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Abstract— The goal of this study is to provide an architecture
for a generic definition of robot manipulation actions. We
emphasize that the representation of actions presented here
is ”procedural”. Thus, we will define the structural elements of
our action representations as execution protocols. To achieve
this, manipulations are defined using three levels. The top-
level defines objects, their relations and the actions in an
abstract and symbolic way. A mid-level sequencer, with which
the action primitives are chained, is used to structure the actual
action execution, which is performed via the bottom level. This
(lowest) level collects data from sensors and communicates with
the control system of the robot. This method enables robot
manipulators to execute the same action in different situations
i.e. on different objects with different positions and orientations.
In addition, two methods of detecting action failure are provided
which are necessary to handle faults in system. To demonstrate
the effectiveness of the proposed framework, several different
actions are performed on our robotic setup and results are
shown. This way we are creating a library of human-like robot
actions, which can be used by higher-level task planners to
execute more complex tasks.

I. INTRODUCTION

It remains largely a puzzle how action knowledge can be

efficiently structured for robotics applications. In a recent

paper [1], we had discussed that human manipulation actions

can be captured by a limited ontology-tree and we had argued

that there is only a quite small number of basic actions

existing (less than 30), which cover most if not all of our

uni-manual manipulations.

This, we believe, offers the unique opportunity to struc-

ture the robot’s manipulation action-space by defining all

these actions in a default way to also store them in an

action library. For any given robot (with not too different

embodiment) execution of an action then means to access

the required library function only having to re-parameterize

it with respect to the specific action-situation (the scene) also

taking into account all embodiment-specific constraints.

This idea as such is quite straight-forward but requires

addressing many difficult problems. First and foremost we

are asking for an appropriate action-representation from

which an action library could be formed. Second, we need to
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define an architecture that can be used to access the library

and actually execute an action.
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Fig. 1: An action is defined and executed using three levels.

To address both problems in a conjoint, process-oriented

way, we suggest to use a layered action representation,

which defines an action going from ”generic” to ”specific”.

We start at the top-level (Fig. 1, top) with a symbolic

definition of actions proposed in [2] by which uni-manual

human manipulations are defined as sequences of graphs that

show how relations between objects change in the course

of an action. From this a matrix representation of those

graph sequences, called Semantic Event Chain (SEC), can be

derived by which ”the essence” of an action – the sequence

of changes in a scene resulting from the action – is encoded .

At this top-level objects and other action relevant parameters

are encoded only in a very abstract way (described in Section

II-A below).

One level down we define a finite state machine, which

receives inputs from the SECs and produces an execution

protocol of so-called ”action primitives” (Fig. 1, middle).

In general all robot arm- and hand-systems have low-level

controllers, which make it possible to implement such action



primitives. These low-level primitives are described in detail

in Section II-B.3. Here the interfacing to the real world – to

the currently observed situation – takes place and the actual

execution parameters are determined from sensor information

at the bottom level (Fig. 1, bottom). We use position and

force sensors at the robot arm, a vision system to observe

the scene, and tactile sensors of the robot hand.

By this, we achieve a systematic and general way of

representing and executing all the actions of the ontology,

which together form a library of human-like manipulations.

The proposed methodology and the resulting library of

actions have some advantageous features. First there is the

ability to perform actions on any robot manipulator platform

that provides the required low-level primitive and sensor

information. Second the framework generalizes well to dif-

ferent actions, objects and situations. And, third, it provides

mechanisms to detect failures during execution and allows

reacting to them.

The rest of the paper is organized as follows. Next follows

Section I-A on the state of the art. Then, in Section II

the proposed methodology is described. Section III is on

failure detection and handling. In Section IV we present

the results of experiments performed on our robotic setup.

Finally, Section V provides a conclusion of the paper.

A. State of the Art

Commonly, there are two distinct approaches to represent

actions, one at the trajectory level or the other at the symbolic

level [3]. The former gives more flexibility for the definition

of actions, while the latter defines actions at a higher level

and allows for generalization and planning.

For trajectory level representation there are several well es-

tablished techniques: splines [4], Hidden Markov Models [5],

Gaussian Mixture Models [6], Dynamic Movement Primi-

tives [7], [8]. With trajectory level encoding, one designs or

learns different complicated trajectories, but it is difficult to

use them in a ”more cognitive sense”.

High-level symbolic representations many times use graph

structures and relational representations, e.g., [9], [10], [2],

[11], [12] (the last three are used in the current study). These

representations give compact descriptions of complex tasks,

but they do not consider execution-relevant motion parameter

(trajectories, poses, forces) in great detail. However, in [12] it

is already shown that actions defined by SEC can be executed

once the low-level data (object positions, trajectories etc.) are

provided.

Many times trajectory-level descriptions of actions, object

properties and high-level goals of the manipulation are

brought together through STRIPS-like planning [3], resulting

in operational although not very transparent systems. Thus,

how to bring these two levels together remains a big chal-

lenge for robotics.

II. DESCRIPTION OF THE PROPOSED METHOD

In this section, the proposed methodology for executing

actions is explained in detail. Fig. 1 shows the components of

an action in three levels. In the next paragraphs, we explain
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Fig. 2: Action-grammar analogy: The objects are abstracted

to their roles in an action

TABLE I

ABSTRACT RELATIONS AND THEIR ATTRIBUTES FOR THE PUT-ON

ACTION

# abstract relation type sensor

1 r(tool,obj1) variable tactile

2 r(tool,obj2) don’t-care vision

3 r(tool,place) don’t-care force

4 r(obj1,obj2) variable vision

5 r(obj1,place) variable vision

6 r(obj2,place) constant vision

these components along with one example, namely a put-

on action, in which the goal is to lift an object and put it

on another object. Then we discuss how the components of

actions are obtained. At the end of this section, a summary

is given that shows how these components are related.

A. High-level Components

The high-level components define an action in an abstract

way. At this level, the definitions are mainly symbolic and

close to how a human would describe the action in words.

The components of this level are as follows:

1) Abstract objects: There are many objects in the real

world which makes it impossible to define actions for each

of them. To deal with this problem, we use a property of

actions in the ontology: A basic grammatical structure model

of all the actions in the ontology, which is shown in Fig. 2.

In this structure the subject (tool) performs the verb

(action) on the direct object (obj1) and (in some actions)

on the indirect object (obj2). The adverb of place (place) is

where the verb (action) happens e.g., table or floor.

By using this structure, objects are abstracted to their roles

in the action. This helps to perform actions with different

objects. Another important result is that the number of

objects involved in an action is (at most) four. In the rest

of the paper we call these abstract objects : tool, obj1, obj2

and place.

2) Abstract relations: Relations between objects play a

key role in definition of actions. Since there are 4 abstract

objects in an action, there exists 6 abstract relations. These

abstract relations are assigned to pairs of abstract objects

(See Table I).

Each relation is defined by three attributes, namely type,

value and sensor. The type of a relation is determined by

the importance and variation of that relation throughout

the action. For example for the put-on action, the relation

between tool and table, does not affect the outcome of





the action. The type of such relations is don’t-care. The

importance of a relation is decided based on common sense.

Other relations, which are important for an action, are

divided into variable and constant relations. For example,

the relation between tool(hand) and obj1(cup) for put-on

is variable, whereas the relation between obj2(bucket) and

place(table) is constant (see Fig. 3). The constant relations

show the necessary conditions to perform an action and a

change in them implies failure of the action. On the other

hand, variable relations encode the progress of the action and

play the most important role in our methodology.

The value of a relation is either N (for Not touching),

T (for Touching) and A (for absent). Absent value happens

when we don’t have information about the relation, e.g., one

object is not defined or not visible.

The sensor attribute of a relation, determines the type of

sensor that is used to detect that relation. We use position,

tactile, force and vision sensors to obtain the value of a

relation.

Table I shows the abstract relations and their attributes for

a put-on action.

3) SEC: The actions in the ontology are defined as

sequences of graphs. The nodes of these graphs are objects

while the edges show the touching relation between a pair

of objects. A SEC is a matrix derived from these graph

sequences. Each row of the SEC matrix shows changes that

occur in one abstract relation. Therefore, as we have four

abstract objects we get six abstract relations and hence the

SEC has 6 rows. The number of columns of SEC, depends

on how many times the relations between objects change in

the course of action, since there is at least one change in

relation between adjacent columns.

The valid symbolic entries of SEC matrix are N (not

touching), T (touching) and A ( absence). In a SEC, the

progress of the action from the beginning to the end, is seen

in a compact way. In addition, the SEC matrix of different

instances of one action remains the same. Two instances

of a put-on action, together with graph sequences and SEC

matrix, are depicted in Fig. 3.

4) Abstract positions: When performing actions, some-

times we move our hands toward points in space where there

are no objects. One example is when we lift an object from a

table to put it on top of another object. We move the object

to a point that makes our next move easier. We call such

points, abstract positions, and use them in our method.

In our method, we use two kinds of abstract positions,

namely home and goal positions. The example above was

a home position, while an example of a goal position is

when we push an object on a surface to another point. The

actual definition of abstract positions depends on the action

and position of other objects. In Fig. 3 it is shown that the

primitive move(home) is used twice in this action.

B. Low-level Components

1) Real objects: In real world experiments, the abstract

objects (tool, obj1, obj2 and place) are instantiated by real

objects in the scene. For the put-on example depicted in Fig.

3, these objects are tool=hand, obj1=cup, obj2=bucket and

place=table. We need to represent the real-world objects with

numbers so that we can perform actions.

To this end, the objects are initially represented by a point

in Cartesian space showing their center of mass. While this

is enough for many actions, there are cases where more

information is needed. For example in the stirring action we

need to know how much the radius of the container (e.g.

bucket or cup) is, in order to adjust the diameter of stirring.

In such cases, we extend the object model in the particular

way required for the given action. In the stirring example,

we use a cylindrical model which has a parameter that gives

the radius of the object.

2) Real relations: The real relations are the values of

abstract relations at each specific time obtained by sensors. In

other words, real relations are the same as the value attribute

of abstract relations discussed earlier. These relations are

shown in graphs shown in segmented images of Fig. 3 for

two instances of put-on action.

3) Arm/Hand primitives: An action is carried out through

movements of the tool and its interaction with other objects.

To imitate this in a robotic setup, we need to send commands

to the low-level controllers of the robot arm and hand.

These commands are called primitives. For the robot arm, we

implement primitives for position and force control, namely

move(pdes, P ) and exert(fdes, P ). For the robot hand, we

have open, close, grasp and ungrasp primitives.

The move(pdes, P ) primitive, moves the end effector from

the current position, to the position specified in pdes. The

parameters of the trajectory are stored in P . We use Dynamic

Movement Primitives (DMP) with joining [13] to generate

trajectories. The parameters P are the parameters of its DMP

and consist of weights of Gaussian kernels W , time T and

number of repetitions N . The details of implementation are

not covered here, but the final result is that by using the

primitive move(pdes, P ), we can move the robot arm from

the current position and orientation, to any desired position

and orientation, along the desired trajectory. The trajectory

shape is encoded in W , the duration of action is T and the

number of times that the trajectory should be repeated is

shown by N (N > 1 is only possible if start and end points

coincide).

The exert(fdes, P ) performs force control with set-point

fdes. In our setup, we use a parallel force/position scheme

with dominant force control, similar to [14]. In this way we

can achieve the desired force in the constrained space, and at

the same time, perform desired motions in the unconstrained

space, the trajectory of which is defined by P .

The controller for the robotic hand is able to perform open,

close, grasp and ungrasp commands. open and close com-

mands simply open and close the fingers of hand, whereas

grasp and ungrasp use feedback from tactile sensors to

make sure an object is grasped or released.

C. Mid-level sequencer: Finite State Machine

In order to perform actions defined by a SEC, the low-

level primitives need to be executed in a sequence, taking
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Fig. 4: A mid-level sequencer is implemented by a finite

state machine (FSM) for put-on action. The action starts

if initially inputs (real relations) match the first column of

the SEC matrix. The transition from state i to i + 1 occurs

when the inputs match the i-th column of the SEC matrix.

Otherwise, the next state is the same as the current state

(loop transitions). This process is continued until reaching

the final state which corresponds to the last column of the

SEC matrix.

into account the relations between objects. There should

be a connection between the high- and low-level, and this

connection is made by introducing a mid-level sequencer.

Here, it is implemented by a Finite State Machine (FSM).

An FSM is a logic unit, that determines outputs and the

next state of a system, based on the current state and inputs.

It is formally defined as a 6-tuple (S,U, Y, f1, f2, s1). The

following paragraphs show the definition of these variables.

It is also shown how these variables are related to the high-

level and low-level components. In particular, the variables

for the put-on example are derived to complete the example.

For the put-on action the resulting FSM is depicted in Fig.

4.

1) States (S): As the name suggests, there exists a finite

set of states in an FSM denoted by S. The interpretation of

these states depends on the application. Each column of SEC

matrix shows a state of the system. Therefore, states of FSM

are associated with the columns of a SEC. For example, the

SEC matrix for put-on has five columns, therefore the FSM

has five states : S = {S(1), S(2) · · · , S(5)} as shown in Fig.

3.

2) Inputs (U ): The inputs of the FSM, are the inputs of

the system. In action execution, the inputs are the abstract

relations. There are six abstract relations, therefore we need

six inputs U = [U(1), U(2), · · · , U(6)]T . For the put-on

example, the inputs are highlighted in Fig. 3.

3) Outputs (Y ): An FSM can produce outputs depending

on current state and inputs. These outputs are defined in

terms of defined commands of the application. In our appli-

cation, the outputs are a combination of arm/hand primitives,

that should get called in the appropriate sequence. In the

put-on example there are five states, therefore there are five

outputs Y = {Y (1), Y (2) · · · , Y (5)}, shown in Fig. 3. Since

the last state is already the goal state, the last output is always

empty.

4) State transition function (f1): The state transition

function determines the next state, based on current state

and inputs.

In action execution, the transition from state i to i + 1
happens when the inputs are equal to the (i + 1)th column

of the SEC matrix. When checking the equality, the inputs

that correspond to don’t-care relations are not taken into

account. Hence, the transition function for put-on example

is as follows:

f1(S(i), U)
i=1,2,3,4

=

{

S(i+ 1) if U = SEC(:, i+ 1)
S(i) otherwise

(1)

5) Output function (f2): In general, the outputs of an FSM

depend on state and inputs. However, here we use a specific

kind of FSM called Moore machine, in which outputs depend

only on the states. Hence we have a simple output function

which associates outputs to each state:

f2(S(i))
i=1,2,3,4

= Y (i) (2)

6) Initial state (S(1)): The initial state is associated with

the first columns of the SEC that represents the initial

relations between objects. It is assumed that at the beginning

the real relations match the first column of the SEC matrix,

otherwise the action won’t start.

D. Obtaining the components

For some of the above mentioned components we need to

explain more about how they are obtained. One is the SEC

matrix which defines actions at the highest level. This matrix

is obtained by imitation of human behavior by two distinct

methods. In the first method, we record several human

demonstration of an action. Then by processing the recorded

images the relations between pairs of objects are obtained.

This includes segmentation of images, graph annotation and

tracking which is done by our vision system [15]. By using

learning algorithms and filtering out the noise, it is possible

to achieve a clean and compact SEC matrix that gives a

high-level definition of action (for details see [2] and [12]).

The other method is to use common sense, to draw the

graph sequence of actions and derive the SEC matrices. This

method is effective since for humans it is relatively easy

to describe actions in terms of relations of objects. These

methods result in similar SEC matrices. However, in this

paper the second method is used since it is easier to generate

structured SEC matrices.

The outputs of the FSM at each state, are also obtained

by common sense. This means that we decide what low-

level primitives should get called in each state, to achieve

the desired change in relations.



E. Summary of the proposed methodology

The proposed methodology can be summarized as follows:

• The SEC matrix that defines an action is obtained from

the graph sequences of actions.

• The relations and their attributes are identified. Here,

it is decided which relations are important, and which

are don’t-care, based on common sense. The abstract

relations are the inputs of the FSM.

• The states of the FSM are assigned to each column of

the SEC.

• The low-level primitives that must be performed in each

state are selected. These primitives form the outputs of

the FSM.

• The objects involved in the action, namely tool, obj1,

obj2 and place, are instantiated by real world objects.

At this point the FSM starts getting input (real relations),

sending outputs (arm/hand primitives) and makes state tran-

sitions when necessary, until the action is done.

The FSM is implemented in C++ and for each action all

the necessary data are stored in a human-readable data format

called YAML (recursive acronym for YAML Ain’t Markup

Language). In this way, doing actions boils down to loading

the proper YAML file and executing it with the robot.

III. FAILURE DETECTION

In general it is currently not possible to achieve full fault

tolerance for robot actions outside factory floors, because

situations can vary widely in unconstrained (less constrained)

environments leading to unforeseen contingencies. We can

show that the definition of actions based on relations between

objects, provides two specific ways to detect failures, which

are not present in other action definitions.

As mentioned in Secion II, the important relations that

define an action, are divided into two types, variable and

constant. First we note that the constant relations serve as

preconditions for executing an action. For example, for the

put on action, where the goal is to put cup on top of bucket,

which is on the table, it is necessary that bucket is indeed

always and in a stable way on the table. If at some point

during the action, the sensors detect that bucket is not on the

table, a failure is detected.

Secondly, the variable relations can also be used to detect

system failure. As described before, in each state of FSM,

the output calls some low-level primitives. These primitives

are supposed to change the object relations in a certain way

as defined by the SEC. However, if a certain primitive has

been executed and the variable relations do not change in

the expected way (as predicted by the next column of the

SEC), a failure is detected. An example of such failure in

the put-on action is when the tool reaches the position of the

obj1, and tries to grasp it, but finds nothing to grasp.

Both cases – missing precondition, case 1; or non-resulting

postcondition, case 2 – contain specific information, for ex-

ample about which specific transition expected from the SEC

has gone wrong. Hence, deeper analysis of the encountered

exception will immediately allow suggesting the required

TABLE II

LIST OF ACTIONS EXECUTED BY THE PROPOSED METHOD

# action name tool obj1 obj2 place

1 pushing hand box - table

2 put on hand cup bucket table

3 take down hand cup bucket table

4 stirring spoon liquid container table

5 poking hand box - table

6 pick&place hand cup - table

7 hiding hand cup bucket table

error correction mechanisms. A simple correction for non-

resulting postcondition failure would be to perform the same

primitive one more time.

IV. EXPERIMENTS AND RESULTS

To show the features of the proposed framework, several

experiments are performed on our robotic setup. First, our

setup is introduced. Then, the results of the experiments

are presented. In addition, the videos of all experiments

are available at our website https://sites.google.

com/site/aeinwebpage/actions/videos.

A. Experimental Setup

To perform the experiments, a Kuka LWR IV robot

manipulator is used which provides task-space position and

force control. It has position sensors to locate the end effector

of the arm, and the estimation of external force applied on

the end effector.

A three-finger dexterous hand from Schunk (SDH2) is

mounted on the robot arm to interact with objects, or grasp

tools (knife, spoon, etc.). The tactile sensors located on the

fingers, are used to detect the touching relation between hand

and object.

The Oculus vision system [15] is used for real-time

segmentation and extracting the spatial relation between

objects, as well as to calculate the position, orientation and

dimensions of the objects in the scene.

B. Results

Actions from the ontology that are executed with the de-

scribed method are listed in Table II together with examples

of real objects which could be used in them. This includes

the put-on action that is used as an example throughout the

paper.

The results of the put on action are already used in Fig.

3. The goal of this actions is to put the cup on top of the

bucket. The results for two more actions namely, pushing

and pick and place are presented here.

In pushing, the goal is to push an object by robot hand in

the desired direction. Here, a box is used and the desired

direction is perpendicular to the length of the box. Two

versions of pushing action are demonstrated with different

positions and orientations to show the generalization proper-

ties of the proposed method.

The goal of pick and place action is to move an object to a

desired position. Here we show an experiment in which a cup

is moved 20 cm to the right. The results of these experiments



are shown in Fig. 5 and Fig. 6. The results and videos of

other actions can be seen in our website (the link is provided

above).

V. CONCLUSION

In this paper a methodology is proposed to execute uni-

manual human actions defined in an action ontology by

SECs. In this methodology, the actions are defined in a

layered architecture that goes from generic level to specific.

The method is applicable in any robotic arm/hand system

that provides the low-level primitives and proper sensors to

analyze the scene. Two methods to detect failure in actions by

monitoring the relations are presented. The presented results

show the ability of this method to perform several of these

actions.
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