):

ξ 1
c =

⎡
⎢⎢⎢⎢⎣

r1
1,1 r1

1,2 · · · · · · r1
1,γ 1

1

r1
2,1 r1

2,2 · · · r1
2,γ 1

2
...

...
. . .

...
r1

m,1 r1
m,2 · · · · · · · · · r1

m,γ 1
m

⎤
⎥⎥⎥⎥⎦ ,

and

ξ 2
c =

⎡
⎢⎢⎢⎢⎢⎣

r2
1,1 r2

1,2 · · · · · · · · · · · · r2
1,γ 2

1

r2
2,1 r2

2,2 · · · · · · r2
2,γ 2

2
...

...
. . .

...
r2

k,1 r2
k,2 · · · · · · · · · r2

k,γ 2
k

⎤
⎥⎥⎥⎥⎥⎦ ,

where ri,j represents a relational change between a segment
pair

ri,j ∈ {01, 02, 09, 10, 12, 19, 20, 21, 29, 90, 91, 92}.

The lengths of the rows are usually different and given by
indices γ .

Now each row of ξ 1
c is compared with each row of ξ 2

c in
order to find the highest similarity. The comparison process
searches for equal entries of one row against the other using
a standard sub-string search, briefly described next. Assume
that we compare the ath row of ξ 1

c with the bth row of ξ 2
c .

If row a is shorter or of equal length than row b (γ 1
a ≤ γ 2

b),
the ath row of ξ 1

c is shifted γ 2
b − γ 1

a + 1 times to the right.

Aksoy et al. 9

At each shift its entries are compared with that of the bth
row of ξ 2

c and as a result we obtain set Fa,b defined as

Fa,b = {ft : t ∈ [1, γ 2
b − γ 1

a + 1]},

ft = 100

γ 2
b

γ 1
a∑

i=1

δi, (2)

where γ 2
b is the normalization factor and i is the row index

and with

δi =
{

1 ifr1
a,i = r2

b,i+t−1,

0 otherwise,
(3)

where the set Fa,b represents all possible similarities for
every shift t, given by ft, which holds the normalized per-
centage of the similarity calculated between the shifted
rows.

As usual for sub-string searches, we are only interested
in the maximum similarity of every comparison, hence we
define

Ma,b = max(Fa,b) .

For the case γ 1
a > γ 2

b , a symmetrical procedure is per-
formed by interchanging all indices of Equations (2) and
(3).

Spatial similarity values between all rows of ξ 1
c and ξ 2

c
are stored in a matrix ζspatial with size m × k as

ζspatial =

⎡
⎢⎢⎢⎣

M1,1 M1,2 · · · M1,k

M2,1 M2,2 · · · M2,k
...

...
. . .

...
Mm,1 Mm,2 · · · Mm,k

⎤
⎥⎥⎥⎦ .

The final similarity value (ψspatial) between the rows of
two compressed event chains is calculated by taking the
mean value of the highest similarities across rows of ζspatial

as

ψspatial = 1

m

m∑
i=1

max
j

(Mi,j) , j ∈ [1, . . . , k]. (4)

The complete similarity matrix (ζspatial) between the arti-
ficial Moving Object samples (ξ 1

c and ξ 2
c) is given in Table

1. Visual inspection of ξ 1
c (Figure 5(f)) and ξ 2

c (Figure
6(f)) immediately confirms these similarity values. We find
100% similarity (ψspatial) between both artificial ‘manipu-
lations’. One can see that Equation (4) can still lead to mul-
tiple assignments of permutations with the same maximal
similarity. This will be resolved by the temporal similar-
ity measurement stage following below. In more realistic
scenes 100% is, of course, often not reached (see Figure 7)
and one needs to define a threshold above which one would
consider two similarity values as equal.

However, we also observe that there are several 100%
matches between rows in these examples. As a conse-
quence, for the second example two permutations ξ 2,1

c and

Table 1. Similarity table (ζspatial). Similarity values between the
rows of ξ1

c and ξ2
c the artificial Moving Object samples.

ξ2
c

ξ1
c ρ2,1 ρ3,1 ρ6,1 ρ3,2 ρ3,6

ρ2,1 100% 25% 100% 50% 50%
ρ3,1 100% 25% 100% 50% 50%
ρ4,1 25% 100% 25% 50% 50%
ρ4,2 50% 50% 50% 0% 100%
ρ4,3 50% 50% 50% 100% 0%

Table 2. Permutations ξ
2,p
d .

ξ1
c ξ

21
c

ρ2,1 ⇐ 100% ⇒ ρ2,1
ρ3,1 ⇐ 100% ⇒ ρ6,1
ρ4,1 ⇐ 100% ⇒ ρ3,1
ρ4,2 ⇐ 100% ⇒ ρ3,6
ρ4,3 ⇐ 100% ⇒ ρ3,2

ξ
21
d⎡

⎢⎢⎢⎢⎣
11 11 12 21
12 21 11 11
02 21 12 20
12 20 00 00
00 00 02 21

⎤
⎥⎥⎥⎥⎦

(a) Permutation ξ21
d

ξ1
c ξ

22
c

ρ2,1 ⇐ 100% ⇒ ρ6,1
ρ3,1 ⇐ 100% ⇒ ρ2,1
ρ4,1 ⇐ 100% ⇒ ρ3,1
ρ4,2 ⇐ 100% ⇒ ρ3,6
ρ4,3 ⇐ 100% ⇒ ρ3,2

ξ
22
d⎡

⎢⎢⎢⎢⎣
12 21 11 11
11 11 12 21
02 21 12 20
12 20 00 00
00 00 02 21

⎤
⎥⎥⎥⎥⎦

(b) Permutation ξ22
d

ξ 2,2
c exist with equal row-matching probability as given in

Table 2. Note, for real scenes after thresholding, even more
permutations might exist. Hence, the analysis in not yet
complete.

3.6.2. Temporal similarity analysis In the now following
second step we can use the time sequence, encoded in the
order of events in the event chains to find the best matching
permutation and thereby arrive at the final result. To this
end we now use temporal information, hence a derivative
such as the term ξd , to find the truly matching permutation.

Thus, we compare both permutations ξ
2p
d , p = 1, 2 of

the second event chain, shown in Table 2(a) and (b), with
the first one ξ 1

d . In such cases where ξ 1
d has more rows than

ξ
2p
d , hence rows which have no correspondences, ξ

2p
d will be

filled with dummy rows that have no possible similarities.

Let ξ 1
d and ξ

2p
d be matrices with the sizes of q × u and

q × v and assume that u ≤ v as

ξ 1
d =

⎡
⎢⎢⎢⎣

e1
1,1 e1

1,2 · · · e1
1,u

e1
2,1 e1

2,2 · · · e1
2,u

...
...

. . .
...

e1
q,1 e1

q,2 · · · e1
q,u

⎤
⎥⎥⎥⎦ ,

10 The International Journal of Robotics Research 00(000)

and

ξ
2p
d =

⎡
⎢⎢⎢⎢⎣

e
2p
1,1 e

2p
1,2 · · · e

2p
1,v

e
2p
2,1 e

2p
2,2 · · · e

2p
2,v

...
...

. . .
...

e
2p
q,1 e

2p
q,2 · · · e

2p
q,v

⎤
⎥⎥⎥⎥⎦ ,

where ξ
2p
d is a permutation of ξ 2

d and e1
i,j and e

2p
i,j represent

the possible relational changes between any segment pair

ei,j ∈ {00, 01, 02, 09, 10, 11, 12, 19, 20, 21, 22, 29, 90, 91, 92, 99}.
(5)

Following this, the columns of ξ 1
d and ξ

2p
d are compared.

Note that in contrast to the rows, the columns of event
chains will never be shuffled unless they represent differ-
ent types of actions. Therefore, the column orders of type-
similar event chains have to be the same. Assume that we
compare the ath and bth columns of ξ 1

d and ξ
2p
d , respectively.

The procedure is very similar to that for the spatial analysis.
Since the lengths of the columns q are the same, no shift

operator is required and columns are directly compared
index-wise as

θa,b = 100

q

q∑
j=1

δj, (6)

where j is the column index and with

δj =
{

1 if e1
j,a = e

2p
j,b,

0 otherwise,
(7)

where θa,b holds the normalized percentage of the similarity
value calculated between columns.

Similarity values between all columns of ξ 1
d and ξ

2p
d are

stored in a matrix ζ p
temporal with the size of u × v as

ζ
p
temporal =

⎡
⎢⎢⎢⎣
θ1,1 θ1,2 · · · θ1,v

θ2,1 θ2,2 · · · θ2,v
...

...
. . .

...
θu,1 θu,2 · · · θu,v

⎤
⎥⎥⎥⎦ .

The final similarity value ψp
temporal between the columns

of two event chains is then calculated by taking the mean
value of the highest similarities across rows as

ψ
p
temporal = 1

u

u∑
i=1

max
j

(θi,j) , j ∈ [1, . . . , v]. (8)

For each permutation ξ
2p
d given in Table 2 a ψp

temporal
value is calculated by using Equations (6), (7), and (8),
yielding ψ1

temporal = 60% and ψ2
temporal = 100%. Note that

we use ‘longest common subsequence’ (LCS) in order to
guarantee that the order of columns is the same. LCS is
generally used to find the longest sequence observed in both
input sample sequences. Columns of event chains are used

as sequences for this task. Since the number of sequences
is constant, the problem is solvable in polynomial time
by dynamic programming. Consequently, our two sample
actions have 100% similarity and permutation ξ 22

d repre-
sents the final row correspondences to the first action. The
best matching permutation is further used for categorizing
objects as described in Section 3.8.

As mentioned above, in real scenes often 100% are not
reached and we call two actions ‘type-similar’ as soon as
their final similarity value exceeds a certain threshold. We
would also like to point out that the final spatial and tem-
poral similarity values are not necessarily identical. Action
classification should use the final temporal similarity values
as this measure is more restrictive and therefore provides
the final means for classification.

The question arises of why we use a two-step process as
the second step might suffice on its own. In this case how-
ever all possible permutations would have to be analyzed,
which can be very costly (up to O(n!)) for big event chains.
Particularly, decisive ‘no-match decisions’, which occur for
all non-type similar manipulations, hence quite often, could
only be obtained at the end of the complete permutation
analysis. Whereas, when performing spatial analysis which
has the time complexity of O(n3), this result is obtained
faster. This leads to a substantial algorithmic speed up and
makes the choice of a two-step algorithm useful.

3.7. Action classification (step 6A)

We applied our framework to four different real action
types: Moving Object, Making Sandwich, Filling Liquid,
and Opening Book (see Figure 4). For each of these actions,
we recorded four videos with highly different trajectories,
speeds, hand positions, and object shapes. These examples
were introduced to show that really different instantiations
of a manipulation will still be recognized as belonging to
the same type.

Event chains of each real test data are compared with
each other by using the similarity measurement algorithm
explained in step 5. The resulting final maximal similar-
ity values are given in Figure 7. Each test data has high
similarity with the other versions of its type-similar action
(see close to diagonal) and almost always, the similarity
between type-similar actions is much bigger than the simi-
larity between non-type-similar actions. The minimum sim-
ilarity value for type-similar actions is measured as 62%
between the fourth and second versions of Filling Liquid,
but the similarity between Filling Liquid and non-type-
similar actions is far less. Setting a threshold at 60% would,
across all examples, lead to zero false negatives and to two
false positives (opening book version II and moving object
version I), which would be confused with other manipula-
tions. This is interesting as opening a book can indeed look
very similar to the moving of an object (picking up a book-
cover and moving it, say, up and towards you will indeed
look very similar to picking up an object and moving it

Aksoy et al. 11

Fig. 7. Similarity values between event chains of the real test
data set.

up and towards you). The same is true for the compari-
son of moving object with making sandwich. In the making
sandwich action many subcomponents exist where objects
are being moved. Thus, in general the manipulation analy-
sis shown in Figure 7 corresponds very well to our human
understanding of action (sub-)components.

Note, as soon as the complete table has been measured, it
is also accessible to unsupervised classification (X -means)
(Dan Pelleg 2000). We have done this by using correla-
tion values between columns as features and we receive
four classes with no outliers. Hence, with clustering one
obtains completely correct classification of all individual
manipulations.

3.8. Segment categorization (step 6B)

The row correspondence, determined by finding the best
matching permutation, also implicitly encodes the similar-
ity of the graph nodes between the two different examples.

We explain this by again using the two artificial examples
(Figures 5 and 6). The row similarity values of the second
permutation given in Table 2(b) represent the correspon-
dences between manipulated nodes in ξ 1 and ξ 2 (now we
can drop all other indices as descriptions will not suffer).

The question that we would like to answer is: which nodes
represent segments that play the same role in type-similar
actions?

This can be achieved in a fully unsupervised way by a
simple counting procedure. We first analyze which node
number in ξ 1 is repeating in conjunction with which node
number in ξ 2 in Table 2. We start with node number
1 in ξ 1, which occurs in relations ρ2,1, ρ3,1 and ρ4,1. Its
corresponding best matching relations are given by

ρ2,1 ⇐ 100% ⇒ ρ6,1
ρ3,1 ⇐ 100% ⇒ ρ2,1 ⇒ 1 ≈ 1 .
ρ4,1 ⇐ 100% ⇒ ρ3,1

While node 1 is repeating three times in ξ 1 (left-hand
side), the same node number 1 in ξ 2 (right-hand side) is also
repeating three times. However, node numbers 2, 3, and 6
in ξ 2 occur only once. Therefore, we conclude that graph
nodes 1 in both examples, ξ 1 and ξ 2, had the same roles.
In fact, both graph nodes represent the green background in
both actions.

We continue the node relation analysis with node number
2 in ξ 1, and obtain

ρ2,1 ⇐ 100% ⇒ ρ6,1 ⇒ 2 ≈ 6 .
ρ4,2 ⇐ 100% ⇒ ρ3,6

Node number 2 in ξ 1 is repeating twice with node num-
ber 6 in ξ 2. Those graph nodes represent the yellow and blue
vessels within which the moving objects are initially placed
and from which they then move away.

For the case of node number 3 in ξ 1 we obtain

ρ3,1 ⇐ 100% ⇒ ρ2,1 ⇒ 3 ≈ 2 .
ρ4,3 ⇐ 100% ⇒ ρ3,2

Node number 3 in ξ 1 corresponds to node number 2 in
ξ 2 because both of them are repeating twice. Those graph
nodes define the destination vessels for the moving objects.

The last node number 4 in ξ 1 is obtained as

ρ4,1 ⇐ 100% ⇒ ρ3,1
ρ4,2 ⇐ 100% ⇒ ρ3,6 ⇒ 4 ≈ 3 .
ρ4,3 ⇐ 100% ⇒ ρ3,2

Node number 4 in ξ 1 and node number 3 in ξ 2 are both
repeating three times. In fact, both graph nodes represent
the moving objects, which are the round black object in ξ 1

and the rectangular red object in ξ 2.
In the case of having the same highest value more than

once, e.g. having two times 100% similarity values in the
same row of the similarity matrix, segment categorization
might lead to ambiguous results, i.e. one segment would
correspond to two different segments in the other manipu-
lation. These sorts of conflicts can be solved by taking the
second highest values in the similarity matrix and calculat-
ing the node-similarity again. This way we always achieve
unique segment categorization results.

We applied this categorization algorithm to our four
different real manipulation scenes (Figure 4). The results
showed that the manipulated segments in each action type
can be categorized according to their roles in the actions.
Figure 8 illustrates the categorization results, e.g. the Mov-
ing Object actions include three different segment groups
here named by their object-names for simplicity (apples or
oranges, plates, and hands) each of which performed differ-
ent roles. In the Filling Liquid action the hands are grouped
correctly despite having different poses. Note that for the
sake of simplicity the backgrounds are ignored in Figure 8
although they are also detected and grouped correctly.

While we are here strictly at the level of segments it is
evident (albeit non-trivial) that this unsupervised catego-
rization process could be coupled to object models, thus

12 The International Journal of Robotics Research 00(000)

Fig. 8. Segment categorization results. In each action type, the manipulated segments can be classified and grouped based on their
action roles. Note, classification happens at the level of segments or segment groups. A link to the object domain (indicated by the
dashed arrows) could be introduced by including explicit object models, but this is not part of this study.

Fig. 9. Sample frames from 10 different versions of a ‘Putting an object on a plate’ action. In this action type a hand is appearing in
the scene, putting different kinds of objects (e.g. apple, orange, a piece of bread, etc.) on a plate following different trajectories with
different speeds, and then leaving the scene.

also providing access to object categorization. It is interest-
ing to remark that in this case any object-like entity will be
classified strictly in the context of the observed manipula-
tion. Thus, steps 6A and 6B are tightly linked as depicted by
the gray box in Figure 2. For example a ‘cup-being-filled’
would be grouped with other objects-being-filled. The same
cup, when occurring in an action of ‘cup-used-as-pedestal’
(where the cup is first turned upside down and then some-
thing is put on top), would be classified together with other
objects-used-as-pedestals. This relates to the cognitive con-
cept of affordances (Gibson 1977) and is discussed later in
more detail.

3.9. Learning (step 7)

In the next step we show that the SECs of different instan-
tiations of type-similar manipulation can be combined by
statistical learning to render a model SEC for this manipu-
lation type. Also this is done in an unsupervised way.

We know that rows of the event chain encode the main
relational changes between segments. To arrive at a model,
the learning procedure just needs to search for all common
relational changes observed across repeated type-similar
manipulations. A simple averaging algorithm suffices for
this.

We describe an on-line version of the learning, but the
same procedure could also be employed in batch mode.
Learning is initiated by assigning small weights ωr

i to all
rows and ωc

i to all columns of the first observed chain.
When observing the next manipulation, we use step 6A
(action classification) to find out if it is type-similar. If this
is the case the weights of each row and column are incre-
mented by a small amount
ωi if the row and column have a
correspondence in the new event chain. If the new chain has
additional, so far unobserved rows, the model is extended
by these rows, which start with the initial small weight
value. This is repeated as long as desired but usually 10
instantiations suffice for a stable model. After this, weights
are thresholded, deleting all rows and columns which are
subthreshold and returning the resulting model event chain
for this manipulation type.

In addition to this, for each manipulation instance,
action-relevant segments (segment groups) are extracted
and labeled according to their roles within the observed
action as explained in step 6B (segment categorization).

Note, online learning could suffer from bad first exam-
ples with which all next following manipulations would
be classified. There are obvious workarounds, for example
cross-comparing the manipulations with each other. Ulti-
mately, batch-mode learning is more useful. For this one

Aksoy et al. 13

Fig. 10. (a) Similarity values between event chains of ‘Putting an
object on a plate’ and ‘Taking an object from a plate’ actions.
(b) The learned SEC model for the action type ‘Putting an object
on a plate’ with corresponding row (ωr

i) and column (ωc
i) weight

values. These weight vectors are just for illustration since different
weight values might be observed for different action types due to
degree of noise in the event chains. (c) Same for ‘Taking an object
from a plate’.

would first record scenes from many manipulations, then
perform clustering of the similarity matrix (e.g. Figure 10)
after which learning can be done for each cluster in the same
way as described above.

We applied the learning framework in batch-mode to
two different manipulation types: ‘Putting an object on a
plate’ and ‘Taking an object from a plate’ each of which
has 10 different versions with strongly different trajectories,
speeds, hand positions, and objects (see Figure 9 to get an
impression of the level of difference).

Unsupervised classification of the similarity matrix (see
Figure 10) is used to classify those 20 versions. Note, many

times a high similarity values (around 50%) is observed
between non-type-similar actions. The reason is that except
for the sequencing, which is inverted for ‘putting’ versus
‘taking’, primitives of both action types necessarily look
similar. Differences are big enough, though, such that unsu-
pervised classification will still lead to completely correct
classification.

Next, a SEC model is learned for each manipulation class
by searching for the similar common rows and columns
observed in all 10 different versions as explained above.
Figure 10(b) and (c) shows the learned SEC models for both
action types with corresponding row (ωr

i) and column (ωc
i)

weight values. To prove the accuracy of the learned SEC
models we prepared five test videos which all contain both
action types, putting and taking, but performed in different
temporal order (or sometimes with two hands at the same
time). Figure 11 shows some sample frames from each of
the test videos.

Figure 12 depicts the similarity results between two
learned models and all 25 videos, 20 of which are the train-
ing data and the remaining 5 are unknown test data. Simi-
larity is measured as described in step 5. In red and blue are
indicated the similarities for a given video with the ‘Putting
an object on a plate’ and ‘Taking an object from a plate’
models by leave-one-out method, respectively. For the first
10 training data the learned model of ‘Putting an object
on a plate’ has a higher similarity, whereas the model of
‘Taking an object from a plate’ has a lower one (Figure 12,
green area). It is the other way around for the next 10 train-
ing data (Figure 12, yellow area). However, for the last five
test data, in which both manipulation types are performed
in different orders both learned models have high similarity
(Figure 12, blue area). When doing time-slicing (data not
shown) one sees that the similarity in the last five data for
either manipulation increases together with the completion
of the respective manipulation. Thus, one after the other in
the first four videos and simultaneously in the last video,
where both actions are performed simultaneously.

4. Case study: learning and replaying an
action sequence

Artificial intelligence (AI) systems almost always fol-
low logic rules structured as: pre-condition, action, post-
condition. Assessment of the success of the rule execution
requires measuring the post-condition. Hence, such sys-
tems rely on Thorndike’s law of cause and effect (Thorndike
1911) and, traditionally, they were defined by their program-
mers. Thus, it is difficult to find ways for an agent to learn
cause–effect rules by itself (without explicit interference of
a supervisor, see the ‘grounding problem’ (Harnad 1990)).
Furthermore, especially in complex situations, agents are
faced with the problem of how to assess ‘effect’ as many
aspects of a situation might change following an action (see
the ‘frame problem’ (McCarthy and Hayes 1969)).

14 The International Journal of Robotics Research 00(000)

Fig. 11. Sample frames from five different mixed actions in which both manipulation types ‘Putting an object on a plate’ and ‘Taking
an object from a plate’ are performed in different orders. (a) A hand is first taking a piece of bread from a plate and then putting it on
a different plate. (b) Another piece of bread is moved from one plate to another with a different trajectory. (c) A hand is replacing an
orange. (d) A hand is first putting an orange on a plate and then taking a piece of bread from another plate. (e) A hand is putting an
orange on a plate and in the mean time the other hand is simultaneously taking an apple from the second plate.

In the following we show our first results of a system that
allows us to learn the rules of an action sequence without
explicit supervision and then executing actions in a scenario
self-assessing ‘action effects’. Both processes rely on the
event chains and the agent can without any pre-defined rule
set learn the sequence and then assess the (in)correctness of
its actions just by comparing the resulting chains. Conden-
sation into event chains thus helps solving the grounding,
as well as the frame problem.

Our robot system is quite simple, consisting of a three-
degree-of-freedom (3-DOF) arm an with magnetic gripper
(Neurorobotics, Sussex). Thus, we used ‘pushing’ as well
as ‘pick-and-place’ in the action repertoire. To generate tra-
jectories we used predefined dynamic movement primitives
(Ijspeert et al. 2002; Ning et al. 2010) and trajectory start
and end points (for touching) were visually pre-defined and
transferred onto the robot via a standard inverse kinematics
procedure (no servoing). Motion generation and control are
not in the focus of this study, therefore we kept this simple
here (for an advanced treatment of these aspects, see Ning
et al. (2010)). Objects for pick-and-place were magnetic.

The desired action sequence was first demonstrated by
a human. Figure 13(a) and (b) (blue frame) show sample
frames of the action sequence in which a hand is ‘pushing’
a lid off a container and then ‘picking-and-placing’ a ball
inside. The event chains of this action sequence is learned
by our system. It can be broken into two sub-chains and the
final result is shown in Figure 14(a) and (b).

In the next step we confront the robot with a scene, pro-
vide it with a possible set of motion-trajectory start points,
and let the robot randomly try out pushing and pick-and-
place actions. Figure 13(c)–(f) (red frame) show a subset of
the different types of actions the robot has tried out (many
more were performed but cannot be shown here). The blue
tip of the robot arm is visible in the images. Note, objects

Fig. 12. Similarity results between the two learned modes and all
25 videos. In red and blue are indicated the similarities for a given
video with the ‘Putting an object on a plate’ and ‘Taking an object
from a plate’ models, respectively. First 20 data are the training
data and represent different versions of the ‘Putting an object on
a plate’ and ‘Taking an object from a plate’ actions, respectively.
The last five data represent the mixed actions used for testing the
learned models.

are usually different from the ones used by the human. In
Figure 13(c) the robot is only pushing a lid but does not
continue with pick-and-place. In (d) a black ball is pushed.
Figure 13(e) shows how the robot picks up a ball and then
drops it on the table. Figure 13(f) represents an action where
the robot is taking the ball from a container and places it
on the table. All of these examples do not (or only incom-
pletely in (c)) reproduce the observed action sequence.
Figure 13(g) and (h) (green frame) show the correct action
sequence which at some point was also executed by the
robot.

Corresponding event chains of all of those action
sequences are given in Figure 14. Owing to different noise

Aksoy et al. 15

Fig. 13. Action sequence of (a) pushing a lid off a container and then (b) putting a ball inside demonstrated by a human (blue frame).
Different types of robot actions (red frame): (c) pushing a lid, (d) pushing a ball, (e) lifting a ball and dropping it on the table, (f) taking
the ball from a container and putting it on the table. The green frame shows a robot action sequence similar to that performed by the
human, in which (g) a lid is first pushed off and then (h) a ball is placed inside a container.

sources (in tracking, segmentation or depth information)
the sizes of individual event chains can vary consider-
ably. Still, as discussed in the section on Learning, individ-
ual chains contain the relevant information, which is not
harmed by noise-induced rows and columns. As a conse-
quence, even very different looking event chains can be
robustly compared to the learned models (a), (b) using the
above described similarity algorithm. Figure labels (a)–(h)
in Figure 13 correspond to those in Figure 14. Colored
boxes in Figure 14 show rows with high similarities. This
occurs for panels (c) and (g), which are similar to (a), as
well as for (h), which is similar to (b). A similarity table
is shown in Figure 14(i). It shows that manipulation (c) is
similar to the learned pushing model (a). The same is true
for manipulation (g), which both are above 60% similarity.
Only manipulation (h) is similar to the pick and place-inside
model (b) with 87% similarity. Sequence (g) and (h) of
both manipulations following each other is, thus, correctly

recognized as being the one that reproduces the complete
learned model (a) and (b).

Thus, this (still rather simple) set of examples demon-
strates that by using SECs learning and recognition of
manipulations is possible for a robot. The main achieve-
ment, we believe, lies here in the very high level of abstrac-
tion, which allows the machine to recognize (in)correctness
of its actions even when objects and their arrangements are
very different in the different scenes.

5. Discussion

In this paper we have introduced a novel representation
for manipulations, called the SEC, which focuses on the
relations between objects (including hands) in a scene.
The representation generates column vectors in a matrix
where every transition between neighboring vectors can be
interpreted as an action rule, which defines which object

16 The International Journal of Robotics Research 00(000)

Fig. 14. The corresponding event chains of human demonstrated actions and different types of robot actions. Labels (a)–(h) correspond
to the manipulations shown in Figure 13(a)–(h). (a), (b) Event chain model extracted from human demonstration of (a) ‘pushing’ as well
as (b) ‘pick-and-place’ inside. (c)–(f) Event chains corresponding to the wrong or incomplete actions in Figure 13(c)–(f) (red frame).
(g), (h) Event chains corresponding to the correct sequence in Fig 13(g) and (h) (green frame). (i) Similarity table between all actions
the robot has tried (c)–(h) and the learned models (a), (b) demonstrated by the human.

relations have changed in the scene. Hence, event chains
reach a rather high level of abstraction but on the other
hand they remain tightly linked to the images from which
they originate, because they rely on continuously tracked
segments. We have devised simple algorithms based on
sub-string comparisons and counting procedures by which
event chains can be compared and actions as well as seg-
ment (groups) can be classified in an unsupervised way.
No prior object models are required in this approach and
the learning of archetypal event chains (‘models’) relies
only on weight upgrade of repeating columns (repeating
‘rules’). Thus, learning also operates in an unsupervised
way. The method was shown to be successful in clas-
sifying and recognizing video showing different manip-
ulations, and also in learning the archetypal SEC for a
given action class. We further demonstrated the feasibil-
ity of the approach through experiments with an robotic
arm. By observation, the machine extracted the SEC of
a human manipulation, and then reproduced the associ-
ated manipulation type in a new scenario via repeated
experimentation.

To the best of the authors’ knowledge this is the first
approach towards manipulation recognition, which reaches
an almost symbolic level of abstraction1 while being fully
grounded in the signal domain. In the following we dis-
cuss related approaches and also problems and possible
extensions of our algorithm.

5.1. Related approaches
Our framework introduces the SEC which is a novel rep-
resentation that seems to hold some promise for extracting
action semantics. It directly encodes the observed manipu-
lations without hidden states. Event chains remain tightly
linked to perception but are semantic in character. Thus,
they are more invariant with respect to viewpoint changes
and object features than most other approaches. This how-
ever only holds if the visual entities used, here image seg-
ments, carry sufficient meaning, i.e. they represent parts of
objects. As a consequence, the SEC is composed of action
primitives, and no hidden model needs to be assumed (e.g.
hidden Markov model) as required in other works to bridge
the gap between signal and symbol (Ogawara et al. 2002;
Raamana et al. 2007).

Similarities exist between our approach and the work of
Sridhar et al. (2008), who analyzed manipulations in the
context of a breakfast scenario and represented the whole
image sequence by an activity graph which holds spatiotem-
poral object interactions. By using statistical generalization,
event classes are extracted from the activity graphs. Object
categories are learned by calculating the similarity between
object roles at each event class. However, large activity
graphs and the difficulty of finding exact graph isomor-
phisms are a major drawback of this method. Furthermore,
unlike in our work, object knowledge was provided
beforehand, thus lacking grounding in the signal domain.

Aksoy et al. 17

Our approach is different from that of Kjellstrom et al.
(2008). In our method, event chains are already highly
invariant with respect to viewpoint changes and object
features because the relations between segments are of
qualitative character, e.g. touching is already a semantic
description , while in the work of Kjellstrom et al. (2008)
semantics only emerge at the last stage of the modeling
process.

In the present paper, we do not perform any object recog-
nition in the classical sense (see Section 2.3). The image
segments used for finding the SECs are below the object
level, which means that a ‘true’ object may be composed
of several segments. Nevertheless, during the manipulation
recognition procedure, image segments emerge naturally in
conjunction with their associated action, providing a means
to extract ‘action-relevant’ objects from the scene by rec-
ognizing the respective actions in the SECs. This result is
congruent with psychophysical evidence that humans rec-
ognize objects more easily if they are embedded in a con-
sistent action context (Helbig et al. 2010). The approach
has the advantage that it is highly invariant to the object’s
appearance and only takes into account the functionality
of the object with respect to a given set of actions (see
Figure 8). However, the rich information provided by the
object’s appearance in the image is ignored and thus the
algorithm does not allow recognizing objects without pro-
viding any action context.

5.2. Features and problems of the algorithm

The realm of object and action recognition is exceedingly
rich carrying many facets and so far there is no algorithm
existing which would reach the level of human proficiency.
Adults can robustly classify objects and actions using a very
high degree of invariance and generalization. To reach clas-
sification robustness in artificial systems usually the appli-
cation scenarios are restricted and models of objects and/or
actions are introduced, which however limits the generaliza-
tion properties of such systems. To improve on this, prefer-
entially life-long model-learning would be required leading
to the extension of existing models and to the acquisition of
new ones across all scenarios. Little is known about how to
do this.

In the introduction we had discussed that at least six
properties define the requirements for a useful manipula-
tion representation for artificial agents: (1) sensory sig-
nal based, (2) learnable, (3) relational, (4) time-sliced (5)
human-comprehensible and (6) compatible with models.

We believe that the here introduced representation carries
these aspects at least to some degree and that the approach
also reaches across scenarios, but we are also aware of the
fact that we are still far away from the final goal, which
would be to reach human proficiency.

What are the drawbacks we are still facing and which
extensions need to be made in future work to improve on
this?

We heavily rely on advanced computer vision methods
and we are aware that failures in the computer vision can
harm our approach. Measures are undertaken to reduce such
failures (Dellen et al. 2009), but this was not in the core of
this study.

It is evident that image segments do not correspond to
objects and our approach remains ‘beneath’ the object level.
While in this way it is strongly grounded in the image
domain, we do not address complex aspects such as ‘per-
manence’ and ‘feature binding’, which are both required to
assure the continuous existence of an object in the memory
of a system.

In the case of heavily textured objects, feature bind-
ing based on color alone as employed in the segmentation
framework will lead to a large number of segments, i.e.
objects will be highly fragmented. This may cause problems
for the tracking procedures (matching complexity) and thus
will affect the quality of the SECs in an undesirable way.
For textured images, additional mechanisms should be used
at the segmentation stage to avoid over-segmentation and/or
fragmented segments could be merged using segment-based
grouping criteria. We are currently investigating potential
solutions to this problem.

However, probably the most important feature of the
algorithms presented here is that they do not rely on image
segments as their input. Any continuously trackable entity,
as long as it is sufficiently close to the semantic level (hence
also object-model-based tracking), can be used to design an
event chain. Thus, while we still think that image segments
are in many ways useful, the event chain representation and
its core algorithms are also transferable to other inputs.

Furthermore, as mentioned above, our approach and the
resulting event chains cannot be used to execute an action
directly. For this, additional information about movement
trajectories of the hands as well as information on the
required poses of the objects needs to be stored and used. It
will be a topic of future research to introduce these aspects
into the framework.

5.3. Affordances and object–action complexes

The rule-character of the event chains was used in this study
to let an agent assess the success of its own actions. The
experiments shown in Figures 13 and 14 have demonstrated
that an agent can first learn event chains and then con-
nect them to (predefined) motion patterns trying out how
to reproduce an action sequence. In doing so correlations
between actions and outcomes (the resulting states) exist
and the agent can produce triplets of [starting state, action,
resulting state], where starting and resulting state are given
by adjacent columns of the event chain. If the resulting state
matches that remembered from the learning phase then the
agent can store the complete triplet. In this way, actions can
be attached to starting states taking the process forward
from recognition to purposeful execution. Also this pro-
cess works in an unsupervised way, where repetition would

18 The International Journal of Robotics Research 00(000)

allow the agent to consolidate a triplet, but is also accessible
by supervision, where a teacher would tell the agent which
action to perform when.

For ease of talking we use the terms ‘thing’ and ‘object’
from now in this discussion to avoid the clumsy terms
segment group, entity, etc.

As mentioned above, in our representation objects are
being classified always in the context of the performed
manipulation. A thing, when being filled with liquid,
could be grouped with fillable objects into a category,
which a human might call ‘containers’. Equally well
the same thing (when turned around) would be grouped
together with other platforms into a category ‘pedestals’
as soon as someone puts something on top of it. This
aspect strongly relates to Gibson’s concept of affordances
(Gibson 1977), where objects suggest actions. This concept
had been extended by a group of European researchers from
the PACO-PLUS project (see http://www.paco-plus.org/)
stating the objects and action are combined by humans into
the cognitive concept of object–action complexes (OACs)
(Wörgötter et al. 2009; Krüger et al. 2010). A physical
‘thing’ gets its meaning through the actions performed with
it and will consequentially be interpreted, in a similar man-
ner to the container/pedestal above, always in an action
context.

Krüger et al. (2010) had given a formal definition of the
OAC. In an abbreviated way it states that an OAC is a func-
tion that compares obtained against excepted outcome when
an action is being executed at an object. The OAC thereby
also measures the success of the action by assessing the sen-
sor states of the agent. An OAC, thus, represents a model of
the transformations that takes place at an object following
an action (Wörgötter et al. 2009). OACs are learnable by the
agent.

Adjacent columns of an event chain together with the
processes of action learning described above are closely
related to this concept. Thus, a complete event chain
(together with its actions and objects) represents a chain
of OACs and can be understood as a category which
groups objects and actions into the cognitive concept of a
manipulation. Thus, the here suggested set of algorithms
provides, as far as we know, the first entry point to a
grounded, agent-learnable cognitive categorization process
of rather high complexity. In addition, it provides a link
to the symbolic, language domain because of its rule-like
character.

As discussed above, many problems still exist, but we
would hope that this research might open some new avenues
into the difficult cognitive field of action understanding.

Note

1. Note that the symbolic domain can be directly coupled to the
event chains as these chains allow the parsing of meaningful
rule-like commands such as: ‘In the next transition perform
an action that assures the segment 17 touches segment 12 and
that segment 3 overlaps with segment 5’.

Funding

The research leading to these results has received funding
from the European Community’s Seventh Framework Programme
FP7/2007–2013, Challenge 2, Cognitive Systems, Interaction,
Robotics (grant agreement number 247947 - GARNICS). BD
acknowledges support from the Spanish Ministry for Science and
Innovation via a Ramon y Cajal Fellowship.

Acknowledgment

We thank Tomas Kulvicius for valuable discussions.

References

Abramov A, Aksoy EE, Dörr J, Pauwels K, Wörgötter F and
Dellen B (2010) 3D semantic representation of actions from
efficient stereo-image-sequence segmentation on GPUs. In
3DPVT.

Aksoy EE, Abramov A, Wörgötter F and Dellen B (2010) Catego-
rizing object-action relations from semantic scene graphs. In
IEEE International Conference on Robotics and Automation,
ICRA2010, Alaska.

Belhumeur PN and Kriegmant DJ (1996) What is the set of
images of an object under all possible lighting conditions. In
IEEE CVPR, pp. 270–277.

Breazeal C and Scassellati B (2002) Robots that imitate humans.
Trends Cogn Sci (Regul Ed) 6: 481–487.

Calinon S and Billard A (2004) Stochastic gesture production and
recognition model for a humanoid robot. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vol. 3, pp. 2769–2774.

Calinon S and Billard A (2005) Recognition and Reproduc-
tion of Gestures using a Probabilistic Framework combining
PCA, ICA and HMM. In Proceedings of the International
Conference on Machine Learning (ICML), pp. 105–112.

Calinon S and Billard A (2007) Incremental learning of gestures
by imitation in a humanoid robot. In HRI ’07: Proceedings
of the ACM/IEEE International conference on Human-robot
interaction. New York: ACM Press, pp. 255–262.

Dan Pelleg AM (2000) X -means: Extending k-means with
efficient estimation of the number of clusters. In Pro-
ceedings of the Seventeenth International Conference on
Machine Learning. San Francisco, CA: Morgan Kaufmann,
pp. 727–734.

Dee H, Hogg D and Cohn A (2009) Scene modelling and clas-
sification using learned spatial relations. In Proceedings of
Spatial Information Theory, Vol. 5756. New York: Springer,
pp. 295–311.

Dellen B, Aksoy EE and Wörgötter F (2009) Segment tracking
via a spatiotemporal linking process in an n-d lattice model.
Sensors 9: 9355–9379.

Dellen B and Wörgötter F (2009) Disparity from stereo-segment
silhouettes of weakly textured images. In Proceedings of the
British Machine Vision Conference.

Fergus R, Perona P and Zisserman A (2003) Object class recogni-
tion by unsupervised scale-invariant learning. In Proceedings
of CVPR, pp. 264–271.

Gibson J (1977) The theory of affordances. In perceiving, acting,
and knowing. In Shaw R and Bransford J (eds).

Aksoy et al. 19

Gilbert A, Illingworth J and Bowden R (2009) Action recogni-
tion using mined hierarchical compound features. IEEE Trans
Pattern Anal Machine Intell.

Hakeem A and Shah M (2005) Multiple agent event detection and
representation in videos. In Proceedings of AAAI.

Harnad S (1990) The symbol grounding problem. Physica D 42:
335–346.

Helbig HB, Steinwender J, Graf M and Kiefer M (2010) Action
observation can prime visual object recognition. Exp Brain Res
200(3-4): 251–258.

Hoiem D, Efros AA and Hebert M (2008) Putting objects in
perspective. Int J Comput Vision 80: 3–15.

Hongeng S (2004) Unsupervised learning of multi-object event
classes. In Proceedings of the 15th British Machine Vision
Conference, pp. 487–496.

Ijspeert AJ, Nakanishi J and Schaal S (2002) Movement imita-
tion with nonlinear dynamical systems in humanoid robots. In
Proceedings IEEE International Conference on Robotics and
Automation, pp. 1398–1403.

Kjellstrom H, Romero J and Kragic D (2008) Simultaneous visual
recognition of manipulation actions and manipulated objects.
In European Conference on Computer Vision.

Krüger N, Piater J, Geib C, Petrick R, Steedman M, Wörgötter F,
et al. (2010) Object–action complexes: Grounded abstractions
of sensorimotor processes. Robotics and Autonomous Systems,
in press.

Laptev I and Perez P (2007) Retrieving actions in movies. In
Proceedings of ICCV.

Liao L, Fox D and Kautz H (2005) Location-based activity recog-
nition using relational markov networks. In Proceedings of the
19th International Joint Conference on Artificial Intelligence,
pp. 773–778.

Lowe DG (2004) Distinctive image features from scale-invariant
keypoints. Int J Comput Vision 60: 91–110.

Maurer A, Hersch M and Billard A (2005) Extended Hopfield net-
work for sequence learning: application to gesture recognition.
In Proceedings of ICANN’05.

McCarthy J and Hayes P (1969) Some philosophical prob-
lems from the standpoint of artificial intelligence. In Machine
Intelligence, pp. 195–204.

Modayil J, Bai T and Kautz H (2008) Improving the recognition of
interleaved activities. In Proceedings of the 10th International
Conference on Ubiquitous Computing, pp. 40–43.

Mundy J and Zisserman A (1992) Geometric Invariance in
Computer Vision. Cambridge, MA: The MIT Press.

Mundy JL (2006) Object recognition in the geometric era: A
retrospective. In Toward Category Level Object Recognition
(Lecture Notes in Computer Science, Vol. 4170). New York:
Springer, pp. 3–29.

Murase H and Nayar SK (1995) Visual learning and recognition
of 3-d objects from appearance. Int J Comput Vision 14: 5–24.

Niebles J, Wang H and Fei-Fei L (2008) Unsupervised learning
of human action categories using spatial–temporal words. Int J
Comput Vision 79: 299–318.

Ning K, Kulvicius T, Tamosiunaite M and Wörgötter F (2010) A
novel trajectory generator based on dynamic motor primitives.
IEEE Trans Robotics (submitted).

Nister D and Stewenius H (2006) Scalable recognition with a
vocabulary tree. In Proceedings of CVPR, pp. 2161–2168.

Ogawara K, Takamatsu J, Kimura H and Katsushi I (2002) Mod-
eling manipulation interactions by hidden Markov models. In

IEEE/RSJ International Conference on Intelligent Robots and
Systems.

Oliva A and Torralba A (2009). The role of context in object
recognition. Trends Cognitive Sci 11: 520–526.

Pauwels K and Van Hulle M (2008) Realtime phase-based optical
flow on the GPU. In IEEE Conference on Computer Vision
and Pattern Recognition, Workshop on Computer Vision on the
GPU, Anchorage, AK.

Raamana PR, Grest D and Krueger V (2007) Human action recog-
nition in table-top scenarios: an HMM-based analysis to opti-
mize the performance. In CAIP’07: Proceedings of the 12th
International Conference on Computer Analysis of Images and
Patterns. Berlin: Springer-Verlag, 101–108.

Rizzolatti G and Craighero L (2004) The mirror-neuron system.
Ann Rev Neurosci 27: 169–192.

Sabatini S, Gastaldi G, Solari F, Diaz J, Ros E, Pauwels K, et
al. (2007) Compact and accurate early vision processing in
the harmonic space. In International Conference on Computer
Vision Theory and Applications, Barcelona, pp. 213–220.

Shylo N, Wörgötter F and Dellen B (2009) Ascertaining relevant
changes in visual data by interfacing AI reasoning and low-
level visual information via temporally stable image segments.
In Proceedings of the International Conference on Cognitive
Systems (Cogsys 2008).

Sivic J and Zisserman A (2003) Video google: A text retrieval
approach to object matching in videos. In ICCV ’03: Proceed-
ings of the Ninth IEEE International Conference on Computer
Vision. Washington, DC: IEEE Computer Society, p. 1470.

Sridhar M, Cohn GA and Hogg D (2008) Learning functional
object-categories from a relational spatio-temporal representa-
tion. In Proceedings 18th European Conference on Artificial
Intelligence, pp. 606–610.

Sumsi MF (2008) Theory and Algorithms on the Median Graph.
Application to Graph-based Classification and Clustering.
PhD thesis, Universitat Autonoma de Barcelona.

Thorndike E (1911) Animal Intelligence. New York: Macmillan.
Torralba A (2003) Modeling global scene factors in attention. J

Opt Soc Am A 20: 1407–1418.
Turk M and Pentland A (1991) Eigenfaces for recognition. J

Cognitive Neurosci 3: 71–86.
Vicente I, Kyrki V and Kragic D (2007) Action recognition and

understanding through motor primitives. Advanced Robotics
21: 1687–1707.

Wörgötter F, Agostini A, Krüger N, Shylo N and Porr B (2009)
Cognitive agents—a procedural perspective relying on pre-
dictability of object–action complexes (OACs). Robotics
Autonomous Syst 57: 420–432.

Appendix A: Defining segment relations in a
fast and efficient way

As defined in the main text, possible spatial relations of
each segment pair are Touching=2, and Overlapping=1, No
Connection=0, and Absence=9. The process of calculating
those relations has two main steps. In the very first step the
segmented image is scanned horizontally (from left to right)
and vertically (from top to down) to calculate the exist-
ing segment sequences. Following the scanning process, all
lines (vertical and horizontal) are counted where a certain

20 The International Journal of Robotics Research 00(000)

Fig. 15. Calculating the spatial segment relations between background, two vessels, and two contents which are represented by segment
numbers 1, 2, 3, 4, and 5, respectively.

segment sequence has been observed and are stored in a list

L : (i1, i2, i3, . . .) �→ nS ,

where nS is the number of all vertical and horizontal lines
with the segment sequence (i0, i1, i2, . . .).

Figure 15 illustrates how the sequences between 5 differ-
ent segments can be calculated, e.g. (1) and (1, 2, 1, 3, 1)
are observed as 225 and 40 times, respectively.

The second main step analyzes the existing sequences to
calculate the spatial relations between segment pairs. For
this purpose, each sequence is iterated by considering the
following rules:

• ‘Touching’: Segments follow one right after the other
in any sequence are touching, e.g. segments 5 and 3 are
touching each other in sequences such as (. . . , 5, 3, . . .)
or (. . . , 3, 5, . . .).

• ‘Overlapping’: (i) if a segment is observed twice in
a sequence, all segments in between are overlapping
with it, e.g. in (. . . , 1, 5, 3, 1, . . .), segments 5 and 3
are both overlapped (surrounded) by 1; (ii) however, the
inner segments are not overlapping with each other, e.g.
in (. . . , 1, 5, 3, 1, . . .), segment 5 cannot overlap with
segment 3 because it is not observed twice.

To each rule corresponds a counter of hints (either Ct
i,j or

Co
i,j). For each segment pair, counters store number of hints

that show the rules are fulfilled for each segment pair as
follows:

• Ct
i,j �→ nt: number of hints that i and j are touching.

• Co
i,j �→ no: number of hints that i is overlapping with j.

Note that Ct
i,j ≡ Ct

j,i since the Touching relation is
undirected, whereas Co

i,j is not symmetric.
Each sequence S is processed separately. Its elements are

stored in a stack one after another. When the next element

in is stored, the first rule indicates that in and the previous
element in−1 have the Touching relation. Since the current
sequence has been found multiple times in the image (given
by L(S)), the touching entry (in−1, in) is incremented by
L(S):

Ct
in−1,in+ = L(S) .

Example: The sequence S := (1, 5, 3, 1) is analyzed by
storing the first element i1 = 1 in the stack. Since there
is always more than one element required for the stack,
the algorithm immediately skips to adding the next ele-
ment i2 = 5. The first rule indicates that the pair (1, 5)
has the Touching relation. As a result, Ct

1,5 is increased by
L(S) = 40. The same operations are applied to the pair
(5, 3) in the next step.

To fulfill the second rule the stored element needs to be
checked as to whether it is already in the stack. In this case,
the elements of the first occurrence is and in are recognized
as having the Overlapping relation with in. Therefore, the
corresponding counter will be updated as follows:

Co
in,j+ = L(S) , ∀j ∈ {is+1, . . . , in−1}.

Example: In the same sequence given in the previous exam-
ple the next element i4 = 1 is added to the stack and Ct

1,3
is incremented by 40. Since i4 occurred earlier (is = i1), all
elements in between, hence i2 = 5 and i3 = 3, Co

1,5 and Co
1,3

are increased by L(S) = 40.

The second rule also indicates that those inner elements
j do not overlap with each other, thus:

Co
jn,jm− = L(S) , ∀jn, jm ∈ {is+1, . . . , in−1}, n �= m.

Example: Owing to this rule, Co
3,5 and Co

5,3 are decreased
by 40.

Aksoy et al. 21

Next, the inner elements are removed from the sequence.
This is important in cases of having recursive overlap-
ping situations to get Overlapping relations only between
neighbor segments. In Figure 15 segment pairs (1, 2) and
(2, 4) have the Overlapping relations, whereas (1, 4) has
No Connection.

Example: For the sequence S :=(1, 2, 4, 2, 1), i4 is added to
the stack in the fourth step. By considering the description
given above, we compute Ct

2,4+ = L(S) and Co
2,4+ = L(S).

The elements i3 and i4 are then removed from the stack,
which leads to (1, 2). The algorithm is continuing by adding
i5 = 1 to the stack and by computing Ct

1,2+ = L(S) and
Co

1,2+ = L(S) as described above. In the end it is observed
that segment pairs (2, 4) and (1, 2) have the Overlapping
relation, however, (1, 4) has No Connection.

Once all sequences are iterated, the values in Ct
i,j and Co

i,j
are used to compute the final spatial relations of the seg-
ments. Note that some counter values might be wrong due
to noisy segments. Instead of defining a minimum value as
a static threshold, each entry is normalized first using the
size of the corresponding segments:

C̄t
i,j := Ct

i,j

min(Ni, Nj)
,

where Ni is a list that stores the pixel size of segment i. Nor-
malization considers only the smaller segment that makes
the algorithm robust against noise and accurate for small

segments. Note that Co
i,j is also normalized in the same

way. Each normalized entry C̄t
i,j and C̄o

i,j is then thresholded.

Unless C̄t
i,j and C̄o

i,j exceed the thresholds, relations are set
to No Connection.

The main advantage of the proposed algorithm is that
each step explained above can be calculated separately and
hence can be parallelized.

Note, more complex 3D spatial segment relations (e.g.
inside, above, under, etc.) directly relate to the overlapping
and touching relations as only a third dimension needs to
be added. The following example makes this clear. Con-
sider two 2D Overlapping cases: ‘lying on top’ (e.g. two
flat objects) or ‘being inside’ (of one smaller object inside
a container). Both are 2D identical in the sense of being an
overlapping relation, but with adding 3D one could define
new relations (‘on top’ and ‘inside’).

5.4. Appendix B: Index of multimedia extensions

The multimedia extension page is found at
http://www.ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video Four different action types
2 Video Case study

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 0
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

