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Abstract

Human environments are challenging for robots,
which need to be trainable by lay people and learn
new behaviours rapidly without disrupting much
the ongoing activity. A system that integrates
AI techniques for planning and learning is here
proposed to satisfy these strong demands. The
approach rapidly learns planning operators from
few action experiences using a competitive strat-
egy where many alternatives of cause-effect expla-
nations are evaluated in parallel, and the most suc-
cessful ones are used to generate the operators. The
success of a cause-effect explanation is evaluated
by a probabilistic estimate that compensates the
lack of experience, producing more confident esti-
mations and speeding up the learning in relation to
other known estimates. The system operates with-
out task interruption by integrating in the planning-
learning loop a human teacher that supports the
planner in making decisions. All the mechanisms
are integrated and synchronized in the robot using a
general decision-making framework. The feasibil-
ity and scalability of the architecture are evaluated
in two different robot platforms: a Stäubli arm, and
the humanoid ARMAR III.

1 Introduction
In the last years special emphasis has been placed on the de-
velopment of robots capable of helping humans in carrying
out human-like tasks. Human environments usually involve
very large domains, where many unexpected situations can
arise easily, and coding the behaviours to cope with every
possible situation may result impractical. The alternative is
to let the robot learn these behaviours autonomously. How-
ever, for this alternative to make sense, learning should occur
rapidly to let the robot be operative in a reasonable amount of
time, and without interrupting much the ongoing task every
time a new behaviour should be learned.
This work presents a system that uses AI techniques for

planning and learning to avoid the need of coding these be-
haviours in real robot platforms. The system integrates a
logic-based planner and a learning approach that constantly
enriches the capabilities of the planner for decision making,

allowing the robot to fulfil a wide spectrum of tasks without
a previous coding of planning operators. Learning and plan-
ning occur intertwined, without task interruption, and using
experiences that arrive sequentially.
The strong requirements for learning behaviours pose in-

surmountable difficulties to the existing learning paradigms,
where on-line learning is not considered [Oates and Cohen,
1996; Wang, 1996], a significant amount of prior knowledge
need to be provided [Gil, 1994], or a large number of experi-
ences are required [Walsh and Littman, 2008; Wang, 1996;
Benson, 1995; Shen, 1989; Oates and Cohen, 1996]. To
cope with the learning requirements, we devise a competi-
tive approach that tries in parallel different explanations of
the cause-effects that would be observed from action execu-
tions, and use the ones with higher probability of occurrence
to code basic operators for planning. Trying different expla-
nations of cause-effects in parallel increases the chances of
having a successful explanation among the competing ones,
which, in turn, increases the speed of learning. To determine
the probability of occurrence we propose a specialization of
them-estimate formula [Cestnik, 1990] that compensates the
lack of experience in the probability estimation, thus produc-
ing confident estimations with few examples.
Due to incomplete knowledge, the planner may fail in mak-

ing a decision, interrupting the ongoing task. To prevent these
interruptions, we include a human teacher in the planning-
learning loop that provides the action to execute in the on-
going task when the planner fails. Finally, since the learn-
ing approach needs the actual experience of actions to eval-
uate the cause-effect explanations, the planning and learning
mechanisms should be integrated in a more general frame-
work that permits the grounding of the symbolic descriptions
of actions, and the abstraction into attribute-values of the raw
perceptions obtained from the sensors of the robot. To this
end, we use a general decision-making framework that inte-
grates and synchronizes all the involved mechanisms in the
robot. The proposed system was successfully tested in two
real robot platforms: a Stäubli robot arm, and the humanoid
robot platform ARMAR III [Asfour et al., 2008]. Next sec-
tion presents the decision-making framework used for the in-
tegration. Section 3 briefly explains the planner and the role
of the teacher. Then, in Section 4, the learning mechanisms
are detailed and evaluated. The implementation in real robot
platforms are described in Section 5. The paper ends with



some conclusions.

2 Decision-Making Framework
For the integration of planning and learning in the robot plat-
form we use a conventional decision-making framework (fig-
ure 1). The PERCEIVE module, above the planner, generates
a symbolic description of the initial situation by the abstrac-
tion of the values provided by the sensors into a set of dis-
crete attribute-values. The initial situation, together with the
GOAL specification, are used by the PLANNER to search
for plans to achieve the goal from that situation. If a plan is
found, the planner yields the first action to execute. If not, the
TEACHER is asked for action instruction. The action, pro-
vided either by the planner or the teacher, is sent to the EXE
module in charge of transforming the symbolic description of
the action into low-level commands for the actual action ex-
ecution. After the action execution, a symbolic description
of the reached situation is provided by the other PERCEIVE
module. The LEARNER takes the situations descriptions be-
fore and after action execution, together with the symbolic
description of the action, and generates or refines cause-effect
explanations and planning operators. After learning, the last
situation perceived is supplied to the planner that searches
for a new plan. This process is continued until the goal is
reached, in which case the planner yields the end of plan sig-
nal (EOP).

Figure 1: Schema of the decision-making framework.

3 The Planner and the Teacher
The logic-based planner implemented is the PKS planner
[Petrick and Bacchus, 2002] which uses STRIPS-like plan-
ning operators [LaValle, 2006] for plan generation. STRIPS-
like operators are widely used due to their simplicity and their
capability of providing a compact representation of the do-
main, which is carried out in terms of relevant attribute-values
that permit predicting the effects of executing an action in a
given situation. This kind of representation is suitable for
problems where the total number of attributes is large, but
the attributes relevant to predict the effects in a particular sit-
uation is small. A STRIPS-like planning operator (PO) is
composed of a precondition part, which is a logic clause with
the attribute-values required for the given action to yield the

desired changes, and the effect part which specifies additions
and deletions of attribute-values with respect to the precondi-
tion part as a result of the action execution.
Since the PO database may be incomplete, which is the

reason of why a learner is needed to complete it, the planner
may fail to make a decision because of incomplete knowl-
edge. In this case we may adopt two alternative strategies to
support the planner in decision making. On the one hand,
we may define an action selection strategy, e.g. select an
action randomly or an action that would be taken in a sim-
ilar situation, to provide the robot with an action to execute.
On the other hand, we may simply use the help of a human
teacher to instruct the action to execute. We choose to use
a human teacher since this may diminish significantly the
time spent for learning useful POs, and since its inclusion in
the planning-learning loop is very simple and straightforward
for the kind of applications we are dealing with: human-like
tasks. Teacher instructions simply consist of a single action
to be performed in the current situation according to the task
in progress.

4 The Learner
The learner has the important role of providing the planner
with POs. To this end, we propose a learning approach that
evaluates in parallel cause-effect explanations of the form
CECi = {Ci, Ei}, where Ci is the cause part, and Ei is
the effect part. The cause partCi = {Hi, ai} contains a sym-
bolic reference of an action ai, and a set of attribute-valuesHi

that, observed in a given situation, would permit to obtain the
expected changes in the situation when ai is executed. The
effect part Ei codes these changes as the final values of the
attributes that are expected to change with the action.

4.1 Planning Operator Generation
The execution of every action instructed by the teacher pro-
duces the generation of many alternative cause-effect expla-
nations that compactly represent the observed transition, as
well as the generation of a PO. First, a cause-effect expla-
nation CECi is generated by instantiating ai with the in-
structed action,Hi with the initial values of the attributes that
have changed with the action, and Ei with final values of the
changed attributes. From this initial CECi a planning oper-
ator is generated using ai as the name of the operator, Hi as
the precondition part, Ei as the additions in the effect part,
while the values inHi changed with the action (all of them in
this case) are the deletions.
After the generation of the PO, many other cause-effect ex-

planations are generated from the newly generated one. This
is done to provide the learning method with more alternatives
to try in parallel in case the newly generated PO fails (see next
section). Every new additional explanation CECn is gener-
ated with the same action an = ai and effect En = Ei of
the CECi, but with a set Hn consisting of one among all the
specializations in one attribute-value of Hi. This general to
specific strategy is followed to keep a compact representation.

4.2 Planning Operator Refinement
A PO is refined every time its execution leads to an unex-
pected effect. First, all the cause-effect explanations that



share the same action a and effect E of the failed PO r are
brought together,

CECr = {CECi|ai = a, Ei = E}. (1)

Then, from the set CECr, the CEC with highest chance of
occurrence,

CECw = argmax
CECi∈CECr

P (Ei | Hi, ai), (2)

is selected for the refinement of the PO, using Hw to replace
its precondition part.

Cause-Effect Evaluation
The problem of evaluating the CECi ∈ CECr can be han-
dled as a classification problem, where each Hi represents a
classification rule, and the classes are positive, when a situ-
ation covered by Hi permits to obtain Ei with ai, and neg-
ative, otherwise. For example, the probability in (2) may be
represented by a probability for a positive instance, P+ =
P (Ei | Hi, ai).
We require the system to rapidly generate and refine POs

using as few experiences as possible. This implies that, if the
lack of experience is not taken into account in the estimation,
the approach may wrongly produce large premature estima-
tions of these probabilities, degrading the performance of the
system, mainly at early stages of the learning. To prevent pre-
mature estimations we use the m-estimate formula [Cestnik,
1990; Furnkranz and Flach, 2003],

P+ =
n+ + m c

n+ + n− + m
, (3)

where n+ is the number of experienced positive instances,
n− is the number of experienced negative instances, c is an
a priori probability, and m is a parameter that regulates the
influence of c. Them parameter plays the role of the number
of instances covered by the classification rule. For a given c,
the larger the value ofm the lesser the influence of the expe-
rienced instances in the probability, and the closer the estima-
tion to c. This permits to regulate the influence of the initial
experiences with m, preventing large premature estimations.
To illustrate how this regulation takes place, we use the ex-
treme case of setting m = 0, which leads to the traditional
frequency probability calculation,

P+ =
n+

n+ + n−
(4)

where, if an estimation has to be done using only a couple
of positive instances, it may produce a 100 % chances of be-
ing a positive, disregarding the uncertainty associated to the
instances that are still pending to be tried. However, if we
define a larger value of m, the influence of the observed in-
stances decays and the estimation is closer to c. The setting of
m is defined by the user according to the classification prob-
lem at hand. One known instantiation of them-estimate is to
set m = 2 and c = 1/2, in which case we have the Laplace
estimate [Cestnik, 1990],

P+ =
n+ + 1

n+ + n− + 2
, (5)

widely used in known classification methods such as CN2
[Clark and Boswell, 1991]. However, the originalm-estimate
does not provide a way of regulating the influence of m as
more experiences are gathered since the value of m is as-
sumed constant. This degrades the accuracy of the estimation
as learning proceeds, it being worse for larger values of m,
which makes the estimation to be biased towards c. To avoid
this problem, we propose to use a variablem that consists in
an estimation of the number of instances n∅ covered by the
classification rule that are still pending to be tried,

P+ =
n+ + n̂∅ c

n+ + n− + n̂∅ , (6)

where n̂∅ is an estimation of n∅. Equation (6) can be in-
terpreted as the conventional frequency probability calcula-
tion (4), where each inexperienced instance contributes with
a fraction c of a sample for each class. Note that, in (6), the
value n̂∅ is particular for each rule, regulating the influence of
the lack of experience in each particular case. Since the kind
of applications we are dealing with permits to calculate ex-
actly the number of instances covered by a classification rule,
nT , we can calculate exactly the number of inexperienced in-
stances as

n∅ = nT − n+ − n−. (7)

Using (7) in (6), setting the prior probability as c = 1/2, and
reformulating, we obtain,

P+ =
1
2

(
1 +

n+

nT
− n−

nT

)
, (8)

which we name density-estimate, and it is used hereafter for
the probability estimation. Note that, with this equation, the
probability of a class changes as a function of the density of
samples for each class rather than as a function of the rela-
tive frequencies. Low densities of samples will produce low
variations in the probability, preventing large premature esti-
mations when few examples are collected. As learning pro-
ceeds, the influence of the densities will be larger and the
probability estimation will tend to the actual probability. For
instance, when all the instances are already experienced, we
have nT = n+ + n−, and equation (8) is equal to (4).

4.3 Performance Evaluation
The learning proposal has been thoroughly evaluated in dif-
ferent classification problems [Agostini et al., 2011]. We
present in this section an evaluation carried out in the bi-
nary classification problem of the Monk’s problem number
2 [Thrun et al., 1991]. We choose this problem since it is a
complex classification problem that poses difficulties to many
known classification methods, and since it permits a direct
analogy with the binary classification problem of partition-
ing the set of attributes Hi into positive or negative. For the
learning of the binary function, we use the competitive strat-
egy (2), where each classification rule is equivalent to a set
Hi of a CECi ∈ CECr, a positive instance is equivalent to
a situation in which E is obtained with a (see (1)), and a neg-
ative instance is equivalent to a situation in whichE is not ob-
tained when a is executed. We select, from all the classifica-
tion rules covering a given instance, on the one hand, the rule
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Figure 2: Comparing the performance of the density-estimate
with that of them-estimate at early stages of learning.
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Figure 3: Comparing the performance of the density-estimate
with that of the conventionalm-estimate in the long run.

with highest P+, and, on the other hand, the rule with highest
P−. Then, the classification for that instance is the class with
highest probability. Two new rules are generated every time
a misclassification occurs adding an attribute-value selected
randomly.
We first compare the results obtained from using the origi-

nalm-estimate, withm = 0, 2, 4, 8, and the density-estimate,
to calculate the probability of a class. Note that, form = 0, 2,
we obtain (4) and (5), respectively. Training instances are se-
lected randomly in the input space. After each training itera-
tion, a test episode, consisting in calculating the classification
error at every input in the input space, is run. The results
present the average of the classification errors of 10 runs for
each considered case. We set c = 1/2 for all cases. The re-
sults show that, when few instances are experienced (figure
2), the performance of the conventionalm-estimate seems to
improve as the value of m increases. However, this result is
reversed as learning proceeds (figure 3) due to the inability of
the original m-estimate to compensate the component intro-
duced by the large m. Our proposal, instead, precisely com-
pensates the effect of the lack of experience in the estimation
of the probability, producing more confident estimations, and
outperforming the originalm-estimate at all the stages of the
learning process.
To illustrate how the competitive strategy increases the

speed of learning, we performed an experiment using only
the density estimation and generating 10 rules, instead of 2
rules, every time a misclassification occurs. Figures 4 and 5
present the results for the average of 10 runs at early stages
of the learning and in the long run, respectively. Note the im-
provement in the convergence speed for the case of 10 rules
generation, which permits to achieve a classification without
errors much faster than in the 2 rules generation case.
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Figure 4: Comparing the performance of the density-estimate
at early stages of learning for 2 and 10 rules generation.
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Figure 5: Comparing the performance of the density-estimate
in the long run for 2 and 10 rules generation.

5 Implementation in Real Robot Platforms
The system has been implemented in two different robot plat-
forms: the humanoid ARMAR III [Asfour et al., 2008] and
the Stäubli arm. To show the synergies between the integrated
components, we use a task based on the test application of
Sokoban [Botea et al., 2003] since it permits a clear visual-
ization of the interesting cases in which these synergies take
place, and actions can be easily instructed by a lay person.
Given a goal specification, consisting of a target object to be
moved and its desired destination, the robot should learn to
move the target object to the specified position using verti-
cal or horizontal movements. To achieve the goal, the robot
may be forced to move objects blocking the trajectory in an
ordered way.



Figure 6: Scenarios. (a) ARMAR III. (b) Stäubli arm.

5.1 ARMAR III Robot
The task in the ARMAR III platform consists in moving
the green cup (light grey in figures) on a sideboard where
there are other blocking cups, and without colliding with oth-
ers (figure 6a). The horizontal and vertical movements are
performed through pick and place with grasping. Figure 7
presents a simple experiment that permits to illustrate all the
cases for learning, where the green cup should be moved to
the right but there is a blocking cup. At the time of this ex-
periment, the robot has learned a single PO from a similar
experiment, but without a blocking object. The PKS notation
for this PO is [Petrick and Bacchus, 2002],
< action name = ”TR2” >

< preconds>
K(to(0)) ∧
K(e(R2))

< \ preconds>
< effects >
add(Kf, to(R2));
add(Kf, e(0));

< \ effects >
< \ action >

where ”TR2” refers to the action of moving the target object
two cells to the right, to is the position of the target object,
and e indicates that the referenced cell is empty. ”R2” refers
to the cell two positions to the right of the initial position of
the target object. Note that this PO does not indicate that the
cell ”R1” in the trajectory to the goal should be empty. In
figure 7a, the planner provides PO ”TR2” to be executed, but
the action is bypassed to avoid a collision. Since no changes
occur, the expected effects are not fulfilled and the PO refine-
ment mechanism is triggered (Section 4.2). Then, from the
set

CECTR2 = {CECi|ai = TR2, Ei = {to(R2)), e(0))}},
the selected CECw (2) has Hw = {to(0), e(R2), e(R1)},
and it is used to refine the precondition part of the PO, which
now includes e(R1). CECw has a probability P+ = 0.5001,
with number of situations experienced so far in the initial two
experiments n+ = 1 and n− = 0, and with number of total
situations covered by the cause part Cw, nT = 4096. For the
sake of illustration, the sets H of other competing CECs in
CECTR2 are: Hj = {to(0), e(R2)}, with P+ = 0.5, n+ =
1, n− = 1, nT = 8192, and Hk = {to(0), e(R2), o(R1)},
with P+ = 0.4999, n+ = 0, n− = 1, nT = 4096, where
o(R1) indicates that an object is one cell to the right of the
target object. After the PO refinement, the planner fails to
find a plan since the refined PO is no longer applicable (fig-

Figure 7: Experiment in which the three cases of learning
take place. For further explanations see the text.

ure 7b). Then, the teacher instructs to move the blocking cup
up, and the learner generates a new PO using the generation
mechanism presented in Section 4.1. Finally, in figure 7c,
the freed path permits reaching the goal successfully using
the refined PO. Figure 8 presents another experiment, per-
formed at later learning stages, in which the green cup should
be moved to the right, but there are more blocking cups than
in the previous example. In this case, the cup to the right of
the target cup cannot be moved up since there is another cup
blocking this movement, and neither further to the right since
there is not enough space for the hand of the robot to release
the cup without knocking over the cup farthest to the right.
With the POs learned so far, the robot is able to generate a
three-step plan that permits to cope with all these restrictions,
moving the cup blocking the target cup first one position to
the right, where no cups block its upwards movement, and
then up. This frees the path of the target cup which permits
fulfilling the goal.

Figure 8: Example of the performance of the system in a more
complex situation with many blocking cups.

5.2 Stäubli Arm Robot
The task implemented in the Stäubli arm uses counters in-
stead of cups (figure 6b). The target counter is marked with
a red label (light grey label in figures). In this case, we re-
strict the environment to be a 3 by 3 grid world, where the
amount of counters ranges from 1 to 8. Collisions are now
allowed. After the robot has learned a large enough set of
POs, it is capable of solving difficult situations such as the
one presented in figure 9, in which the target counter should
be moved from the lower middle position, to the upper right



corner of the grid, starting from the difficult situation where
all the cells are occupied except one.

Figure 9: Snapshots that illustrate the sequence of actions ex-
ecuted to move the target counter to the upper right position.

6 Conclusions
In this work, we proposed a system that integrates AI tech-
niques for planning and learning to enhance the capabilities of
a real robot in the execution of human-like tasks. The learner
enriches the capabilities of the planner by constantly gener-
ating and refining planning operators. In turn, the planner
widens the capabilities of the robot, since it allows the robot
to cope with different tasks in previously inexperienced situ-
ations using deliberation.
The system works reliably thanks to the rapid learning

of planning operators using a competitive strategy that tries
many alternatives of cause-effect explanations in parallel
rather than sequentially. The inclusion of a human teacher in
the planning-learning loop to support the planner in decision-
making permits the robot to generate planning operators that
are relevant for the ongoing task, increasing also the speed
of learning. The teacher instruction, together with the ca-
pability of the learner of generating and refining planning
operators at runtime, prevents undesired task interruptions.
The AI techniques for planning and learning are integrated
with the mechanisms of real robot platforms using a simple
decision-making framework. Non-robotic applications can
also be handled as long as a set of discrete actions and a set of
perceptions, in the form of attribute-values, can be provided
to the system. We believe that the proposed system for plan-
ning and learning can be used to enhance the performance of
other real dynamic systems, such as industrial supply chains.
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