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Abstract— A robot can feasibly be given knowledge of a set of
tools for manipulation activities (e.g. hammer, knife, spatula). If
the robot then operates outside a closed environment it is likely
to face situations where the tool it knows is not available, but
alternative unknown tools are present. We tackle the problem
of finding the best substitute tool based solely on 3D vision
data. Our approach handcodes simple models of known tools
in terms of superquadrics and relationships among them. Our
system attempts to fit these models to pointclouds of unknown
tools, producing a numeric value for how good a fit is. This value
can be used to rate candidate substitutes. We explicitly control
how closely each part of a tool must match our model, under
direction from parameters of a target task. We allow bottom-up
information from segmentation to dictate the sizes that should
be considered for various parts of the tool. These ideas allow
for a flexible matching so that tools may be superficially quite
different, but similar in the way that matters. We evaluate our
system’s ratings relative to other approaches and relative to
human performance in the same task. This is an approach to
knowledge transfer, via a suitable representation and reasoning
engine, and we discuss how this could be extended to transfer
in planning.

I. INTRODUCTION

We are interested in service robots tackling tasks in
everyday home environments. Such environments are open
and unconstrained in the sense that the objects and materials
available may not be known in advance (although they can be
expected to be variations on known things). Humans in such
environments transfer knowledge, to apply their known skills
to variations on known objects, with appropriate adjustments.
Humans frequently improvise, opportunistically exploiting
affordances of utensils which diverge from the canonical
usage. For example a knife with a sufficiently wide blade
can be slipped under a piece of cake to lift it; a chopstick
with a sufficiently pointy tip can be used to pierce food.
Consider in more detail the following example: the required
manipulation is crushing an object with force with a mallet as
the usual tool (for example tenderising meat). When a mallet
is not available, one can consider other possible candidates:
a frying pan has a handle, a flat-base and is of a suitable
size to be manipulated to crush something. Could a robot
see the frying pan as a possible mallet? In order to do that,
it must reason about the essential parts of the mallet, the
relationship between them (handle, hitting surface, distance
and angle between), and whether or not the frying pan has
available parts that could serve the same function. See Fig. 1
to get a concrete idea of our system.
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Fig. 1. Typical fits by our system for projecting an idealised model of a
hammer (source) onto a hammer, mug, and frying pan (target objects). Each
model part is projected into a segment of the pointcloud. The task model
defines how various distortions of parts, and the relationship among parts,
are to be penalised.

This problem is important because it is not feasible to en-
dow robots with knowledge of every tool they may encounter
in open environments. It is possible to endow them with
knowledge of a limited set of tools, and then it is important
that they are able to apply this knowledge in novel situations,
and to adapt to similar tools. This problem is interesting
as it goes beyond standard paradigms in computer vision
which tend to focus on determining the single category to
which an object belongs. In our setting we do not want to
be limited to seeing a knife as a knife or a pan as a pan; we
are looking for alternative interpretations, directed by a task
need. This is a small part of the more general problem of
finding suitable representations (for objects in this case) and
reasoning processes that facilitate transfer of knowledge to
unforeseen settings.

The key innovation we introduce to robotic vision stems
from work in psychology on projection [1] which explains
how we organise the perception of sensor data through a top
down process which imposes a certain structure onto lower
level data. We try to see what we want to see, and this may
work to varying degrees, as shown in Fig. 1.

High-level knowledge approaches already exist to find
tools in the same class, using ontologies, or using a database
of models of known objects, and these are useful to find a
set of tools to perform a particular manipulation. However
this approach will miss tools from a different class that may
possess parts which make them suitable for the particular
manipulation task in question. On the other hand, low level
approaches learning similarity from 3D vision features [2],
[3] will struggle to capture tool affordances that rely on a
particular relationship between parts, where those parts may
vary considerably.

To tackle this problem it seems necessary to construct a



system connecting high level (i.e. a model) and low level (i.e.
a pointcloud) information, through a process of approximate
matching which embodies some knowledge of what aspects
of a tool are important for a particular task. In this way our
system goes beyond typical model fitting in computer vision
[4]. In this paper we focus purely on shape similarity (similar
to [2], [5]) and neglect other aspects such as materials or
weight; this is in order to conduct a clear investigation on
one aspect in isolation. The scientific hypothesis tested in
our paper is whether a part based geometric representation
(model) of an ideal tool, together with knowledge of the
importance of aspects of that model for a task and an algo-
rithm for part fitting, can approximate human performance
(for accuracy) in the task of rating the usefulness of a novel
tool for a particular task.

Our system has three essential components: (i) Handcoded
models of ideal objects for tasks; this is similar to several
works in this area defining how objects are composed
from parts [6], [7], [8]. (ii) Task models which specify
the relative importance of various parameters of the model
for a particular task. (iii) A matching algorithm which
tries multiple fits in the pointcloud, converging toward that
preferred by the task model. We evaluated our approach on
3D scans from everyday household objects, comparing our
system with ground truth from performing the tasks, human
ratings and also with two variants of an approach based on
histogram features of shapes of parts. Our results show high
accuracy. Our main limitation is that we did not discover the
relative importance of parameters of the models from data
by machine learning; instead we have crude handcoded rules
in the task model. A data driven approach would be superior
at finding optimal parameters.

II. RELATED WORK

There has not been a great deal of work on finding
similar/substitute tools in vision for robotics, although our
work can be seen as coming under the broader umbrella
of finding affordances of objects in the environment (e.g.,
[2],[3]). These affordance approaches are based on learning
from visual features, and do not incorporate the higher level
knowledge of essential parts and relationships that we encode
in our system. Hence they will struggle to see the functional
equivalence between objects which might be superficially
quite different in appearance, although having the essential
required parts in the right relationship.

Most works on affordances are not designed to deal with
object parts; e.g. Myers et al. [2] just consider one part for
things like sharp or concave. we can consider a relationship
between a hammer handle and how far it is from the head,
and at what angle (however this is not the only paper to
consider multiple parts, e.g. see [7], [9], [10], [11]).

The approach of Biegelbauer et al. [7] was the starting
point for the construction of our system. Biegelbauer and
Vincze’s system is able to quickly fit geometric models of
common shapes (they use superquadrics, here explained in
Section III) onto point cloud data. Although Biegelbauer
and Vincze’s work is not explicitly on finding similar tools,

their system will fit to the most similar object when the
exact object is not present. In contrast with Biegelbauer
and Vincze’s work we explicitly design ours to find good
substitute tools, e.g. by providing knowledge on which parts
of the source model are most important and less important,
and what matches are acceptable.

Tenorth et al. present a closely related system [6] that
defines rules for how geometric primitives are composed for
various kitchen objects. However their aim is to find the
canonical category of a tool, not to consider also alternative
uses. While their system does combine elements of top-
down and bottom-up processing, ours has a stronger top-
down influence where the type of geometric primitive we
project is decided top-down.

An interesting work by Fitzgerald et al. [12] is able to
find analogies between tool-use situations from 2D images.
However the techniques used are all 2D based and hence
very different to our work and other work cited here, making
comparison difficult. Fitzgerald et al.’s more recent approach
[13] is a little closer to our approach at a high level as it looks
at transfer from source situations to target situations where
parts and relationships are explicitly represented (although
their parts are objects whereas ours are parts of objects).

Schoeler and Wörgötter [5] have a system which uses 3D
features to find shape signatures of parts of a tool; tools
are described by a graph and can have multiple connected
parts. Tools are then be compared pairwise for similarity, and
they show that this does find tools with similar functions.
This system can also find nonstandard uses of a tool, e.g.
a hammer’s shaft can be used to poke holes in the ground.
This aspect is like our system. Shapira et al. [14] present
a similar (shape features and graphs of parts) but more
complex system, able to find part-based similarities in a
database of 3D objects (e.g. a finger is to a human as a wing
is to a plane). Our system has a different focus from these
two works because of the projection idea: Our search for a
substitute tool is directed: We have a model of what we want,
like mallet, and we are projecting that onto whatever sensor
data we are looking at, in an attempt to force it to be seen
like a mallet. It is not a symmetrical similarity between two
objects; while a mallet projects reasonably well onto a frying
pan the projection would be poor in the other direction.
During the process of projection the following features of
the system are of note:

1) We can allow flexible matching; e.g., we do not always
have to see the handle as the handle, we could use it
as the ‘business end’ (similar to [5]); we do not have
to insist on curvature, we can be relaxed and allow a
flat surface to fit.

2) We include task relevant knowledge; e.g. specify-
ing importance of components and tolerances for
size/angle between parts. Other works sometimes have
knowledge like categories of tools (e.g. ontologies),
where this knowledge is separate from the 3D models,
we integrate knowledge into the 3D models. Therefore
we know what parts of the model we can be more
relaxed about fitting, for a particular task.



3) We combine top-down pressure from the model’s defi-
nition with bottom-up indications from the sensor data
(e.g. changing the scale of parts to better fit the data).

III. SYSTEM DESCRIPTION

A. Overview

• Input:
– A source model specifying size and shape of grasp-

ing and action part and their relationships (angles
and distances);

– A target task model specifying how important are
the sizes, shapes and relationships from the model;

– A set of previously segmented point clouds as the
target objects.

• Output: A score value for each of the target objects in
a scale from 1 to 10 representing how good that object
is as a substitute tool for the task.

The source model specifies the ideal shape, size and part-
relationships of a tool; in this work, our source models have
only two parts: grasping and action. Parts are modeled with
superquadrics (Sec. III-E). We define relationships among the
parts as: distance between the parts’ centres; angle between
both parts’ main axes; and angle between grasping part’s
main axis and the axis that passes through both parts’ centres.

The target task model specifies functions for scoring how
well a target object is likely to perform on the target task.
It scores the part properties (e.g. size, proportion) and part-
relationships; the target task may also override the source
model’s ideal values. The functions can be flat, linear or
quadratic (penalising more or less a given feature) for values
below or above the ideal or cut-off to prohibit certain values.
For instance, in the case of hammering a nail, the head hitting
surface dimensions get a quadratic scoring if they are below
ideal; i.e. the hammering task heavily penalises a too small
hammer head. For larger than ideal values a linear function
is applied which penalises weakly. In the task of scooping
sugar with a teaspoon, for example, we want the size of one
of the dimensions to be suitable for the size of the container
with the sugar; we achieve this by means of a cut-off function
only allowing for values less than the diameter of the ideal
container’s opening for the task.

The system starts with a source model and first performs
a specified number of fittings of each part to each segment,
keeping the best overall fit (Sec. III-E). After fitting, the next
step is to calculate the target score for each pair (grasping
part and action part) of part-to-segment-fit, considering both
the source model and the target task. This process constitutes
one projection of the source model onto the target object. In
Fig. 1, we can see, for three different target objects (hammer,
frying pan and mug) the best projection for source model
hammer and target task of hammering a nail (grasping part
is blue and action part is black).

B. Source models and target tasks

We have five source models: an idealised hammer, spatula,
sharp chopstick, rod for retrieving, and teaspoon. Each model

consists of two superquadrics and the relationships between
them. We have seven target tasks:

1) Hammer a small nail into soft wood with a swinging
action (hammer source model)

2) Tenderise meat with swinging action (overrides ham-
mer source model to define a larger size for action
part)

3) Lift a pancake from a pan (spatula source model)
4) Cut soft lasagne (overrides spatula source model to

define an angle of 0 between parts)
5) Pierce a potato skin (chopstick source model)
6) Retrieve an item from a narrow gap, e.g. under a fridge

(retrieving tool source model)
7) Scoop sugar from a small bowl whose aperture is just

big enough for the teaspoon (teaspoon source model)

C. Obtaining Pointclouds from Real Objects
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Fig. 2. Artec scans of our 20 household objects, not to scale. Black portions
indicate scan errors (missing parts of the actual object).

We used an Artec Eva 3D scanner and Kinect 2. Artec
works by projecting structured light (similar to Kinect 1),
while Kinect 2 uses time of flight. We chose both a high-
end and low-end scanner in order to see how dependent our
technique is on high precision and complete visual input. We
scanned (separately) 20 household objects on a flat surface;
see Fig. 2. As can be seen from the figure some objects
have some scan errors (see e.g. meshed spatula, where the
difficulty arises from the actual object being completely
black).

Artec scanning: With the Artec scanner we used real-
time fusion while moving around the object completely. We
subsequently applied a pipeline of algorithms to remove



outliers, fill holes, and smooth (a process which could be
automated). The resulting scans are almost complete, only
missing a base or other patches that could only be seen from
underneath. Some objects were supported with plasticine to
maximise the visible surfaces, and some artefacts of this can
be seen in the scans (see wooden spatula for example). For
seven of the 20 objects we also inverted the objects to obtain
a good scan of the hidden side and fuse the models; this was
for models where we felt the base could be important. Our
approach of supporting and scanning from all sides can be
integrated in a real robotics setup where the robot grasps the
object and rotates it, and similar work has been done [15],
[16].

Kinect 2 scanning: Objects were left flat on a table with
no supports in most cases; however some objects like the
wooden spatula were so flat that they disappeared into the
table so we needed to raise them with plasticine underneath
(but we did not change the orientation). We used real-time
fusion while moving over the object in a single arc from one
side, over the top, to the other side. The entire process took
10 seconds. This was done to mimic a real robot analysing an
object on a table. RANSAC plane removal was then applied
to remove the table. These scans are of much poorer quality
primarily due to Kinect interpolating and partly merging an
object into the table, and also due to half the object being
missing for many objects because it was resting on the table
(and RANSAC removal takes more than just the plane).
Nevertheless the objects have sufficient points and fragments
of shape to permit superquadric fitting, as illustrated in Fig. 7.
Most roughly cylindrical objects have at least half a cylinder
after processing. Small objects could not be captured at all;
they appear as nothing more than a slight depression in the
table.

Shiny surfaces: Some parts of objects that were of highly
specular chrome surfaces posed some difficulty for the Artec
scanner, although it had no problem with others (e.g. the
scissors had a shiny chrome surface but posed no problem).
The most problematic surface was the central part of the shaft
on the hammer. Fortunately it had a manufacturer’s sticker on
one side, and care with scanning to catch the specular surface
directly (not obliquely) at the beginning helped. The standard
hole filling and smoothing in the post processing stage also
helped. Painting objects obviously removes the problem; we
found that this is not necessary for Artec, but absolutely
essential for Kinect. In Fig. 3 we compare various scans of
the teaspoon. As can be seen from Fig. 3 the Kinect scan
is poor even with paint. The Artec scanner had absolutely
no problem with brushed metal surfaces (e.g. hammer head
or kitchen knife), or with ceramic. However these needed
to be painted for Kinect. For Kinect 2 we estimate that
85% of items in a typical kitchen cannot be adequately seen.
Kinect is not a viable scanner for a robot dealing with regular
kitchen objects. The only thing Kinect really worked well
on (without painting) is plain wood (rolling pin, spatula).
Nevertheless we still wanted to see how our system performs
with lower quality pointclouds, so we obtained as many
pointclouds as we could with Kinect, by painting problematic

objects.

     

Fig. 3. From Left: (i) Photograph of a teaspoon. (ii)-(v) are rotated at a
slight angle to highlight imperfections. (ii) Artec scan of untreated surface.
(iii) Artec scan of painted surface. (iv) Kinect scan of painted spoon on
table before RANSAC plane removal. (v) Kinect scan after plane removal.
(Kinect scan of unpainted spoon is not possible to obtain.)

Note that while the set of objects is not huge they are
highly varied. Note also that these objects are the ‘test set’;
there is no training set, as no learning was used, instead the
source model of tool and task are handcoded.

D. Segmentation

For segmentation, we use the Constrained Planar Cuts
(CPC) algorithm [17], which uses local concavities to induce
cuts through the object and partition it in segments. We scale
the parameters to each object size and iteratively increase the
smoothing parameter in the CPC algorithm until achieving
two or three segments (ignoring segments which were too
small). In Figs. 1, 6, and 7, it is possible to see for each
point cloud the different segments in different colours.

E. Fitting

We model part of the source object with superquadrics,
which are parametric shapes capable of representing a variety
of common 3D shapes (e.g. cylinder and boxes), and many
shapes in between, with a fairly simple parametrization: three
parameters for the scale in each dimension; two parameters
for shape variance; three parameters for ZY Z Euler angles;
and three parameters for its centre point in space. In Addition
to expressing common shapes, there are also extensions for
dealing with local and global deformations (e.g. tapering,
which we use for chopstick model). We refer to [18] for an
in-depth explanation of superquadrics.

For the superquadric fitting we perform a least-squares
minimization using the Levenberg-Marquadt method1 [18].
This is possible by means of the inside-outside function for
superquadrics, which is a parametric function that provides
a continuous test score for whether a point lies inside, on
the surface or outside the superquadric. We used a least-
square minimization along with this function in relation to
an entire set of points (i.e. point cloud). We then obtain a
fitting of the superquadric to the point cloud that maximizes
the number of points that are close to its surface (we refer to
[18, p. 79] for the exact optimization function used in this
work). To improve fitting results, as in [7], we do a ranked
voting, considering the fitting function score, the percentage
of points inside and the percentage of points on the surface;

1Specifically, the implementation in MATLAB R2015a’s Optimization
Toolbox



we want a small function score, a low percentage of points
in the interior and a high percentage of points on the surface.

For the initial parameters of the superquadric we use
values coming from the model for scale, shape and tapering.
We get the initial orientation by running PCA on the segment.
The initial scale parameters come from the segment: we
run PCA on the segment and for each dimension, we slice
the segment in a predefined number of slices and get the
median range value as the segment scale for that dimension.
When fitting, we optimize the superquadric parameters for
scale allowing a ±20% variation in the initial scale obtained
form the segment, thus allowing our initial scale for the
segment to act as a first guess. In the case of the model
having tapering parameters, we give a 50% probability for
having the parameter optimized; when the model does not
have tapering, the tapering parameters are initialized to 0 and
not optimized. For each segment of the point cloud we plant
a number of random seeds as starting centre positions for
fitting each part, choosing the best fit over all seed points.

We run a number of projections in order to get a variety
of different fits of source parts to target parts (e.g., including
inversions of tool handle and head). After running projections
for a target object, we cluster the projections by similarity
between the superquadrics fitted to each of the projections
(a simple distance function tuned to the various superquadric
parameters); to form a cluster, two projections need to have
similarity both in the grasping and action part. We choose
the cluster with most instances as the winning projection,
representing the one to which the system converges. After we
have a winning projection, we apply the target task functions
to get the score.

This full process of several projections is carried out for
each target object. Comparing the ratings from different
objects at this stage causes difficulty due to there being
orders of magnitude differences in the scores produced. We
therefore apply a ranking to rank all task function results
(e.g., for sizes, distance, angles). The sum of these ranks
becomes the final score, and all the objects’ scores are scaled
to the [1, 10] range.

IV. EXPERIMENTAL EVALUATION

The task was to rate 20 objects (from pointclouds) for their
usefulness in each of seven tasks. We compared six different
sets of results:

1 Human rating. We asked humans to rate the usefulness
of the 20 test objects for each of the tasks on a 1 to 10 scale
as follows: 1-5 Does not work; 6-8 Could work, but not
the best; 9-10 Works best. We decided to have ten numeric
values in order to capture such distinctions as a tool that
almost works, versus one that is utterly useless. Humans
only got to see 2D rendered pointcloud images. For some
objects we included two images where one perspective did
not make the shape clear. Images of a human performing
the task on a target object were also provided. We also
explained the action for example specifying the swinging
type of action is important or else the human may consider
alternate actions like thumping downwards while gripping

the screwdriver with base pointing downwards (which do not
correspond to the task relationships coded in our system). In
order to focus on shape and not materials we told humans to
assume all objects were made of solid metal. We averaged
the ratings across the humans.

2 Ground truth. We took the physical objects and target
items such as a nail and wood, and tried the objects on the
tasks2 in order to rate them. Since we had told the humans
that objects were made of metal we sometimes used metal
substitutes such as a long flat spanner in place of the wooden
spatula. We compared other systems’ ratings to the ground
truth by a simple difference of values.

3 Random rating. Random ratings serve as a baseline.
Fig. 5 shows the approximately normal distribution from 300
complete sets of random ratings. Scoring higher than 7 is
extremely unlikely by random answering (p < 0.008).

5.8 6.3 6.8 7.3 7.8 8.3 8.8

distribution of 

random ratings 

ScW 1 

ScW 2 

Our system 

(Artec) 

Typical 

human 

Our system 

(Kinect) 

Fig. 5. Average accuracy (scale 1 to 10) of the systems evaluated.

4 Our system. For each target object for each task we
ran ten projections with three iterations in each. In order to
reduce running time (without much loss in accuracy), during
each run the point cloud is downsampled to 2500 points per
segment.

5 System ScW 1. Schoeler and Wörgötter’s system [5]
can be run in two ways. ScW 1 is the term we will use for
the system trained on a labelled dataset M1 of 72 synthetic
pointclouds with affordances of cut, sieve, poke, hook, cup,
hit. We mapped our tasks to some of these as follows
{Hammer nail, Tenderise meat} → hit; {Lift pancake, Cut
Lasagne} → cut; {Pierce potato, Retrieve item} → poke;
{Scoop sugar} → cup. Given an affordance such as ‘hit’,
ScW 1 was able to provide a numeric similarity value for
each of our 20 objects, stating how similar it was to the
closest example ‘hit’ object from M1. We had to normalise
these values before we could use them as a rating of the
target object, because some target objects had (relatively)
extremely low scores due to dissimilarity from M1. We took
the average of all affordance ratings for each target object,
minus the total set average, as a measure of ‘object deviance’.
We then added object deviance to that object’s values (to
bring them closer to the overall average). Finally we scale
the values into the [1, 10] range. The comparison of our
system with ScW 1 and 2 is somewhat unfair because ScW
is not designed for our task, and ScW 1’s training set is only
very suitable for a subset of our tasks (hammering, cutting,

2For tenderising meat we hammered rough plasticine as a substitute. No
animals were harmed in the making of this paper.
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Cut Lasagne 8.8 9.7 8.5 9.7 8.1 9.5 5.9 10 9.1 5.1 8.5 7.3 9.3 7 6.6 9.9 8.9 8.4 6.3 9.7 8.32

Pierce potato 9.7 6.8 9.9 5.7 7 9 8.3 9.8 10 9.1 6.9 5.5 7.1 5.7 9.6 6.3 7.5 6.5 6.9 8.6 7.79

Retrieve item 8.3 9.2 9.9 5.7 5 2 5.7 9.8 8 9.1 9.9 5.5 9.1 9.7 9.4 9.7 9.5 5.5 5.9 8.4 7.76

Scoop sugar 7 4.5 9.7 7.3 6.6 8.1 8.9 1 6 9.9 7.8 6.7 8.3 9 9 8.1 3.5 9.1 6.2 5 7.09

Task average 8.3 6.6 7.7 7.7 7.1 8.2 7.4 8.2 8.1 7.7 8.1 6.8 8.9 7.2 7.9 8.5 8 7.7 7.3 8.3 7.77

Hammer nail 7.1 3.7 10 9.6 9.3 9.2 8.8 7 7.3 8.7 7 9.8 7.9 7.7 9.2 8.3 6 7.4 5.5 9.6 7.96

Tender. meat 6.1 3.7 9 8.6 8.3 9.8 9.8 6 6.3 8.3 7 6.8 8.9 6.7 8.8 8.3 7 7.4 5.5 9.4 7.59

Lift pancake 7.2 7.9 8.6 9.5 5 8.4 10 9.5 6.9 8 9.9 9.9 10 9.5 7.5 9.5 8.9 9.1 10 8.1 8.68

Cut Lasagne 7.7 9.7 9.9 4.8 5 9 4 10 7.9 5.8 6.5 5 8.2 9.7 9.8 8.8 9.5 6.8 9.3 8.7 7.81

Pierce potato 10 9.1 9.9 4.1 5.2 9.4 10 10 7.9 4 9.6 3.3 5.2 6.1 9.8 8.8 9.5 7.8 9 9.8 7.92

Retrieve item 9.6 8.3 9.9 4.9 5.2 4.2 5.4 10 8 4 8.3 3.1 8.3 10 9.1 8.7 8.4 5.5 8.9 8 7.4

Scoop sugar 9.9 5.7 8.6 7.4 9.2 8.3 8.4 10 9.5 8.6 9.9 2.8 7.7 7.2 9 6.9 5.2 7.9 8.8 10 8.05

Task average 8.2 6.9 9.4 7 6.7 8.3 8.1 8.9 7.7 6.8 8.3 5.8 8 8.1 9 8.5 7.8 7.4 8.1 9.1 7.92
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Fig. 4. Results showing the various systems’ accuracies as measured on a scale from 1 to 10. Each cell is an accuracy measured by comparison of the
system’s rating with the ground truth for a task/tool combination. Heavier shading indicates a less accurate result.

retrieving). Nevertheless it is by far the best system we could
find for this type of task, and the closest competitor.

6 System ScW 2. This is Schoeler and Wörgötter’s
system with no training set. Instead it uses one of our best
exemplars for each task, and compares that with the other 19
objects to generate ratings (guaranteeing a perfect score when
comparing with itself). This cross comparison of everything
we call the matrix model. Again we had to normalise values
based on each target object’s average (as above); mug and
teapot had particularly low values before normalising. For
‘lift pancake’ we created an ideal tool pointcloud because
we felt none of the 20 were quite perfect for the task, so
ScW 2 compared this perfect tool with the 20 objects in this
case.

Fig. 6 shows some selected fittings from our system,
illustrating the projection mechanism where sometimes parts
have a function imposed on them by the source (e.g., in
inversion) and sometimes the model needs to adapt to the
reality of the pointcloud (adapting angle, proportion, scale).

Figs. 5 and 4 show the full results. The running time of our
system is approx. 54 seconds for one projection with three
iterations, and 3 seconds to fit a single part to a segment on
a modest Intel i5-3470 3.20 GHz (quad-core). Superquadric
fitting is amenable to parallelisation e.g., in a GPU, which
could cut the time dramatically.

A. Discussion of Results and Future Work
All the systems perform significantly better than random.

Furthermore answering randomly and scoring 7 would not be
the same as the algorithms which additionally output which
part should be the handle to grasp and which part is the
business end.

Kinect performs relatively poorly but still above chance
on average. It is not meaningful to compare it with the other
methods because many objects could not be included due
to Kinect scanning troubles. In general it performs well on
tasks requiring objects which are large, and very poorly on
pierce, retrieve and scoop which require small object parts
which it cannot see.



 

Fig. 6. Typical fits resulting from our system (with Artec scans) where
the black fitted superquadric is the action part and the blue is the part to be
grasped. This illustrates: (a) Inversion to use the long part of the spatula to
retrieve from a gap. (b) Inversion of the scissors for hammering shows a
weakness of the approach; it thinks the scissors handle is useful to hammer
a nail because it does not know that the gaps cause a problem. (c) Fitting
in an object with three segments. (d) Significant distortion of size to almost
perfectly fit the scraper head. (e) Distortion of angle to try to use a teapot
to pierce (this earns a low score).

 a b c 

d 

Fig. 7. Typical fits resulting from our system (with Kinect scans) where
the black fitted superquadric is the action part and the blue is the part to be
grasped. (a) Inversion in the scissors to grab it by the blade and use it to
lift pancake (b) Inversion of the scissors for using small part to be able to
scoop sugar (c) Fit in the hammer for hammering nail (d) Fit in the frying
pan for tenderising meat

ScW 1 performs very well on the hammering and cutting
tasks where it has a suitable dataset of similar objects. It is
not surprising that ScW 1 performs poorly on ‘Lift pancake’
and ‘Pierce potato’ because it has no suitable items in its
training set. It performs poorly on ‘Scoop sugar’ because it
does not consider scale, which is critical. At a deeper level
ScW’s similarity notion is not affected by the task under
consideration, whereas humans do consider the target task
when judging tool similarity, and in this way our approach
may be more human-like. A further problem for both ScW
systems is that they do not consider importance of parts for
a task, so e.g. they consider a good similarity in the handle
as equally important to similarity in the head.

It is curious that ScW 2 performs so well given that it
has no training. This may be because our 20 objects contain
exemplars that are very good and very bad for every task,
and similarity to the best exemplar is a very good method
of rating, also the presence of poor tools helps to calibrate
the lower end of the scale appropriately. ScW 2 performs
astonishingly well on the lifting task, probably because we

gave it a handcrafted ideal tool to compare with. Overall the
ScW system is remarkably good at a task it was not designed
for (and for this reason our comparison is somewhat unfair).

V. FUTURE WORK AND CONCLUSIONS

We now consider some future improvements that could be
made. Our task model rules are crude in that they apply a
quadratic, or linear or flat function to parameters. A better
approach would be to use machine learning from a good
dataset to do fine-grained tweaking of weights on function
parameters. This means learning in what ways a component
of the source model can be allowed to morph its shape
(or change scale) while still being effective. Learning could
also be used for a more ambitious extension. Currently our
source models are handcoded. We see this as an important
first step. It allows us to test our hypothesis about what is a
good representation for a source model. Having completed
this we can tackle learning of a source model, given a set
of geometric primitives to be used in the modeling, and a
training set of objects for each function.

Given the success of the ScW system, especially on some
tasks we could use a mixture of experts approach to use
the technique that gives the best result for the task at hand
(similar to [19]). Looking at a ‘best of’ just across our
task averages could give an average of 8.21. There is also
possibility for a closer integration, for example incorporating
shape signatures in our projection approach to have extra
bottom-up information to guide the initial orientation and
suggested distortion of the model.

This paper’s idea of projecting a source model of a
tool into target pointclouds is probably only part of the
story of how humans do the task. Simulation is another
important part. It emerged from human subjects’ commentary
of the task that they do simulate in some detail: grasping
the tool, and approaching the target object, with a table
surface present as well, and playing through the motions
in performing the task. We suspect that humans do a two
step process in selecting a substitute tool: first they scan the
environment looking at a large number of present potential
tools and rapidly assessing them based on their parts and the
relationship among them (this process may be similar to what
our system does); secondly, having identified a potentially
useful tool they engage in a more time-consuming simulation
process to get a more accurate assessment of the tool’s
potential for the task.

In conclusion, this work has made an advance in how
effectively an artificial system can recognise tool objects
which have the potential to be used as tools in creative
ways. The system can return a suggestion for (i) which tool
to use, (ii) which is the grasping part, and how its axis is
aligned, (iii) which is the head and in which orientation it
should be brought to the target. We see this as one example
use of a generic analogical machinery which is used in
many aspects of cognition. Our larger enterprise is to bridge
the gap between sensorimotor robotics and higher levels of
cognition traditionally under the umbrella of symbolic AI.
Ultimately this should address what Barsalou advocated with



his ‘perceptual symbols’ [20]. We intend to further develop
out current work on projecting tool concepts to objects in
sensorimotor data, especially to include a simulation ability
to try out candidate tools. Subsequently we intend to tackle
robot planning steps: to look at a visual scene, where a
robot has a task to perform (a step in a plan) and must
select a skill and associated representation to impose on
the situation. The robot will have a library of manipulation
skills and associated idealised scenes (tool, object to work
on, work surface), and will select from this library a suitable
skill and perspective to apply in the current situation. This
entails a projection which can distort the robot’s perception
and lead it to see the real-world scene in a way that makes
a particular manipulation straightforward, by transferring
existing knowledge. For example the robot could view grains
or seeds as liquid and borrow schemas for pouring and
scooping liquids, or the robot could view a pancake as a
flat rigid cylinder, or as a foldable cloth, depending on the
task requirements. In the longer term we believe that the
same analogical matching should be valuable in language
processing, for example to understand metaphors, such as
“the speaker was meandering”, or to automatically generate
news stories where it is desired that a certain perspective is
imposed. This would be important for robots communicating
naturally with humans.
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[18] A. Jaklič, A. Leonardis, and F. Solina, Segmentation and Recovery of
Superquadrics: Computational Imaging and Vision. Norwell, MA,
USA: Kluwer Academic Publishers, 2000.

[19] D. Nyga, F. Balint-Benczedi, and M. Beetz, “PR2 looking at things
- ensemble learning for unstructured information processing with
markov logic networks,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on, May 2014, pp. 3916–3923.

[20] L. Barsalou, “Perceptual symbol systems,” Behavioral and Brain
Sciences, vol. 22, pp. 577–660, 1999.


