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Abstract—A central problem in Reinforcement Learning is
how to deal with large state and action spaces. When the
problem domain presents intrinsic symmetries, exploiting them
can be key to achieve good performance. We analyze the gains
that can be effectively achieved by exploiting different kinds of
symmetries, and the effect of combining them, in a test case:
the stand-up and stabilization of an inverted pendulum.

Keywords-Reinforcement learning; function approximation;
domain symmetries.

I. INTRODUCTION

Reinforcement Learning in large state-action spaces suf-
fers from the ”curse of dimensionality” problem, which
means that the number of states that the agent has to
visit for learning to succeed soon grows too large, and
the learning task becomes unfeasible. Using function ap-
proximation techniques to represent the Value or the Q
function should attenuate the problem due to their capability
of generalization between similar situations, but, in any
case, when the state space is large, using an appropriate
representation is crucial in order to allow efficient learning.
It is often possible to simplify the task when the domain is
known to present some symmetry since it allows transferring
the observations made in one situation to other situations
symmetric to it.

In [1], the notion of symmetry in Markov decision pro-
cesses is examined. Two types of symmetry are considered,
that they call “adherence to an equivalence relation” and
“invariance under a group of transformations”. The last
one is introduced to deal with multiagent systems, that we
will not consider here. The “adherence to an equivalence
relation” type of symmetry is one of those which we are
interested in, and corresponds, in essence, to identifying
symmetric states s and s such that, for each possible action
a in state s leading to state s′, there is a symmetric action a
in state s that leads to a state s′, symmetric to s′, with the
property that both give rise to exactly the same reward. The
identification of symmetric states can be incorporated in the
definition of the state, thus, effectively reducing the actual
size of the space on which learning takes place.

However, the above definition does not include all possi-
ble kinds of symmetry. In this paper we present an example
showing a “temporal inversion” symmetry, which does not

correspond to the previous type. In this kind of symmetry,
experiences can be transferred between symmetric situations
for which the obtained reward, however, is not the same.
Due to the special nature of the “temporal inversion” type of
symmetry, it is not possible to identify symmetric situations
as equivalent, and thus, they must be represented as different
states and updated in separate operations. This fact makes
impossible to use a representation of the state that results in
a reduction of the size of the state space.

Returning to the “adherence to an equivalence relation”,
we observe that there are two alternative ways of exploiting
this type of symmetry: we can define the state as suggested
above, so that equivalent situations get represented by a
single state, or we can represent symmetric situations as
different states and perform multiple updates for each ex-
perience (one for each symmetric state), as must be done
in the case of “temporal inversion” type of symmetry. The
last is certainly computationally less efficient, but as we will
discuss later, it could avoid certain problems that may appear
with the former approach.

Both kinds of symmetries are in principle equally appli-
cable not matter if the Q function is represented with entries
in a table or through function approximation. However, the
gains obtained by symmetries may be different in both cases.
Thus, for example, if we follow the approach of multiple
updates for symmetric states using a tabular representation,
all symmetric states will be updated with the same expe-
riences, and we will end with an exact replication of the
Q estimations for each symmetric state (provided they are
initialized with the same values). The result in this case will
not be different from what would be obtained following
the approach of identifying symmetric states. But this is
not necessarily true with function approximation, since each
update modifies the estimation in an extended region of the
domain, so that, in general, the Q estimation at a given
point will be updated two times per experience, and this may
have the effect of accelerating learning. Additionally, since
in general the final result of performing the two successive
updates depends on the order in which they are done, a
perfect symmetry in the estimation function will be lost.

In this paper we test the effect of exploiting different kinds
of symmetries in Reinforcement Learning with function
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approximation. For this, we use a Q-learning algorithm
recently developed by us [2], which approximates the Q-
function through the estimation of a probability density
function in the state-action-Q-value space, but similar results
should be expected with any other method of function
approximation.

The rest of the paper is organized as follows: Section
II introduces our approach to RL with probability density
estimation, Section III defines the test problem and the
symmetries applied, Section IV shows the results of the
experiments, and Section V concludes the paper.

II. Q-LEARNING WITH DENSITY ESTIMATION

In the Reinforcement Learning paradigm, an agent must
improve its performance by selecting actions that maximize
the accumulation of rewards provided by the environment
[3]. At each time step, the agent observes the state st

and chooses an action at according to its policy u(s). The
environment changes to state st+1 in response to this action,
and produces an instantaneous reward rt. One of the most
popular algorithms used in RL is Q-Learning [4], which uses
an action-value function Q(s, a) to evaluate the expectation
of the maximum future cumulative reward that will be
obtained from the execution of action a in the situation s.
Q-learning uses a sampled version of the Bellman optimality
equations [5] to estimate instantaneous q values,

q(s, a) = r(s, a) + γ max
a′

Q(s′, a′) (1)

where r(s, a) is the immediate reward obtained from exe-
cuting action a in situation s, max

a′
Q(s′, a′) is the maximum

estimated cumulative reward in the next observed situation
s′, and γ ∈ [0, 1] is a discount factor that regulates the
importance of future rewards. At a given stage of the
learning, the current policy is derived from the learned Q-
values as,

u(s) = argmax
a

Q(s, a) (2)

The basic formulation of Q-learning assumes discrete state-
action spaces and the Q function is stored in a tabular repre-
sentation. For continuous domains a function approximation
is required to represent the Q function and to generalize
between similar situations. Boyan and Moore [6] showed
that simply replacing a lookup table by a function approxi-
mator may cause learning to fail. They attribute this, in part,
to the fact that, when the function approximation model
is not general enough, learning may be impossible if the
model cannot correctly fit the transient function estimations,
even if the target function can be exactly represented by
the parametric model. This problem may be overcome, at
least in principle, using a non-parametric function approx-
imation model with universal approximation capabilities.
In our approach, instead of directly approximating the Q
function, we approximate the probability density function of
the observed experience samples. This probability is defined

in the joint space of the state, action and Q-values, and from
this distribution we obtain the probability distribution of Q
for any given state and action combination. We represent the
probability density with a Gaussian Mixture Model, which
is known to be a general approximator provided the number
of Gaussians is not limited [7]. The information obtained in
this way is richer than what it is possible to represent by
directly approximating the Q function, and its adjustment
can be achieved by means of the EM algorithm, which is
conceptually simple and well understood.

Next we present our proposal for function approximation
using density estimations.

A. The Gaussian Mixture Model

We approximate the probability density with a mixture of
multivariate Gaussians, or Gaussian Mixture Model [8]:

p(xt|θ) =
K∑

i=1

αiN(xt|θi) (3)

where αi, usually denoted as the mixing parameter, is the
prior probability P (i) that Gaussian i generates a sample
xt. θi = {μi,

∑
i} are the parameters of Gaussian i, and

θ = {{α1, μ1,
∑

1}, ..., {αK , μK ,
∑

K}} is the whole set of
parameters for the mixture. The parameters of the model can
be estimated using a maximum-likelihood estimator (MLE).
Given a set of samples X, the likelihood function is given
by:

L[X ; θ] =
N∏

t=1

p(xt|θ) (4)

For the formulation of RL, a sample corresponds to an
instance in the joint space, xt = (s, a, q). The maximum-
likelihood estimation of the model parameters is that max-
imizing (4). Direct computation of the MLE requires com-
plete information about which mixture component generated
which sample. Since this information is missing, the EM
algorithm [9], described in the next section, is usually
employed.

B. The Expectation-Maximization algorithm

To maximize (4), the (EM) algorithm first produces an
estimation of the expected values of the missing variables
using initial values of the parameters to be estimated (E
step), and then computes the MLE of the parameters given
the expected values of the missing variables (M step). This
process is iterated until a convergence criterion is fulfilled.

Next we briefly describe how EM is applied for the case
of a GMM. The E step consists in the calculation of the
probability P (i|xt) for each component i of generating
sample xt that we denote by wt,i:

wt,i =
P (i)p(xt|i)

K∑
j=1

P (j)p(xt|j)
=

αiN(xt|μi,
∑

i)
K∑

j=1

αjN(xt|μj ,
∑

j)
(5)
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where t = 1, .., n, the number of samples, and i = 1, .., K .
The M step consists in computing the MLE using the esti-
mated wt,i. It can be shown [10] that the mixing parameters,
means, and covariances are given by:

αi =
1
n

n∑
t=1

wt,i (6)

μi =

n∑
t=1

wt,ixt

n∑
t=1

wt,i

(7)

Σi =

n∑
t=1

wt,i(xt − μi)(xt − μi)′

n∑
t=1

wt,i

(8)

C. On-line EM

Estimating a probability density distribution by means of
the EM algorithm involves the iteration of E and M steps on
the complete set of data. However, in RL, sample data are
not all available at once: they arrive sequentially as learning
proceeds. This prevents using the raw EM algorithm, and
requires an incremental version of it, several of which have
been proposed for the Gaussians Mixture Model [11], [12].

Here, we adopt an algorithm based on that developed in
[13] for the NGnet, but adapted to the case of GMM. It
consists in performing an E-M step after the observation
of each sample. The E step does not differ from the batch
version (equation 5), though it is only computed for the
new sample. For the M step, the parameters of all mixture
components are updated with the new sample. For this, we
define the following time-discounted weighted sums:

Wt,i = [[1]]t,i , (9)

Xt,i = [[x]]t,i , (10)

(XX)t,i = [[(x − μi)(x − μi)′]]t,i (11)

where we have used the notation:

[[f ]]T,i =
T∑

t=1

(
T∏

s=t+1

λs

)
(ftwt,i) (12)

where λt,∈ [0, 1], is a time dependent discount factor
introduced for forgetting the effect of old, less accurate
values.

When a new sample xt arrives, these accumulators are
updated with the step-wise incremental formula,

[[f ]]t,i = λ
wt,i

t [[f ]]t−1,i + ft,iwt,i (13)

where the power wt,i of λt is introduced to make the
influence of each update more local, reducing the updating
of Gaussians which are not responsible of generating the

observed values. Then, the GMM estimators can be obtained
as:

αt,i =
Wt,i

K∑
j=1

Wt,i

(14)

μt,i =
Xt,i

Wt,i
(15)

Σt,i =
(XX)t,i

Wt,i
(16)

D. Action Selection

Given the GMM

p(s, a, q) =
K∑

i=1

αiN(s, a, q|μi, Σi), (17)

the probability distribution for q is obtained as:

p(q|s, a) =
K∑

i=1

βi(s, a)N (q|μi(q|s, a), σi(q)) (18)

where,

μi(q|s, a) = μq
i + Σq,(s,a)

i

(
Σ(s,a)(s,a)

i

)−1 (
(s, a) − μ

(s,a)
i

)
(19)

σ2
i (q) = Σqq

i − Σq,(s,a)
i

(
Σ(s,a)(s,a)

i

)−1

Σ(s,a),q
i (20)

βi(s, a) =
αip(s, a|μ(s,a)

i , Σ(s,a)(s,a)
i )

K∑
j=1

αjp(s, a|μ(s,a)
j , Σ(s,a)(s,a)

j )
(21)

¿From (18) we can obtain the conditional mean and covari-
ance, μ(q|s, a) and σ2(q|s, a) respectively,

μ(q|s, a) =
K∑

i=1

βi(s, a)μi(q|s, a) (22)

σ2(q|s, a) =
K∑

i=1

βi(s, a)(σ2
i (q) + (μi(q|s, a) − μ(q|s, a))2)

(23)
To select an action we use the policy function (2) where
the maximum is taken form a finite set of action values, an,
regularly sampled along its range. Each Q(s, an) is obtained
stochastically from a normal distribution with mean (22) and
variance (23).

E. Model Updating

To update the density model with the new experience we
must provide the sample xt = (st, at, qt+1(s, a)), where
qt+1(s, a) is given by (1), which involves again the esti-
mation of the maximum value max

a
Q(s, a). We proceed in

a similar way as in action selection, but in this case, we just
take as Q(s, a) the expected value given by (22).

The approximation capabilities of a GMM depend on
the number K of Gaussians of the mixture. Since we can
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not determine the most appropriate number beforehand,
new Gaussians are generated in two situations: When the
estimation error of the q values is larger than a given δ, and
when the density of samples in the given point of the joint
space is below a threshold ρ.

III. TEST APPLICATION: THE INVERTED PENDULUM

For our experiments we selected the benchmark appli-
cation of an inverted pendulum with limited torque [14],
[15]. The task consists in swinging up the pendulum until
reaching its upright position, and stabilize it there. This
task is not trivial due to the torque limitation, which forces
the controller to swing the pendulum several times until its
kinetic energy is large enough to reach the top position. We
assume a frictionless pendulum for the temporal symmetry
to hold.

The state of the system is determined by the angle
θ of the pendulum to the top position, and its temporal
derivative: s = (θ, θ̇). Thus, the density is estimated in a
four-dimensional joint space (θ, θ̇, a, q). As the reward signal
we simply take the height of the pendulum h = cos(θ)
which ranges in the interval [−1, 1]. The discount coefficient
γ in equation (1) is set to 0.99. We consider two kinds of
symmetry in this problem: spatial and temporal.

A. Spatial symmetry

The spatial symmetry corresponds to the fact that the
behavior of the pendulum is the same if we look at it
reflected in a mirror. This allows identifying a given state
(θ, θ̇) with its spatial inversion (−θ,−θ̇), substituting at
the same time each action a by its opposite −a. This is
a symmetry of the “adherence to an equivalence relation”
type discussed before. We consider two ways of exploiting
this symmetry:

1. Representing symmetric situations with the same state.
We consider only states with positive values of θ by means
of the equivalence (−θ, θ̇, a) ∼ (θ,−θ̇,−a). Then, if σθ

is the sign of θ, we represent situation (θ, θ̇) by the state
(θ′, θ̇′) = (σθθ, σθ θ̇). When an action a′ is selected, a =
σθa

′ is executed, and the result is transformed into its state
representation in order to perform the update.

2. Representing symmetric situations with separate states,
but using the result obtained in each situation to update the
corresponding state and also its symmetric one, as if it had
been also experienced.

B. Temporal symmetry

While perhaps less intuitive, the symmetry obtained by
temporal inversion is as fundamental as that of spatial
inversion. It applies to conservative systems, that is, systems
with no loss of mechanical energy into heat (as would occur
with a friction term �= 0), and establishes that the behavior
of a mechanical system is symmetric if observed backwards
in time. Changing the direction of time implies a change of

sign in all velocity vectors (since they involve time linearly),
but does not affect positions nor accelerations (since they
involve time squared), and consequently, it does not affect
the sign of forces. For the pendulum, this symmetry implies
that, if we execute action a and observe the transition
(θ1, θ̇1) → (θ2, θ̇2) with reward r1, it is as if (executing
the same action a) we also observed the inverse transition
(θ2,−θ̇2) → (θ1,−θ̇1) with reward r2 corresponding to the
initial situation. Note that this symmetry cannot be used to
reduce the state space by identifying symmetric situations:
due to the inversion in time and the difference in rewards,
both transitions are different and the only possibility to
exploit this symmetry is by successive updates.

IV. EXPERIMENTS

In order to analyze the gains provided by each kind of
symmetry, we will compare them against a basic approach
in which all symmetries are ignored. The settings of the
system have been tuned for the non-symmetric case and
held fixed for all the experiments. We provide the system
with 20 initial Gaussians. The components of the mean
μi of Gaussian i are selected randomly, except for the q
variable that is initialized to the maximum possible value to
favor exploration of unvisited regions. The initial covariance
matrices Σi are diagonal and the variance for each variable
is set to the range of the variable. The initial number of
samples for each Gaussian, Wi, is set to 0.1. The discount
coefficient λt of Eq. (12) is made to vary according to:

λt = 1 − 1/(at + b) (24)

with a = 0.001 and b = 10. We performed the experiments
using episodes of 7 seconds with torque actions issued every
0.1 seconds. The evolution of the system is simulated with
the Euler integration method using an integration step of
0.001 seconds. At the beginning of each episode the state
of the pendulum is initialized at random. To accelerate
convergence, the angle is initialized in an interval around
the upright position that is gradually increased with each
episode. In all experiments, we let the system learn for 50
episodes. At the end of each episode a test is performed,
consisting in 7 seconds of simulation using the policy
learned so far. Since we are interested in whether the system
is able to swing up and stabilize the pendulum, we take the
reward accumulated during the last second of the simulation
as the result of each test, ignoring the initial phase of the test
since this transient process greatly depends on the random
initial configuration. An accumulated reward close to 100
means that the system reached a high position and stayed
there during this period. Each experiment is repeated 10
times and the results are averaged. Figure 1 shows the
results obtained for the basic approach. In average, the
pendulum is reliably stabilized after about 25 episodes.
These results compare well with the state of the art, for
example, [15] reports that, with a similar approach but using
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Figure 1. Reference test: no symmetries.
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Figure 2. Spatial symmetry (approach 1).

Normalized Gaussian nets for function approximation and a
more elaborated reward function, can roughly achieve the
task (“stabilize the pendulum at the upright position from
almost all initial states”) after 40 episodes of the same length
and similar settings.

Figures 2 and 3 show the results obtained with the two
ways of exploiting the spatial symmetry. We observe that
approach 1 is more efficient than approach 2. This could
be expected because, with approach 1, the Q function has
to be learnt in a domain that is a half in size, making the
resulting function simpler. This is so despite the fact that,
with the symmetric definition of state, the upright position
lies exactly at the boundary of the resulting workspace,
which makes more difficult to achieve a good approximation
at this point by means of a mixture of Gaussians.

In order to compare quantitatively the performance of
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Figure 3. Spatial symmetry (approach 2).

each approach, we define the convergence time Tx of each
approach as the number of episodes required, in the average,
to reliably obtain an accumulated reward equivalent to
keeping the pendulum inside an angle of 45◦ from the top
position (marked in the figures by the horizontal line). From
the graphs, we derive the value T0 = 25 for the basic
approach, and TS1 = 12, and TS2 = 15, for approaches
1 and 2, respectively. This corresponds to an improvement
in efficiency by a factor of roughly 2, what agrees with what
could be expected from the use of the symmetry.

Figure 4 shows the performance of using the temporal
symmetry. Though the graphic shows a performance that
seems to lay in between the two approaches for spatial
symmetry, the quantitative measure we chose gives the
slightly worst result of TT = 18. In figure 5, the two
symmetries are applied at the same time (using approach 1
for the spatial symmetry). In this case, TST = 5. This result
is somehow surprising, since the final gain is by a factor
5 with respect to the basic approach, which is better than
combining the gains obtained from applying each symmetry
in isolation. We suggest that this result can be due to the
fact that, with the double updating of the temporal symmetry,
situations lying near the upright position are updated twice
for each experience, what should accelerate the convergence
in this region.

V. CONCLUSIONS

Reinforcement learning in continuous domains can benefit
from the exploitation of different kinds of symmetries. Using
a function approximation based on the estimation of the
probability density in the joint space of states, actions, and
Q-values, we have shown that different symmetries can be
applied, individually or simultaneously, even if each one
requires a different approach, resulting in clear efficiency
gains in all cases. Results suggest that, by applying two
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Figure 4. Temporal symmetry.
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Figure 5. Temporal plus spatial symmetry, approach 1

symmetries together, the total gain is higher than combining
the gains individually achieved by each symmetry alone.
However, this conclusion should be further investigated,
since it can depend to a great extent on the exact way in
which the performance comparison is done.
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