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Abstract: Robotic applications often involve dealing with complex dynamic systems. In these cases coping with 
control requirements with conventional techniques is hard to achieve and a big effort has to be done in the 
design and tuning of the control system. An alternative to conventional control techniques is the use of 
automatic learning systems that could learn control policies automatically, by means of the experience. But 
the amount of experience required in complex problems is intractable unless some generalization is 
performed. Many learning techniques have been proposed to deal with this challenge but the applicability of 
them in a complex control task is still difficult because of their bad learning convergence or insufficient 
generalization. In this work a new learning technique, that exploits a kind of generalization called 
categorization, is used in a complex control task. The results obtained show that it is possible to learn, in 
short time and with good convergence, a control policy that outperforms a classical PID control tuned for 
the specific task of controlling a manipulator with high inertia and variable load. 

1 INTRODUCTION 

Some robotic applications, like the locomotion of a 
multi-legged robot, involve dealing with systems 
with complex dynamics (Martins-Filho, 2003). In 
these cases, the design of the control system and the 
tuning of its parameters become a hard task.  
 A promising alternative is the use of 
Reinforcement Learning (RL) systems (Sutton, 
1998) able to improve the control policy learning 
from experience. But the application of RL in 
complex control tasks is often affected by what is 
known as the problem of the “curse of 
dimensionality” (Sutton, 1998). As a result of this, 
learning a satisfactory control policy would require 
an unworkable number of experiences and 
intolerably long convergence times. Thus, in order to 
make the application of RL feasible, generalization 
among similar situations is necessary. Function 
approximation techniques are usually applied 
(Sutton, 1998), (Smart, 2002) but they have bad 
convergence properties (Tsitsikilis, 1997), (Thrun, 
1993), or are liable to overestimate the utility of the 
visited examples (Thrun, 1993).  
 In (Porta, 2000) a new kind of generalization 
called categorization was proposed. We call 

categorization the process of finding subsets of 
relevant state variables able to characterize certain 
situations that require the same control action, 
irrespective of the value of those variables that 
become irrelevant in such situations.    
 In (Porta, 2000), a technique to exploit the 
categorizability of the environments in a learning 
system was proposed with the Categorization and 
Learning algorithm (CL algorithm). Some good 
preliminary results were obtained in simple 
problems with an improved version of the algorithm 
(Agostini, 2004a), (Agostini, 2004b). Those 
preliminary versions didn’t succeed when applied to 
more complex problems. In this work we present a 
statistics-based theoretic reformulation of the CL 
algorithm that improves several aspects concerning 
the categorization process. With this version we 
have been able to learn, in short time, a control 
policy that outperforms a classical PID control tuned 
for the specific task of controlling a manipulator 
with high inertia and variable load. 
 In section 2 the details of the new algorithm are 
presented. Section 3 describes the control problem 
and the details for the application of the algorithm to 
the selected problem. Section 5 gives the results 
obtained. Finally, conclusions are in Section 6.  



 

2 CL ALGORITHM 

The CL algorithm attempts to find the relevant 
features for every situation to predict the result of 
executing an action. We present the fundamental 
aspects of the CL algorithm current formulation. 
 It is assumed that the world is perceived through 
n detectors di i=1...n. Each detector has a set of 
different possible values called features dij j=1,..,|di|. 
We say that a feature dij is active when the detector 
di takes value dij in its perception.  
 A partial view of order m, m∈{1..n}, is a 
subset of m features denoted by v(dij,...,dkl) and is a 
virtual feature that becomes active when its m 
component features are simultaneously active. A 
partial rule is a pair formed by a v and an action a, 
r(v,a). We say that a partial rule r(v, a) is active each 
time that its partial view v is active. We say that 
r(v,a) is used each time that it is active and its action 
a is executed. In every situation a set of partial rules 
Rv is active, and a subset of it, Rva, is used. For each 
partial rule r three statistic values are stored: qr, an 
estimation of the average discounted reward; er

2, an 
estimation of the variance of q; and nr, the number 
of times r has been used.    
 As in the usual Q-Learning (Watkins, 1992), the 
action with highest expected q value must be 
determined in every situation the system comes 
across. In the case of the CL algorithm, given a 
situation there is in general more than one partial 
rule active and the problem is to choose the best 
prediction of the q value for every possible action. 
For each action a, we select the partial rule of Rva 
with lowest dispersion in its observed q values, 
which we call the winner partial rule. The dispersion 
of a partial rule is determined randomly from the 
probability distribution of its unknown standard 
deviation σr (Blom, 1989), 
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where 1−= rnf . The value χ2( f ) is randomly  
obtained in accordance to a χ2 distribution with f 
degrees of freedom. This probabilistic dispersion 
estimation gives the opportunity to predict the q 
value to little tested partial rules with low number of 
samples nr, even if they have large er

2. 
 Note that qr is the estimation of the unknown 
mean µr of the distribution of q. The final estimation 
of µr is determined by random selection using its 
probability distribution (Blom, 1989), 
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where t(f) is a random value obtained from the t 
distribution with f degrees of freedom.  
 Finally, the action selected is the one with 
highest estimation of µr. This form of action 
selection provides an adaptive form of exploration 
that increases the probability of executing 
exploratory actions when predictions are less certain, 
and favours the testing of those rules that have been 
less experienced. 
 After the execution of the selected action a, a 
reward ra is obtained and a new situation Rv’ is 
reached. The actual q value obtained is computed 
using the Bellman’s equation: 
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where γ is the discount factor. The obtained q value 
is used to update the statistic values in every partial 
rule in Rva. The qr is updated using the same rule as 
Q-Learning for stochastic systems. The er value is 
updated with identical schema. In both cases the 
learning coefficient is: 
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 Some of the situations are observed more 
frequently than others. These may cause some 
statistic bias in the estimations (Blom, 1989). In 
order to prevent these biases we use the 
psychological concept of habituation (Grossberg, 
1982). Basically, the habituation process consists in 
that repetitive stimuli gradually decrease their 
influence in the individual behavior. In our case we 
consider a partial rule as a stimulus. More habitual 
partial rules are updated at a lower rate. 
 The learning process starts considering partial 
rules involving partial views of order 1. To achieve a 
good categorization, new partial rules need to be 
created. New partial rules are generated by 
combining two used ones. Generation is considered 
whenever all the partial rules used in the current 
situation have been experienced a minimum number 
of times in order to have an acceptable confidence in 
the estimations. In order to control the proliferation 
of partial rules an elimination criterion involving 
redundancy is applied. Two partial rules are 
redundant if one of them is included in the other and 
their q estimations are similar. If two rules are 
redundant, the rule with the highest order is 
eliminated and the generation of new rules using a 
combination of its corresponding detectors is given 
less probability to occur.  



 

3 APPLICATION EXAMPLE 

The algorithm is tested in a control problem 
consisting in following randomly generated 
trajectories for a rotational manipulator with high 
inertia and variable load (figure 1). The actuator (M) 
is modeled as a DC motor Maxon 118800 (Maxon). 
  

 
Figure 1: Manipulator. 

 

 Model equations are (Craig, 1989): 
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where Volt is the input voltage and θ is the angular 
position. The simulation is made considering a dt of 
1 (ms). The sample frequency is 50 (ms). 
 In order to evaluate the CL algorithm we 
compare the results obtained with a control 
performed by a PID system tuned using the second 
method of the Ziegler-Nichols rule (Ogata, 2002).   

3.1 CL Algorithm Formulation 

To make a fair comparison, we use the same input 
information as in the PID system: the angular 
position error, the angular velocity error, and the 
integral of the angular position error. 
 As in Q-learning a discretized representation of 
the world is needed (Sutton, 1998) (Table 1). 
Position error eθ near the 0 value is discretized more 
finely and is denoted by eθ0. 
 

Table 1: Features and actions 
Detector Range min Range max Features 

0θe  -π/8 π/8 22 

θe  -π/2 π/2 22 

θ&e  -5 5 22 

∫ θe  -100π2 100π2 22 

Volt -48 48 17 
  
 Our goal is to follow the reference trajectory as 
close as possible. A natural reward function is:  

θetra −=)(                         (7) 

4 RESULTS 

To evaluate the control performance of the CL 
algorithm 10 different runs of 50000 iterations using 
random trajectories were done. The performance 
reached after each run is evaluated using a reference 
trajectory composed of 20 sigma-shaped randomly 
generated subtrajectories of different duration and 
angular variation (figure 2).  

 
 

  

    
Figure 2: Instantaneous errors, in larger scale, of the 
controls performed by the CL algorithm with minimum 

MSE and the PID. 

 The mean squared error (MSE) of the control 
performed by the PID system over the reference 
trajectory is 3.226E-3 (rad2). The average MSE of 
the experiments is 2.704E-3 (rad2). This is a 
remarkable result considering that the CL algorithm 
uses discretized variables with a reduced number of 
segments against the continuous variables used by 
the PID system. This fact causes the low amplitude 
ripple present in the CL algorithm control.  
 As shown in figure 3, the CL algorithm presents 
a fast learning convergence, obtaining an acceptable 
control performance at early stages of the learning 
process (in about 15000 iterations, 12 minutes of 
real simulation time).  

 
Figure 3: Average reward in the 10 experiments performed 

with the CL algorithm. 
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 In order to illustrate how the algorithm 
generates relevant partial rules we show in Table 2 
the mean number of partial rules generated. To 
simplify, we only consider their component 
detectors.   
  

Table 2: Mean number of partial rules 
Detectors Number of rules 
Order 1 1469 

},{ 0 θθ &ee  2085 
},{ θθ &ee  388 

},{ 0 ∫ θθ ee  269 

},{ ∫ θθ ee  444 

},{ ∫ θθ ee &  58 

},,{ 0 ∫ θθθ eee &
 2485 

},,{ ∫ θθθ eee &
 232 

Total 7457 
  

 The number of rules generated is very low 
compared with the total number of possible 
situations, about 362E3, showing the high 
generalization reached. The CL algorithm is capable 
to learn that the position error is very relevant for the 
control task generating rules contain this feature. 
The CL algorithm was capable to generate partial 
rules containing the velocity error in regions of the 
state space near the reference trajectory in which this 
detector becomes relevant. 

5 CONCLUSIONS 

In this work we presented a learning approach that 
uses a new kind of generalization, which we called 
categorization. The application of this learning 
system compares well with traditional control 
techniques, and even outperforms them. The CL 
algorithm can reach a high generalization with fast 
learning convergence. This illustrates the viability of 
its application for complex control.  
 The next step will be the application of 
continuous domain methods in the CL algorithm 
expecting to overcome the existing problems of 
automatic learning in complex control tasks. 
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