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Real-Time Segmentation of Stereo Videos
on a Portable System With a Mobile GPU

Alexey Abramov, Karl Pauwels, Jeremie Papon, Florentin Wörgötter, and Babette Dellen

Abstract—In mobile robotic applications, visual information
needs to be processed fast despite resource limitations of the
mobile system. Here, a novel real-time framework for model-
free spatiotemporal segmentation of stereo videos is presented.
It combines real-time optical flow and stereo with image seg-
mentation and runs on a portable system with an integrated
mobile graphics processing unit. The system performs online,
automatic, and dense segmentation of stereo videos and serves
as a visual front end for preprocessing in mobile robots, providing
a condensed representation of the scene that can potentially
be utilized in various applications, e.g., object manipulation,
manipulation recognition, visual servoing. The method was tested
on real-world sequences with arbitrary motions, including videos
acquired with a moving camera.

Index Terms—Mobile systems, stereo segmentation, visual
front end.

I. Introduction

R EAL-TIME VISUAL information is becoming more and
more important in robotic applications for two main

reasons. First, the research done during the past few decades
in computer vision and image processing allows transforming
visual information into more descriptive but nevertheless quite
precise representations of the visual scene for use in a wide
range of robotic applications, e.g., robot movement, object
grasping, and object manipulation [23], [30]. Second, new
hardware architectures and programming models for multi-
core computing have been proposed in the last ten years,
through which many algorithms could be upgraded to real-
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time processing [1]. Currently, different hardware platforms
are used as accelerators for complex computations in the
domain of visual processing, such as multicore processors,
digital signal processors, field programmable gate arrays, and
graphics processing units (GPUs).

In the area of visual processing, the evolution of GPUs
during the last four years has been of particular importance.
GPUs are specialized microprocessors that have been initially
invented for image processing and acceleration of 2-D and 3-D
graphics rendering. GPUs are used in workstations, personal
computers, mobile phones, and embedded systems. Presently,
GPUs are a part of every computer and can be used imme-
diately without any additional hardware upgrades. During the
last four years, GPUs have evolved into highly parallel, multi-
threaded, multicore processors with tremendous computational
power and very high memory bandwidth. For algorithms of
high complexity, their parallel architecture makes them more
efficient than general-purpose CPUs in many cases. Therefore,
GPUs can be used not only for graphics processing but also for
general-purpose parallel computing. Moreover, the graphics
capabilities of GPUs make the visual output of the processed
data directly from the microprocessor much simpler compared
to other parallel platforms. The parallel programming model
of compute-unified device architecture (CUDA) proposed by
NVIDIA in 2007 makes parallelization of software applica-
tions on GPUs quite transparent [46].

However, processing power, memory bandwidth, and num-
ber of cores are not the only important parameters in robotic
systems. Since robots are dynamic, movable, and very often
wireless systems, huge processing platforms with high power
consumption (mostly for cooling) are not practicable despite
their high processing efficiency. Because of this, mobile paral-
lel systems running on portable devices are of growing interest
for computer-controlled robots. Today, mobile GPUs from the
NVIDIA G8X series are supported by CUDA and can be
used very easily for general-purpose parallel computing. In
Fig. 1, the dynamics of development for desktop and mobile
GPUs from the NVIDIA G8X series until today are shown,
demonstrating that desktop GPUs are three times more pow-
erful and have three times faster memory bandwidths than
mobile ones. However, powerful desktop GPUs consume so
much power that it is almost impossible to use them in small
computer-controlled robots, while even the most powerful
mobile GPUs integrated into mobile PCs do not need an extra
power supply. Taking this fact into account, we consider in
this paper a mobile PC with an integrated mobile GPU from
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Fig. 1. Comparison of desktop (blue) and mobile (green) graphics cards for NVIDIA GeForce 8X, 9X, 100, 200, 400, 500-series GPUs with a minimum
of 256 MB of local graphics memory. The following parameters are compared. (a) Processing power in floating point operations per second. (b) Maximum
theoretical memory bandwidth. (c) Number of CUDA cores. (d) Graphics card power.

NVIDIA supported by CUDA as a portable system. Such a
system can run for up to three hours in autonomous mode
being supplied by the laptop battery.

Mobile robots have to process and structure abundant dy-
namic visual information in real time in order to interact
with their environment in a meaningful way. For example,
the understanding of the visual scene in terms of object and
object-action relations [30] requires objects to be detected,
segmented, tracked [41], and important descriptors, e.g., shape
information, to be extracted [26]. This process corresponds to a
dramatic compression of the initial visual data into symbol-like
descriptors, upon which abstract logic or learning schemes can
be applied. This occurs, for example, if a robot performs object
manipulations or needs to come closer to an object to execute
a grasping action. Finding this reduced symbol-like represen-
tation without prior knowledge on the data (model free) thus
represents a major challenge in cognitive-vision applications—
this problem is also known as the signal-symbol gap [40].

The video segmentation problem is generally formulated
as the grouping of pixels into spatiotemporal volumes where
each found object is uniquely identified and satisfies temporal
coherency, i.e., carries the same label along the whole video
stream [11], [12]. Several approaches for the video segmenta-
tion problem have been proposed over the last two decades.
They can be summarized as follows.

Online and offline methods: Online video segmentation
techniques use only preceding information and do not need
future data. Such methods can segment video sequences of
arbitrarily length in a continuous, sequential manner [6], [10],
[12]–[14], [16], [18]. Offline methods, on the contrary, require
the entire video sequence as input [5], [7], [11], [15]. Offline
techniques are more robust in terms of temporal coherence,
but they cannot be involved in perception-action loops since
future perception is unknown.

Dense and sparse techniques: A video segmentation method
is dense if it treats all objects visible in the scene trying
to assign each pixel a proper spatiotemporal volume [5],
[11]–[16], [18]. Techniques that perform segmentation of only
preselected objects are sparse [6], [7], [10]. If not all objects
are selected, the consequent employment of segments, given
by sparse techniques, is very constrained and excludes an
estimation of object positions relative to the environment.

Automatic and nonautomatic approaches: The method is
automatic or unsupervised if it runs without interaction

with a user and does not need any prior knowledge about
objects [12]–[15], [18]. Nonautomatic or supervised tech-
niques are very often driven by user input, use some prior
knowledge about the visual scene, and make assumptions
about the number of objects present [5]–[7], [10], [16].
The hierarchical graph-based video segmentation, proposed
by Grundmann et al. [11], can run in both automatic and
nonautomatic modes.

Since mobile robots are usually autonomous systems that
interact with their environment, only online automatic video
segmentation techniques can be employed in the perception-
action loop. Moreover, a complete information about the visual
scene can be derived only by the use of dense methods. The
following methods are the most famous and up-to-date online
dense automatic video segmentation techniques.

The mean-shift video segmentation, proposed by Paris [13],
is based on the popular image segmentation technique by
Comaniciu and Meer [28]. The temporal coherence is achieved
by estimating the density of feature points, associated with all
pixels, with a Gaussian kernel using data from all preceding
frames. The method has a real-time performance on gray-level
videos of size 640 × 360 pixels.

Multiple hypothesis video segmentation (MHVS) from super-
pixel flows [12] generates multiple presegmentations per frame
considering only a few preceding frames. For each presegmen-
tation it finds sequences of time consistent superpixels, called
superpixel flows or hypotheses. Each hypothesis is considered
as a potential solution and a hypothesis leading to the best
spatiotemporal coherence. In this approach, the segmentation
decision is postponed until evidence has been collected across
several frames. Despite quite accurate segmentation results the
MHVS needs seconds to process one frame, which makes it
impossible to use it in real-time robotic applications.

Video segmentation based on propagation, validation, and
aggregation of a preceding graph [14] exploits inter-frame
correlations to propagate reliable groupings from the previous
frame to the current. A preceding graph is built and labeled
for the previous frame and temporally propagated to the
current frame using a global motion estimation, followed
by validation based on similarity measures. Pixels remained
unlabeled after the propagation is grouped into subgraphs by
a simple color clustering. Although the method gives results
of a very high quality, it runs at frame rates inapplicable to
real-time utilization.
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Fig. 2. (a) Architecture of the framework for segmentation of stereo videos on the portable system with a mobile GPU. (b) Prototype of the movable robot
steered by a mobile system with stereo cameras and a laptop with an integrated mobile GPU.

Matching images under unstable segmentations [18] is
based on the fact that object regions obtained by existing
segmentation methods do not always produce perceptually
meaningful regions. In this approach, the current frame is seg-
mented independently of preceding frames and the temporal
coherence is achieved by region matching between the current
and previous frames using the partial match cost, which allows
fragments belonging to the same region to have low match
cost with the original region. However, the method cannot
run in real time due to a slow region matching procedure.

The last three approaches provide very accurate spatiotem-
poral volumes and can segment arbitrary long video sequences,
but these methods do not run in real time and as a consequence
cannot be employed in the perception-action loop. The mean-
shift video segmentation approach, on the contrary, runs in
real time, but works only on gray-scale videos and needs all
past data to achieve satisfactory temporal coherence.

Although stereo data have recently been employed for seg-
mentation [8], [9], there is no specialized, online, dense, and
automatic method that performs spatiotemporal segmentation
of stereo videos with establishing correspondences between
left and right segments. Segmented stereo videos provide
additional information about the scene and allow us to derive
3-D relations between objects [30]. Moreover, segment corre-
spondences can be used for depth computation [43], which is
of high importance for object manipulation tasks.

In this paper, we present a novel visual front end for real-
time spatiotemporal segmentation of stereo videos on a mobile
PC with an integrated mobile GPU. The proposed visual front
end is online, automatic, dense, and solves the following
problems.

1) Stereo images are segmented in a consistent model-free
way.

2) The temporal coherence in a stereo video stream is
achieved using a label-transfer strategy based on esti-
mated motion and disparity data, resulting in a consistent
partitioning of neighboring frames together with a con-
sistent labeling. Only the results obtained on the very last
left and right frames are employed at one time in order
to guarantee spatiotemporal coherence for the current
left and right frames, respectively.

3) All computations run in real time or close to real
time, which allows the framework to be used in the
perception-action loop.

Parts of this paper were previously published at a confer-
ence [26]. In this paper, some significant improvements have
been achieved as compared to the conference version.

1) The used segmentation kernel has been optimized in
order to achieve real-time performance.

2) The perceptual color space CIE (L∗a∗b∗) is used instead
of the input RGB space, which leads to the formation
of more accurate spatiotemporal volumes.

3) The method does not rely on motion estimated for the
left video stream only. Motion estimation for the right
stream is included, which makes right segments more
stable and decreases processing time for segmentation
of stereo videos.

4) The algorithm can now run on mobile GPUs.
5) The method was tested on more complex scenes in-

cluding sequences with moving cameras, and the per-
formance of the method has been quantified in much
more detail.

This paper is organized as follows. In Section II, we
describe the architecture of the framework together with the
proposed algorithms. In Section III, we present the results of
an extensive experimental evaluation, and finally, in Section
IV, we conclude our work.

II. Segmentation of Stereo Videos

A. Overview

The architecture of the framework for segmentation of
stereo videos is shown in Fig. 2(a). It consists of a stereo
camera, a mobile computer with an integrated mobile GPU,
and various processing components that are connected by
channels in the framework. Each component in the framework
can access the output data of all other components in the
framework. The processing flow is as follows. Stereo images
(synchronized left and right frames) are captured by a stereo
camera. The acquired images are undistorted and rectified (in
real-time with a fixed stereo geometry [1]) before they enter
the framework. Optical flow is computed for the current left
and right frames together with the disparity map on a GPU
using real-time algorithms, and the results are accessible from
channels 3 and 4, respectively (see Section II-C).

For videos from the left video stream, segment labels from
the previous segmentation are warped to the current frame
using the optical flow vector field (channel 3). This new label
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configuration is used as an initialization for the fast segmenta-
tion algorithm, which also runs on a GPU (see Section II-D).
The adjustment of initial labels to the current frame will be
referred to as relaxation process. This way the required time
for segmentation of sequential frames can be reduced, and,
even more importantly, a temporally coherent labeling of the
frames can be achieved, i.e., segments describing the same
object part are likely to carry the same label. The segmentation
results of the left frame (monocular segmentation) can be
accessed from channel 5.

A label initialization of the current right frame is created
by warping of both the current left (channel 5′) and previous
right segments using the disparity information and optical
flow vector field (channel 4), respectively (see Section II-E).
Similar to the segmentation of the left stream, the initial
labels are adjusted to the current right frame by the relaxation
process. The segmentation results of the right frame, which is
now consistently labeled with respect to its corresponding left
frame, are stored in channel 6.

Once segmentation for both left and right frames is
achieved, meaningful stereo segments can be extracted. Seg-
ments smaller than a predefined threshold are removed. Af-
ter all these processing steps each object is represented by
uniquely identified left and right segments. This information
can be exploited directly by a mobile robot. A prototype of
the movable robot steered by a mobile system including stereo
cameras and a laptop with an integrated mobile GPU is shown
in Fig. 2(b).

B. Image Segmentation Kernel

Many different approaches for image segmentation have
been proposed during the past three decades. Today, the most
famous and efficient techniques are normalized cuts [29],
graph-based [27], mean shift segmentation [28], graph cuts,
and energy-based methods [21]. All these methods operate
on single images, and cannot be applied directly to the
video segmentation problem due to the temporal incoherence
between adjacent frames, i.e., when segments of the same
object keep different labels. As a consequence, some additional
techniques are needed in order to link corresponding segments.

In the proposed framework, the real-time image segmen-
tation algorithm based on the method of superparamagnetic
clustering of data is used as an image segmentation kernel [3].
The method of superparamagnetic clustering represents an in-
put image being segmented by a Potts model [44] of spins and
solves the segmentation problem by finding the equilibrium
states of the energy function of a ferromagnetic Potts model
in the superparamagnetic phase [32], [33].

The Potts model describes a system of interacting granu-
lar ferromagnets or spins that can be in q different states,
characterizing the pointing direction of the respective spin
vectors. Three phases, depending on the system temperature,
i.e., disorder introduced to the system, are observed: the
paramagnetic, the superparamagnetic, and the ferromagnetic
phase. In the ferromagnetic phase, all spins are aligned, while
in the paramagnetic phase the system is in a state of complete
disorder. In the superparamagnetic phase regions of aligned
spins coexist. Blatt et al. applied the Potts model to the image

segmentation problems in a way that in the superparamagnetic
phase regions of aligned spins correspond to a natural partition
of the image data [31]. Finding the image partition corresponds
to the computation of the equilibrium states of the Potts model.

The equilibrium states of the Potts model have been approx-
imated in the past using the Metropolis–Hastings algorithm
with annealing [42] and methods based on cluster updating,
which are known to accelerate the equilibration of the system
by shortening the correlation times between distant spins,
such as Swendsen–Wang [38], Wolff [39], and energy-based
cluster updating [32], [33]. All of these methods obey detailed
balance, ensuring convergence of the system to the equilibrium
state. In this paper, we achieve efficient performance using the
Metropolis algorithm with annealing [42], which can be easily
parallelized and implemented on a GPU architecture.

The method of superparamagnetic clustering of data was
chosen as an image segmentation kernel for the video seg-
mentation problem due to the following advantages. Since
the segmentation problem is solved by finding equilibrium
states of the Potts model using an annealing procedure, there
are no particular requirements to the initial states of spins
and they can take on any one of the q available states. The
closer the initial states are to the equilibrium, the less time
the Metropolis algorithm needs to converge. This property
allows us to achieve temporal coherency in the segmentation of
monocular and stereo video streams just by using the previous
segmentation results for the spin initialization of the current
frame, while taking shifts between frames into account. A
final segmentation result is obtained within a small number
of Metropolis updates only, drastically reducing computation
time. However, any other segmentation technique can be used
for segmentation of the very first frame and the obtained
segments can be considered as spin variables in the Potts
model.

The real-time image segmentation kernel proceeds as fol-
lows. Using the Potts model an input image is represented
in a form of color vectors g1, g2, . . . , gN arranged on the
N = LxLy sites of a 2-D lattice. In the Potts model, a spin
variable σk, which can take on q discrete values (q > 2)
w1, w2, . . . , wq, called spin states, is assigned to each pixel
of the image. We define a spin state configuration by S =
{σ1, σ2, . . . , σN} ∈ �, where � is the space of all spin
configurations. For video segmentation, the parameter q should
be chosen as large as possible since the spin states need to
serve also as segment labels. In our experiments, we used
q = 256. It is important to note that this choice of q has
no influence on the performance and computation time of the
Metropolis algorithm itself. A global energy function or a cost
function of this particular q-state Potts configuration S ∈ � is
the Hamiltonian

H[S] = −
∑
<i,j>

Jijδσiσj
(1)

which represents the system energy where < i, j > denotes
the closest neighborhood of spin i with ||i, j|| � �, where � is
a constant that needs to be set. 2-D bonds (i, j) between two
pixels with coordinates (xi, yi) and (xj, yj) are created only
if |(xi − xj)| � � and |(yi − yj)| � �. In this paper, we use
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� = 1. Jij is an interaction strength or coupling constant and the
Kronecker δij function is defined as δij = 1 if σi = σj and zero
otherwise, where σi and σj are the respective spin variables
of two neighboring pixels i and j (see Fig. 4). A coupling
constant, determining the interaction strength between two
spins i and j, is given by

Jij = 1 − �ij/� (2)

where �ij = ||gi − gj|| is the color difference between the
respective color vectors gi and gj of the input image. � is
the mean distance averaged over all bonds in the image. The
interaction strength is defined in such a way that regions with
similar color values will get positive weights with a maximum
value of one for equal colors, whereas dissimilar regions get
negative weights [47]. The mean distance � represents the
intrinsic (short-range) similarity within the whole input image1

� = α ·
⎛
⎝ 1

N

1

(2� + 1)2 − 1

N∑
i=1

∑
<i,j>

||gi − gj||
⎞
⎠ (3)

where (2� + 1)2 − 1 is the number of neighbors of a spin. The
factor α ∈ (0, 10] is a system parameter used to increase or
decrease the coupling constants.

Coupling constants are computed in the CIE (L∗a∗b∗) color
space [19] instead of the input RGB format. Although RGB
is a widely used color space, it is not suitable for color
segmentation and analysis because of the high correlation
among all three components. The high correlation means that
changes in intensity lead to changes in values of all three
color components. The CIE (L∗a∗b∗) color space, which is
obtained by applying a nonlinear transformation to the RGB,
is a perceptual color space that gives a better hint of how
different two colors are for a human observer [22]. In the CIE
(L∗a∗b∗) space a pixel is represented by three values L∗, a∗,
and b∗ where L∗ denotes lightness, while a∗ and b∗ denote
color information. The color difference between two color
vectors gi = (L∗

i , a
∗
i , b

∗
i )T and gj = (L∗

j , a
∗
j , b

∗
j )T is determined

by [20]

||gi − gj|| =
√

�2
L + �2

C + �2
H (4)

�L =
�L∗

KL

�C =
�C∗

ab

1 + K1C
∗
i

�H =
�H∗

ab

1 + K2C
∗
j

(5)

�L∗ = L∗
i − L∗

j C∗
i =

√
(a∗2

i + b∗2
i ) (6)

C∗
j =

√
(a∗2

j + b∗2
j ) �C∗

ab = C∗
i − C∗

j (7)

�H∗
ab =

√
�a∗2 + �b∗2 − �C∗2

ab (8)

�a∗ = a∗
i − a∗

j �b∗ = b∗
i − b∗

j (9)

where KL, K1, and K2 are the weighting factors. Since the
current method uses eight-connectivity of pixels, interaction
strengths for each pixel of the image need to be computed
in four different directions: horizontal, left diagonal, vertical,

1Note that (2) is ill-defined in the case of � = 0. But, in this case, only a
single uniform surface exists and segmentation is not necessary.

Fig. 3. Coupling constants for the eight-connectivity case in the CIE
(L∗a∗b∗) color space. (a) Original frame. (b) Mask for eight-connected
connectivity. (c)–(f) Matrices with coupling constants computed for horizontal,
left diagonal, vertical, and right diagonal directions. Note that only coupling
constants leading to the formation of segments are shown here (J < 0).

right diagonal [see Fig. 3(b)]. Matrices containing coupling
constants that affect the formation of segments are shown for
one image in Fig. 3(c)–(f).

The segmentation problem is solved by finding regions or
clusters of correlated spins in the low-temperature equilibrium
states of the Hamiltonian H[S]. Simulated annealing works by
simulating a random walk on the set of spin states � looking
for low-energy states. According to the Metropolis algorithm,
one update iteration consists of the following steps.

1) The system energy H[Scur] of the current spin configu-
ration Scur is computed according to (1).

2) For each pixel i, a set of n (number of neighbors)
new possible spin configurations h̄ = S′

1, S
′
2, · · · , S′

n is
created by changing the spin state of pixel i to the spin
states of the neighbors. The number of new possible spin
configurations n does not depend on q.

3) Every spin configuration S′
i ∈ h̄ is considered as a

potential new configuration of the system. Therefore,
energy values of all configurations from the set h̄ need
to be computed according to (1).

4) Among all new possible configurations from the set h̄

a spin configuration with the minimum energy value is
selected according to

H[Snew] = min(H[S′
1], H[S′

2], · · · , H[S′
n]). (10)

The respective change in energy between the current
configuration Scur and a configuration Snew ∈ h̄ having
the energy value H[Snew] is defined as �H ≡ H[Snew]−
H[Scur]. According to �H > 0 or �H � 0, moves can
be classified as uphill and downhill, respectively.

5) To effect a bias in favor of moves that decrease the
energy, downhill moves are always accepted, whereas
uphill moves are accepted only sometimes in order to
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Fig. 4. Update of a spin state configuration of the input image on a GPU.
Pixels depicted by the same pattern are updated simultaneously. Blue regions
show overlaps between neighboring thread blocks. The green region includes
(2� + 1)2 − 1 pixels from the closest neighborhood of the pixel i. The arrow
shows an interaction between pixels i and j.

avoid getting trapped in local minima. Therefore, the
probability that the proposed move leading to increase
in energy will be accepted is given by [17]

P(Scur → Snew) = exp

(
−|�H |

Tn

)
. (11)

A number ξ is drawn randomly from a uniform distri-
bution in the range of [0, 1]. If ξ < P(Scur → Snew), the
move is accepted.

6) The temperature is gradually reduced after every iter-
ation according to the predefined annealing schedule
Tn+1 = γ · Tn, where γ is the annealing coefficient
(γ < 1).

The update process (1)–(5) runs until convergence, i.e.,
when no more spin flips toward a lower energy state are
being observed. The equilibrium state of the system, achieved
after several Metropolis iterations, corresponds to the image
partition or segmentation. Then, the final segments larger than
a predefined threshold are extracted.

Each spin update in the Metropolis algorithm involves only
the nearest neighbors of the considered pixel. Hence, the spin
variables of pixels that are not neighbors of each other can be
updated simultaneously [45]. Therefore, the Metropolis algo-
rithm fits very well to the GPU architecture and all spin vari-
ables can be updated in four iterations as shown in Fig. 4. On a
GPU an image is divided into some processing blocks (taking
overlaps between them into account), which are distributed
between multiple multiprocessors on the card. In the current
implementation, a thread block of size 16 × 16 is used and
each thread loads and updates four pixels. Such a configuration
makes it possible to avoid idle threads (only loading data from
overlaps without performing any spin update) and to use the
resources of the GPU in a very efficient way.

Four coupling constants (a byte each) and a current spin
value (one byte) are loaded from the global memory to the
shared memory for each pixel resulting in five matrices of
size 32 × 32 within every thread block. In total, 5 kB of

the shared memory is occupied by one block, which makes
it possible to run four blocks on each multiprocessor of the
NVIDIA GeForce GT 240M at the same time. Because of
the high intensity of the Metropolis procedure with numerous
accesses to the same data within one iteration, the shared
memory is used for data access due to its low latency instead of
the global memory. Since threads from diverse thread blocks
cannot cooperate with each other, overlaps between blocks
need to be synchronized via the global memory, once all spin
variables of the current spin configuration are updated. Global
memory throughput is maximized through the coalesced mem-
ory accesses achieved by rearrangement of input data in the
global memory and usage of data types fulfilling the size and
alignment requirements [2]. Due to the fact that the coupling
constants can be computed simultaneously for all pixels in the
image, this procedure is performed on the GPU as well.

In this paper, only the first frame from the left video
stream is segmented completely from scratch (all spin vari-
ables are initialized randomly). Subsequent left frames and
their corresponding right frames are first initialized by a spin
state configuration taken from previous frames considering
movements and stereo displacements between them (see Sec-
tion II-A). Therefore, the relaxation process is applied to
preinitialized images to adjust initial spins to the current frame
(see Sections II-D, II-E).

Since every found segment is carrying a spin variable that
is unique within the whole image, the terms spin and label are
equivalent in this paper.

C. Phase-Based Optical Flow and Disparity

Since fast processing is a very important issue in this paper,
the real-time phase-based optical flow and stereo algorithms,
proposed by Pauwels et al. [34], are used to find pixel cor-
respondences between adjacent frames in a monocular video
stream and left and right frames in a stereo video stream.
Both algorithms run on a GPU and belong to the class of
phase-based techniques, which are highly robust to changes
in contrast, orientation, and speed. The optical flow algorithm
integrates the temporal phase gradient (extracted from five
subsequent frames) across orientation and gradually refines
its estimates by traversing a Gabor pyramid from coarser
to finer levels. Although any other optical flow estimation
technique can be used here [36], we decided on the mentioned
phase-based approach since it combines high accuracy with
computational efficiency. Furthermore, due to the shared image
representation based on the responses of a Gabor filterbank,
stereo correspondences, used to find corresponding stereo
segments (see Section II-E), can be obtained with very little
overhead. A comparable qualitative evaluation of the methods
including test sequences from the Middlebury benchmark
can be found in [35] and [37]. Implementation details and
performance analyses of the phase-based optical flow and
stereo algorithms are given in [35].

D. Monocular Segmentation Using Optical-Flow-Based Label
Warping

In the current framework optical flow is computed for both
the left and right video streams. The algorithm provides a
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Fig. 5. Segmentation of two adjacent frames in a sequence using 30 iterations and α = 2.5. Numbers at arrows show the sequence of computations.
(a) Original frame t. (b) Original frame t + 1. (c) Estimated optical flow vector field from the phase-based method (subsampled 13 times and scaled six times)
(step 1). (d) Extracted segments St for frame t (step 1). (e) Label transfer from frame t to frame t + 1 (step 2). (f) Initialization of frame t + 1 for the image
segmentation kernel (step 3). (g) Extracted segments St+1 for frame t + 1 (step 4). (h) Convergence of the Metropolis algorithm for frame t + 1.

vector field that indicates the motion of pixels in textured
regions

u(x, y) = (ux(x, y), uy(x, y)). (12)

An estimated optical flow vector field for two adjacent
frames t and t + 1 out of the Toy sequence with a moving
camera from the motion annotation benchmark2 is shown in
Fig. 5(a)–(c). Since we are using a local algorithm, optical flow
cannot be estimated everywhere (for example not in the very
weakly textured black regions of the panda toy). For pixels in
these regions, vertical and horizontal flows, i.e., uy and ux, do
not exist. Suppose frame t is segmented and St is its final label
configuration [see Fig. 5(d)]. An initial label configuration for
frame t + 1 is found by warping all labels from frame t taking
estimations from the optical flow vector field into account [see
Fig. 5(e)]

St+1(xt+1, yt+1) = St(xt, yt) (13)

xt = xt+1 − ux(xt+1, yt+1) (14)

yt = yt+1 − uy(xt+1, yt+1) (15)

where (ux, uy) is the flow at time t +1. Since there is only one
flow vector per pixel, there will only be one label transferred
per pixel. Note that it is not the case if the flow at time t

is used for linking, since there can be multiple flow vectors
pointing to the same pixel in frame t + 1.

Pixels that did not obtain an initialization via (13) are then
given a randomly chosen label between 1 and q, which is not
occupied by any of the found segments [see Fig. 5(f)]. Once
frame t + 1 is initialized, a relaxation process (see Section
II-B) is needed in order to fix erroneous bonds that can take

2Available at http://people.csail.mit.edu/celiu/motionAnnotation.

place during the transfer of spin states. Flow interpolations
for weakly textured regions are not considered in this paper
because: 1) the image segmentation kernel inherently incorpo-
rates the data during spin relaxation; and 2) an interpolation
based on a camera motion estimation is only useful in static
scenes (with moving cameras), but cannot help when dealing
with moving objects.

The relaxation process runs until convergence and only after
that are the final segments extracted [see Fig. 5(g) where
the corresponding segments between frames t and t + 1 are
labeled with identical colors]. Convergence of the relaxation
process against a number of iterations is shown in Fig. 5(h).
For the relaxation process we use a schedule with the starting
temperature T0 = 1.0 and annealing coefficient γ = 0.999. As
we can see the annealing process with this schedule converges
after 25–30 iterations, making it possible to segment stereo
video streams with a frame size of 320 × 256 in real time.
Longer annealing schedules can lead to better segmentation
results, but at the cost of processing time.

E. Stereo Segmentation Using Disparity-Based Label Warping

The segmentation of every right frame is performed in a
similar way. Here, an initial label configuration for the right
frame at time t is obtained by warping the labels from both the
corresponding left frame and the previous right frame. Labels
from the left frame are transferred using the disparity map D

[see Fig. 6(a)–(c)] and labels from the previous right frame are
transferred using the optical flow vector field [see Fig. 6(e)].
Since the stereo algorithm relies on phase (and not magnitude),
it can find correct matches even in weakly textured regions.
Also, ambiguous matches are avoided by the use of a coarse-
to-fine control mechanism. However, it cannot find reliable
information under drastically changing light conditions (see
the reflection shift over the table). We suppose that the left
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Fig. 6. Segmentation of a stereo pair for the time moment t. Numbers at arrows show the sequence of computations. (a) Original left frame Lt . (b) Original
right frame Rt . (c) Disparity map estimated by the phase-based method (step 1). (d) Extracted segments SL for frame Lt after 30 iterations with α = 2.5
(step 1). (e) Segments and estimated optical flow vector field for right frame t − 1 (subsampled 13 times and scaled six times). (f) Label transfer from frame
Lt to frame Rt (step 2). (g) Initialization of frame Rt for the image segmentation kernel (step 3). (h) Extracted segments SR for frame Rt after ten iterations
with α = 2.5 (step 4). (i) Convergence of the Metropolis algorithm for frame Rt .

frame Lt is segmented and SL is its final label configuration
[see Fig. 6(d)]. Labels from the previous right frame Rt−1 are
warped according to the procedure described in Section II-D,
whereas the labels from the current left frame Lt are warped
as follows:

SR(xR, yR) = SL(xL, yL) (16)

xL = xR + D(xR, yR), yL = yR. (17)

The disparity map D is computed relative to the right
frame, which guarantees that there will only be one label
transferred per pixel from the left frame. Both warpings are
performed at the same time [see Fig. 6(f)]. In the case of
multiple correspondences, i.e., if a pixel in frame Rt has label
candidates in frames Lt and Rt−1, there are no preferences and
we select randomly either the flow or the stereo. In this way,
they can both contribute without bias and the segmentation
kernel can make the final decision. Pixels that did not obtain
a label initialization via (16) are given a randomly chosen
label between 1 and q, which is not occupied by any of
the found segments [see Fig. 6(g)]. Once frame Rt is ini-
tialized, a relaxation process (see Section II-B) is needed in
order to fix erroneous bonds that can take place during the
transfer of spins. The relaxation process runs again until it
converges and only after that are the final right segments SR

at time t extracted [see Fig. 6(h), where the corresponding
segments between frames Lt and Rt are labeled with identical
colors].

Convergence of the relaxation process against a number of
iterations is shown in Fig. 6(i) for the proposed label transfer
and for the label transfer based only on disparity shifts. Here,

we use the same annealing schedule as for the segmentation
of the left video stream. We can see that the use of the
previous right labels drastically reduces a number of iterations
needed for convergence and already after five to ten iterations
the final right segments can be extracted. Using only stereo
information, about 25–30 iterations are needed in order to
reach the equilibrium state. This is because the occlusions in
the stereo images are significantly larger than the occlusions
between adjacent frames taken from one video stream.

III. Experimental Results

A. Quantitative Evaluation

To measure the quality of video segmentations we use the
segmentation covering metric introduced by Arbeláez et al.
[24]. The idea of the metric is to evaluate the covering of
a machine segmentation S by a human segmentation S′. A
human segmentation, called also ground-truth segmentation,
is a manual annotation of a video sequence showing how
humans perceive the scene, whereas a machine segmentation
is an output result of the considered video segmentation
algorithm. In this paper, the human-assisted motion annotation
tool proposed by Liu et al. [16] is used, which allows a user
to annotate video sequences very efficiently. For one frame,
the segmentation covering metric is defined as

C(S′ → S) =
1

N

∑
R∈S

|R| · max
R′∈S′

O(R, R′) (18)

where N is the total number of pixels in the image, |R| the
number of pixels in region R, and O(R, R′) is the overlap
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Fig. 7. Segmentation results for the Toy monocular video sequence with a moving camera. (a) Original frames. (b) Ground-truth segmentation created by
the human-assisted annotation. (c) Machine segmentation performed in the input RGB color space (30 iterations, α = 2.5), V (S′ → S) = 0.69. (d) Machine
segmentation performed in the perceptual color space CIE (L∗a∗b∗) (30 iterations, α = 2.5), V (S′ → S) = 0.75. (e), (f) Segmentation covering shown for
both color spaces against the system parameter α and the number of iterations.

between regions R and R′ defined as

O(R, R′) =
|R ∩ R′|
|R ∪ R′| . (19)

To find the most similar machine spatiotemporal volume
for each volume from the ground-truth video segmentation,
we compute the segmentation covering for all ground-truth
regions in all frames applying the following constraints:
1) all segments within one volume are temporally coherent,
i.e., carry the same label in all frames; and 2) if the ground-
truth volume extends over the more frames than the selected
machine volume, then we repeat the selection of the best over-
lap over the remaining time intervals [15]. The segmentation
covering for the video sequence is computed by averaging of
the segmentation coverings over all frames M in the sequence

V (S′ → S) =
1

M

M∑
i=1

Ci(S
′ → S). (20)

For the segmentation evaluation of stereo videos temporal
coherence in both the left and right streams needs to be taken
into account.

B. Monocular Segmentation Results

In Fig. 7, video segmentation results for the Toy video
sequence with a moving camera are presented. The ground-
truth segmentation created with the human-assisted motion
annotation tool is shown in Fig. 7(b). Note that the ground-
truth segmentations provided on the webpage of the motion
annotation benchmark cannot be used for the comparison
in this paper, since they show layer segmentation based on
motion only without considering color differences. The video
segmentation results for both the RGB and CIE color spaces
are shown in Fig. 7(c) and (d), respectively. In both cases,
the same segmentation parameters and the same annealing
schedule were used. As we can see, the results obtained in
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Fig. 8. Segmentation results for monocular video sequences Phone (a) with a moving camera and Women (d) with moving objects. (b) Graph-based video
segmentation results obtained at 70% of highest hierarchy level, V (S′ → S) = 0.55. (c) Segmentation results from the proposed method derived after 30
iterations with α = 1.5, V (S′ → S) = 0.63. (e) Graph-based video segmentation results obtained at 50% of highest hierarchy level, V (S′ → S) = 0.35.
(f) Segmentation results from the proposed method derived after 30 iterations with α = 2.0, V (S′ → S) = 0.46.

the CIE color space are more accurate, which is confirmed
by the comparison of segmentation covering values computed
for both color spaces and shown against the system parameter
α in Fig. 7(e). Moreover, the image segmentation kernel in
the CIE space needs less time to converge. Fig. 7(f) shows
how segmentation covering values are changing for both color
spaces depending on the number of iterations in the relaxation
process.

More segmentation results in the CIE color space are
shown in Fig. 8. Here, one more sequence (Phone) from
the same benchmark is used together with a well-known
sequence, Women, containing moving objects [see Fig. 8(a)
and (d)]. Segmentation results for both sequences obtained

by the proposed method are shown in Fig. 8(c) and (f).
Although all types of sequences can be successfully seg-
mented using the same set of parameters (30 iterations for
the relaxation, α = 2.5 and Tn+1 = 0.999 · Tn starting with
T0 = 1.0), here α was slightly tuned for each sequence
to get the best possible segmentation results. The proposed
method is compared here to the hierarchical graph-based
video segmentation [11], which is known as one of the most
efficient spatiotemporal segmentation techniques. Since the
graph-based approach uses future data for segmentation and
not ours, both methods cannot be compared entirely and here
we only show that our approach gives output comparable to
the results of the conventional video segmentation methods.
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Fig. 9. Segmentation results for stereo frame sequences of the sample actions “moving an apple over plates” with (a) moving objects and “cluttered scene”
with a (b) moving stereo camera. Results are obtained using the following parameters: 30 and 15 iterations are applied for the relaxation of left and right
frames, respectively, α = 2.5 for both the left and right streams, the annealing schedule is Tn+1 = 0.999 · Tn starting with T0 = 1.0.

From three hierarchy levels available on the webpage3 for
segmentation, the best segmentation result for each sequence
was chosen [see Fig. 8(b), (e)]. We can see that the graph-
based method leads sometimes to dramatic merges of segments
or oversegmentations, which is not the case in the proposed
approach (for example the proposed method outperforms the
graph-based method at the boundary of the fax machine).
However, the graph-based technique deals in some situations
better with very textured objects (like the phone in the Phone
sequence). Also note that the gray-scale Women sequence
is an extremely difficult case for color-based segmentation
techniques due to the lack of color information. The proposed
approach has higher segmentation covering values compared
to the graph-based technique for the examples shown, but one
has to be aware that ground-truth segmentation obtained for
these complex scenarios must be considered biased at least to
some degree. For the Phone and Women sequences, the first
and the last frames were used to compute the segmentation
covering values.

C. Stereo Segmentation Results

Segmentation results for two stereo videos are shown in
Fig. 9. Since the sequences are quite long, only some stereo
pairs at key points of actions are shown. In the first sequence,
called “moving an apple over plates,” a hand moves an apple
around the table and places it on a plate [see Fig. 9(a)]. In the
second scenario, “cluttered scene,” the scene is static, but the
stereo camera moves [see Fig. 9(b)].

3Available at http://neumann.cc.gt.atl.ga.us/segmentation.

Fig. 10. Segmentation covering for the stereo sequence “moving an apple
over plates” shown for the previous and current framework versions. The
average values are 0.77 (left stream) and 0.76 (right stream) for the previous
version and 0.84 (left and right streams) for the current version, respectively.

As we can see the temporal coherence along with consis-
tent labeling is achieved in the segmentation of both stereo
sequences and the determined stereo segments correspond
to the natural partitioning of the original stereo pairs. Too
small segments are completely removed from the final label
configuration. The performance comparison of the proposed
framework with its previous version [26] (using input RGB
color space and optical flow for the left stream only) is
shown in Fig. 10 as segmentation covering against the current
frame number. As we can see, in the proposed framework the
left and right sequences are segmented with higher accuracy
(the average segmentation covering value is 0.84 for both
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Fig. 11. Processing times of all stages of the framework for segmentation of stereo videos on the mobile system with an integrated mobile GPU. For
computations running on the mobile GPU, processing times derived on the desktop GPU are shown for comparison (dashed lines). (a) Runtime for optical
flow with stereo and extraction of stereo segments. (b) Processing time of monocular segmentation (30 iterations) and stereo segmentation (15 additional
iterations). (c) Runtime for conversion from the input RGB color space to the CIE (L∗a∗b∗) for both monocular and stereo sequences.

streams). Moreover, the current version is more robust, having
significantly smaller deviations of the segmentation covering
values along the whole sequence.

D. Experimental Environment

The proposed framework runs on a laptop with mobile Intel
Core 2 Duo CPU with 2.2 GHz and 4 GB RAM. The mobile
GPU used in the laptop is NVIDIA GeForce GT 240M (with
1 GB device memory). This card has six multiprocessors and
48 processor cores in total and belongs to the 200-series
of mobile NVIDIA GPUs. The card is shared by all the
framework components running on the GPU. As a desktop
GPU (used for the comparison of processing times) we use
NVIDIA GeForce GTX 295 (with 896 MB device memory)
consisting of two GPUs, each of which has 30 multiprocessors
and 240 processor cores in total. In this paper, we use only
one GPU of this card.

E. Processing Time

The processing times for all components of the framework
are shown as a function of frame size in Fig. 11. Image
resolutions 160 × 128, 320 × 256, and 640 × 512 are marked
by black dashed lines. The processing times of components
running on the mobile GPU are compared to the respective
runtime on the desktop GPU [Fig. 11(a)–(c)]. For segmentation
of monocular video streams 30 Metropolis iterations are used,
whereas for stereo video streams 45 iterations are needed in
total [see Fig. 11(b)]. Note that the relaxation process takes
about 60% of the whole runtime.

Although all computations on the mobile card are signifi-
cantly slower (the speedup factors derived on the desktop card
in relation to the mobile one for optical flow or stereo and
segmentation kernel are 2.1 and 2.4, respectively), it is still
possible to process several frames per second for all considered
resolutions as shown in Table I.

IV. Discussion and Conclusion

We presented a novel framework for real-time spatiotempo-
ral segmentation of stereo video streams on a portable system

TABLE I

Obtained Processing Times per Frame and Frame Rates

CPU GTX 295 GT 240M
Resolution (px) s (Hz) ms (Hz) ms (Hz)

160 × 128 0.8 (1.2) 40.0 (25.0) 47.4 (21.1)
320 × 256 3.4 (0.3) 75.0 (13.3) 117.0 (8.5)
620 × 512 13.9 (0.1) 230.0 (4.3) 376.0 (2.7)

with an integrated mobile GPU. The proposed visual front
end is online, automatic, and dense. The performance of the
framework has been demonstrated on real-world sequences
acquired with moving cameras and containing arbitrary mov-
ing objects. A tradeoff between processing time and hardware
configuration exists. Since robotic systems are usually dy-
namic, movable and very often wireless autonomous systems,
huge computers with high power consumption were not even
considered in this paper as a proper hardware architecture. As
the most suitable platform for this task, we chose a mobile
PC with an integrated mobile GPU. Being supplied by the
laptop battery such a system can run in autonomous mode
up to three hours. A GPU is used as an accelerator for
highly parallel computations of the system such as optical
flow, stereo, and image segmentation kernel. For the frame
resolutions of 160 × 128 and 320 × 256 we achieved a
processing time that is sufficient for many real-time robotic
applications. The system manages to process bigger frames as
well, but not in real time.

The following problems are solved by the visual front end:
stereo images from stereo videos are segmented in a consistent
model-free way (without prior knowledge of data), the tempo-
ral coherence in a stereo video stream is achieved resulting in a
consistent labeling of the original frames. However, consistent
labeling for a long video sequence can be obtained by the
proposed framework only for quite simple scenarios. The
scenarios are given as follows.

1) Objects should not get entirely occluded along the
action, since the current method can deal only with
partial occlusions. If an object is occluded by any other
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object, it will not be recognized when it reappears.
In order to properly track occluded objects, additional
mechanisms are needed that perform high-level analysis
of objects [4], [25]. It is not possible to resolve such
kinds of problems on the pixel domain.

2) Objects should not move too fast. Phase-based optical
flow and stereo used in the current system have a speed
limit of 2 pixels per scale, so using four scales, the
limit is 24 = 16 pixels [34]. In the case of a very
fast movement, more than 50% of the label transfers
can be erroneous. This leads to a completely erroneous
initialization of the current frame, which cannot be
resolved by the relaxation process. The segmentation
covering value for such a segment will be dramatically
low, which signals inaccurate video segmentation. For
the tracking of fast moving objects large displacement
optical flow is needed [48].

3) No disjointed parts of physically the same object should
be joined during the action. If two large parts of the same
object represented by different segments are merged, we
face the domain fragmentation problem when large uni-
form areas are being split into subsegments despite high
attractive forces within them [47]. In the current system,
the domain fragmentation problem can be resolved only
by a very long annealing schedule (see Section II-B),
which cannot be achieved in real time.

An important goal of this paper was the improvement of
the computational speed of the system, since a low latency
in the perception-action loop is a crucial requirement of
systems where a visual front end is needed. Consequently,
since the proposed framework is running in real time or close
to real-time mode, it can be used in a wide range of robotic
applications, such as object manipulation, visual servoing,
and robot navigation. All these applications require object
detection and tracking along with extraction of meaningful
object descriptors as a preprocessing step.

In the future, we aim to overcome the mentioned problems
1)–3) and apply the developed framework to more complex
actions in the context of cognitive robotics tasks. For very
complex scenarios where objects are getting occluded all the
time, some high-level knowledge about objects needs to be
accumulated during that part of the sequence where objects
are present and visible.
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